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Abstract  

     We introduce a model to describe the evolution of bacterial meningitis 

epidemics in a non-constant population. We derive the value of the basic 

reproduction number of our model. We analyze the local and global stability of the 

disease-free and endemic equilibria. We confirm the results by a numerical analysis 

of the model. 
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 الخلاصة
نشتق قيمة رقم  إنموذجًا لوصف تطور أوبئة التهاب السحايا الجرثومي في مجموعة سكانية غير ثابتة.نقدم       

نقوم بتحليل الاستقرار المحلي والكلي لنقاط التوازن الخالية من المرض  الاستنساخ الأساسي لنموذجنا.
 .هانختتم بالتحليل العددي للنموذج لتأكيد النتائج التي توصلنا الي والمتوطن.

 
1. Introduction 

     A firm grasp of the mechanisms of disease spread is fundamental to understanding, 

managing and preventing epidemics. Mathematical modeling of infectious diseases, over 

the last century, has tackled this topic with various approaches and assumptions. Among 

other models, epidemics have been modelled via a system of ordinary differential equations 

(ODEs) [1,2,3,4,5,6,7], partial differential equations (PDEs) [8,9,10,11], delay differential 

equations (DDEs) [12,13,14], stochastic differential equations (SDEs) [15,16,17,18] and 

networks [19, 20, 21, 22,23]. 

 

 Each disease depends on its specific characteristics such as the existence of 

asymptomatic spreaders, the availability of a vaccine, etc., which requires specific 

modelling assumptions. Modellers set the level of precision in the description of all the 

nuances with a trade-off between detail and analytical tractability. In particular, in the last 

year, ever-growing attention has been devoted to the ongoing COVID-19 pandemic 

[24,25,26,27]. Many researchers tried to explain the fast diffusion of this virus and to 

predict how different containment techniques may obstruct it [28,29,30]. 

 

   In this paper, we focus on another specific disease, namely bacterial meningitis, via a 

system of ODEs which is presented in Section 2. The three most common bacterial agents 

of this disease are Streptococcus pneumonia (pneumococcus), Neisseria meningitidis 

(meningococcus), and Haemophilus influenzae (Hib) [31,32]. In the past, the lethality of 

meningitis exceeded 50% and even with more modern therapies, it still ranges between 5% 

and 15% [33,32]. Even when non-lethal, meningitis can have serious health complications, 

such as memory problems, hearing loss, brain damage and paralysis [34,35]. A vaccine has 

been available and routinely distributed since the 1980s. 

 

     Similar to COVID-19 the diffusion of the disease may happen when an infected 

individual sneezes or coughs. However, meningitis can be contracted also by eating food 

contaminated with Listeria monocytogenes [36,37]. An interesting characteristic of 

meningitis, which we decided to include in our model, is the division of the susceptible 

population into individuals most exposed to the disease (under 20 years old) and less exposed 

[38]. 

   The organization of this paper is as follows. The model is introduced in Section 2. The 

boundedness of solutions, the equilibria points and the basic reproduction number are given 

in Section 3. Sections 4 and 5 are devoted to the necessary conditions to understand the 

dynamic behavior of the model. The criteria for local and global stability of the nonnegative 

equilibria are also presented for the proposed model. Section 6 is devoted to numerical 

simulations. Finally, Section 7 is dedicated to our conclusions and results. 
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2. Model formulation 

   In this section, we first construct a biological model which comprises five equations every 

one of these equations represents part of the population. All individuals in the first equation 

represent the susceptible class but under 20 years old and they are most exposed to disease 

and denoted by (𝑆𝑛). The individuals less vulnerable to disease (20 years old and older) are 

represented by the second equation and denoted by (𝑆𝑎). The vaccinated individuals are 

represented by the third equation and denoted by (𝑉). The fourth equation represents the 

infected individuals and is denoted by (𝐼). The last equation denoted by (𝑅) represents the 

recovered individuals. From the above assumptions, the biological model of Bacterial 

Meningitis can be described by the following system of nonlinear ODEs: 

 

 

{
 
 
 
 

 
 
 
 

      

.
   

  
 (   )  (   ) 𝑅  (    )𝑆𝑛    𝑆𝑛𝐼 

   

  
      𝑅  (    )𝑆𝑎    𝑆𝑎𝐼                          

  

  
   𝑆𝑛    𝑆𝑎   𝑉     𝑉𝐼                                    

 𝐼

  
 (  𝑆𝑛    𝑆𝑎     𝑉)𝐼  (  𝜀  𝛼)𝐼             

 𝑅

  
 𝛼𝐼  (   )𝑅.                                                           

                     (1) 

 

With initial conditions 𝑆𝑛(0) > 0  𝑆𝑎(0) > 0  𝑉 (0) ≥ 0  𝐼(0) ≥ 0  𝑅(0) ≥ 0. 
 

 
Figure 1: Flow diagram for system (1). 

 

      For clarity, we omit the arrows that represent the death in each compartment. We 

recall that the death rate is   for all compartments except 𝐼, it increases to   𝜀 due to the 

non-negligible mortality of the disease. The parameters in the model (1) are as follows:  is 

the recruitment rate with fraction  ∈ [0  ]  which divides the susceptible individuals 

entering the population into more and less exposed,   is the natural death rate,  𝑖 𝑖     2  
are the vaccination rates of the two classes of susceptible individuals,  𝑖 𝑖     2 3  are the 

infection rates, 𝛼 is the recovery rate from the disease, 𝜀 is the increase in the death rate 
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due to disease,   is the failure in vaccination  ∈ [0  ], and   is the loss in immunity rate. 

The flow between the various compartments of the system (1) is depicted in Figure 1. 

 

3. Basic properties and existence equilibria points 

     In this section, we discuss the boundedness and the existence of equilibrium points and 

the definition of the basic reproduction number for system (1). Clearly, by adding all the 

equations of the model (1), we obtain the equation governing the total population 𝑁 (𝑡). This 

equation can be bounded from above by 

 
 𝑁

  
≤    𝑁   

Where (𝑡)  𝑆𝑛  𝑆𝑎  𝑉  𝐼  𝑅 . In particular, we remark that the total population is not 

constant, contrary to what is assumed in most compartmental models. By solving the last 

linear differential equation, we get that the total population is asymptotically bounded by the 

constant: 

 lim →+∞𝑁(𝑡) ≤
𝜋

𝜇
 . 

Hence, the biologically feasible is a closed set.  

 Ω  {(𝑆𝑛 𝑆𝑎 𝑉 𝐼 𝑅) ∈ ℝ+
5     𝑆𝑛  𝑆𝑎  𝑉  𝐼  𝑅 ≤

𝜋

𝜇
}   

which is a positively invariant for system (1), for initial conditions starting in Ω. Now, we 

discuss the existing conditions of all equilibrium points of the system (1). System(1) has up 

to two equilibrium points that depend on the values of its parameters. The disease-free 

equilibrium point denoted by 𝑒0 which is given by 𝑒0  (𝑆𝑛0 𝑆𝑎0 𝑉0 0 0), where 

 

{
 
 

 
 𝑆𝑛0  

( −𝜔)𝜋

𝜆1+𝜇
        

𝑆𝑎0  
𝜔𝜋

𝜆2+𝜇
            

𝑉0  
𝜆1  0+𝜆2  0

𝜇
.

                                                                    (2) 

The basic reproduction number of system (1) by using the results are firstly introduced in [39], 

then they are generalized in [40, 41]. We refer in particular to [42, Prop. 1] for a detailed 

application of this method. Thus, the basic reproduction number can be written by 

            ℛ0  
𝜋[( −𝜔)(𝜆2+𝜇)(𝜇𝛽1+𝜎𝛽3𝜆1)+𝜔(𝜆1+𝜇)(𝜇𝛽2+𝜎𝛽3𝜆2)]

𝜇(𝜆1+𝜇)(𝜆2+𝜇)(𝜇+𝜀+𝛼)
          (3) (3) 

The other equilibrium point of system(1), which exists in the biologically relevant region   

if ℛ0 >   is the endemic equilibrium point, and is denoted by𝑒 .The point 𝑒  satisfies the  

following system 

 

 

{
 
 

 
 
(   )  (   ) 𝑅  (    )𝑆𝑛    𝑆𝑛𝐼  0 

     𝑅  (    )𝑆𝑎    𝑆𝑎𝐼  0                        
  𝑆𝑛    𝑆𝑎   𝑉     𝑉𝐼  0                                  
(  𝑆𝑛    𝑆𝑎     𝑉)𝐼  (  𝜀  𝛼)𝐼  0            

𝛼𝐼  (   )𝑅  0                                                           
𝐼 ≠ 0.                                                                                   

                        (4)    

 

 

 

 

(4) 

From the first , the second and the fi fth equations of system(4), we obtain 
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{
 
 

 
 

      

𝑆𝑛  
( −𝜔)𝜋(𝜇+𝛾)+𝛼𝛾( −𝜌)𝐼1

(𝜇+𝛾)(𝜆1+𝜇+𝛽1𝐼1)
 

𝑆𝑎  
𝜔𝜋(𝜇+𝛾)+𝛼𝛾𝜌𝐼1

(𝜇+𝛾)(𝜆2+𝜇+𝛽2𝐼1)
            

𝑅  
𝛼𝐼1

𝜇+𝛾
.                                   

                                           (5) 

Therefore, by substituting the values of system(5) in the remaining equations of system(4), 

we obtain 

 

 𝑓(𝑉 𝐼)  𝑟 𝐼
  𝑟 𝐼  𝑟 𝑉𝐼

  𝑟4𝑉𝐼
  𝑟5𝑉𝐼  𝑟6𝑉  𝑟7  0                    (6) 

 𝑔(𝑉 𝐼)  𝑛 𝐼
  𝑛 𝐼  𝑛 𝑉𝐼

  𝑛4𝑉𝐼  𝑛5𝑉  𝑛6  0.                       (7) 

Here 
𝑟    𝛼 (    (     )        )                                                                                                         

𝑟     (µ    )((    𝑤)       𝑤    )   𝛼 (  (     )(      )      (     ))    

𝑟            (    µ)                                                                                                                          
𝑟4    (    µ)(µ            (    µ)        (     µ))                                                 
𝑟5    (    µ)(µ  (     µ)   µ  (     µ)      (     µ)(     µ)                          
𝑟6    µ(    µ)(     µ)(     µ)                                                                                                  
𝑟7    (    µ)(  (    𝑤)(     µ)     𝑤(     µ))                                                             
𝑛        (𝛼    (    µ)(  𝜖  𝛼))                                                                                              

𝑛         (    µ)   𝛼 (  (     )(     µ)      (     µ)                                           

  (    µ)(  𝜖  𝛼)(  (     µ)     (     µ))                                        

𝑛           (    µ)                                                                                                                           
𝑛4      (    µ)(  (     µ)     (     µ))                                                                            
𝑛5      (    µ)(     µ)(     µ)                                                                                                  
𝑛6    (    µ)(  𝜖  𝛼)(     µ)(     µ)(𝑅0    ).                                                            

 

Clearly, as 𝐼 → 0, the two isoclines reduce to 

 𝑓(𝑉)  𝑟6𝑉  𝑟7  0 .                 (8) 

 𝑔(𝑉)  𝑛5𝑉  𝑛6  0.                  (9) 

Equations (8) and (9) have a unique positive intersection point with V -axis, which is given by 

 �̅�   
𝑟7

𝑟6
   

 �̂�   
𝑛6

𝑛5
.  

Then, straightforward computations show that the isoclines (6) and (7) have a unique 

intersection positive point (𝑉  𝐼 ) when �̅� < �̂�, provided that  

 

 
 𝐼

  
  

𝜕𝑓 𝜕 ⁄

𝜕𝑓 𝜕𝐼⁄
> 0                   (10) 

 
 𝐼

  
  

𝜕𝑔 𝜕 ⁄

𝜕𝑔 𝜕𝐼⁄
< 0.                          (11) 

Now, in addition to (10)-(11), the condition 𝑅0 >   guarantees the existence of 𝑒 . 

 

4.Local Stability analysis 

   In this Section, we discuss the local stability of the two equilibria points that are  

described in Section 3. 



 

 

Abdulkadhim                                Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx 

2635 

4.1 Disease free equilibrium point 

    To analyze the local stability of the disease-free equilibrium point that is given in (2), 

we look at the eigenvalues of the Jacobian evaluated in that point. The Jacobian of the 

system (1) is  

𝐽(𝑒∗)  

[
 
 
 
 
 (       𝐼) 0 0    𝑆𝑛 (   ) 

0  (       𝐼) 0    𝑆𝑎   
     (     𝐼)     𝑉 0
  𝐼   𝐼    𝐼 𝑀(𝑆𝑛 𝑆𝑎 𝑉) 0

0 0 0 𝛼  (   )]
 
 
 
 

             (12)                              

where 

 𝑀(𝑆𝑛 𝑆𝑎 𝑉)  (  𝑆𝑛    𝑆𝑎     𝑉)  (  𝜀  𝛼).   

 In particular, evaluating (12) in (2), we obtain 

 𝐽(𝑒0)  

[
 
 
 
 
 (    ) 0 0    𝑆𝑛0 (   ) 

0  (    ) 0    𝑆𝑎0   
          𝑉0 0

0 0 0 𝑀(𝑆𝑛0 𝑆𝑎0 𝑉0) 0

0 0 0 𝛼  (   )]
 
 
 
 

.           (13) 

Four of the eigenvalues of (13) are clearly  (    ) < 0,  (    ) < 0 ,   < 0 and 

 (   ) < 0. The remaining eigenvalue 𝑀(𝑆𝑛0 𝑆𝑎0 𝑉0) can be checked to be ≷ 0 if and 

only if the basic reproduction number ℛ0 that is given by (3), is ≷  . Hence, if ℛ0 <  , the 

disease-free equilibrium point that is given in (2) is locally stable, whereas if ℛ0 >   the 

disease-free equilibrium point that is given in (2) is locally unstable. 

 

4.2 Endemic equilibrium point 

    To analyze the local stability of the endemic equilibrium point that is given in (5), we 

use a similar strategy to the one that is used in [27, Sec. 4]. The Jacobian of the system (1) is 

given in (12). If we evaluate it at the endemic equilibrium point, we obtain

𝐽(𝑒 )  

[
 
 
 
 
 (       𝐼 ) 0 0    𝑆𝑛 (   ) 

0  (       𝐼 ) 0    𝑆𝑎   
     (     𝐼 )     𝑉 0
  𝐼   𝐼    𝐼 0 0

0 0 0 𝛼  (   )]
 
 
 
 

 (14)

since from the fourth equation of (4) we obtain 𝑀(𝑆𝑛  𝑆𝑎  𝑉 )  0. Applying Gershgorin’s 

first theorem, we obtain that the eigenvalues of (14) lie in the union of the following circles in 

the complex plane: 

 

• center in  (    )    𝐼  0𝑖, radius 𝑅  min. {     𝐼    𝑆𝑛  (   ) }; 
• center in  (    )    𝐼  0𝑖, radius 𝑅  𝑚𝑖𝑛{     𝐼    𝑆𝑎    }; 
• center in       𝐼  0𝑖, radius 𝑅  𝑚𝑖𝑛{         𝑉     𝐼 }; 
• center in 0  0𝑖, radius 𝑅4  𝑚𝑖𝑛{(         )𝐼    𝑆𝑛    𝑆𝑎     𝑉  𝛼}; 
• center in  (   )  0𝑖, radius 𝑅5  𝑚𝑖𝑛{  𝛼}. 
   The only circle which does not provide an eigenvalue with a negative real part is the 

fourth, hence, (14) has four eigenvalues with a negative real part and a fifth to be determined. 
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However, to the best of our efforts, we are not able to analytically prove the local stability of 

the endemic equilibrium point for values of ℛ0 >  . We conjecture that this is true. Our 

numerical exploration of the model seems to confirm this result, but due to the high 

dimension of the system, and the non-trivial Jacobian matrix, an analytical proof seems to be 

hardly achievable. 

 

5.Global Stability analysis 

   In this section, we verify the conditions that guarantee global stability analysis of the two 

equilibria that are found in Section 3 of the system (1). We prove that exploiting LaSalle’s 

method [43] through the definition of specific Lyapunov functions. 

5.1 Disease-free equilibrium point 

   We introduce the following restrictions on the variable space: 

 

[  
  

  0
 

   

  0 0
(  

  0

  
)] ≤ 0 

[  
  

  0
 

   

  0 0
(  

  0

  
)] ≤ 0

                     𝛼𝐼  (   )𝑅 ≤ 0.

                        (15) 

 If the initial conditions of the system lie in the set that is described by (15), we are able to 

prove the following: 

Theorem 1. For orbits evolving in the set described by (15), if ℛ0 ≤  , then the disease-free 

equilibrium point 𝑒0 of the system(1) is asymptotically stable. 

Proof. We introduce the following Lyapunov function: 

 𝐿  ∫ (  
  0

𝑥
)𝑑𝑥  ∫ (  

  0

𝑥
) 𝑑𝑥  

  

  0
∫ (  

 0

𝑥
) 𝑑𝑥  𝐼  𝑅.

 

 0

  

  0
  

The derivative of 𝐿 (𝑡) with respect to the time variable 𝑡 is 

 
 𝐿1

  
 (  

  0

  
)
   

  
 (  

  0

  
)
   

  
 (  

 0

 
)
  

  
 
 𝐼

  
 
 𝑅

  
.                    (16) 

After some algebraic simplification, we can rewrite it as follows: 

(  
𝑆𝑛0
𝑆𝑛
)
𝑑𝑆𝑛
𝑑𝑡

 (  
𝑆𝑛0
𝑆𝑛
) [(   ) 𝑅  (    )𝑆𝑛    𝑆𝑛𝐼  (    )𝑆𝑛0]                                           

 (    )𝑆𝑛0 [2  
𝑆𝑛
𝑆𝑛0

 
𝑆𝑛0
𝑆𝑛
]  (   ) 𝑅 [  

𝑆𝑛0
𝑆𝑛
]    𝑆𝑛0𝐼 [  

𝑆𝑛
𝑆𝑛0
]          ( 7)

 

(  
  0

  
)
   

  
 (  

  0

  
) [  𝑅  (    )𝑆𝑎    𝑆𝑎𝐼  (    )𝑆𝑎0]                                                 

 (    )𝑆𝑎0 [2  
  

  0
 
  0

  
]    𝑅 [  

  0

  
]    𝑆𝑎0𝐼 [  

  

  0
]                                    ( 8)

   

                                                       

(  
 0

 
)
  

  
 (  

 0

 
) [  𝑆𝑛    𝑆𝑎   𝑉     𝑉𝐼    𝑆𝑛0    𝑆𝑎0   𝑉0]

 
𝜆1  0 0

 
[  

  

  0
 

 

 0
 

   

  0 0
]     𝑉0𝐼 [  

 

 0
]

 
𝜆2  0 0

 
[  

  

  0
 

 

 0
 

   

  0 0
]   𝑉0 [2  

 0

 
 

 

 0
]

          (19) 

 𝐼

  
 (  𝑆𝑛    𝑆𝑎     𝑉)𝐼  (  𝜀  𝛼)𝐼.                                    (20) 

 𝑅

  
 𝛼𝐼  (   )𝑅.                                                   (21) 

Now by substituting equations (17)-(21) in equation (16), we obtain 
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 𝐿1

  
 (    )𝑆𝑛0 [2  

  

  0
 
  0

  
]  (   ) 𝑅 [  

  0

  
]    𝑆𝑛0𝐼 [  

  

  0
]

 (     )𝑆𝑎0 [2  
  

  0
 
  0

  
]    𝑅 [  

  0

  
   𝑆𝑎0𝐼 (  

  

  0
)]

 
𝜆1  0 0

 
[  

  

  0
 

 

 0
 

   

  0 0
]     𝑉0𝐼 [  

 

 0
]                             

 
𝜆2  0 0

 
[  

  

  0
 

 

 0
 

   

  0 0
]   𝑉0 [2  

 0

 
 

 

 0
]                          

 (  𝑆𝑛    𝑆𝑎     𝑉)𝐼  (  𝜀  𝛼)𝐼  𝛼𝐼  (   )𝑅.          

  

If conditions (15) are satisfied, the largest invariant subset  
 𝐿1

  
≤ 0, is 𝑒0. Then as a 

consequence of LaSalle’s theorem, the disease free equilibrium of system (1) is globally 

asymptotically stable. 

 

5.2 Endemic equilibrium point 

   We introduce the following restrictions on the variable space: 

 

[  
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𝐼

𝐼1
(  

  

  1
)] ≤ 0    

[  
  1

  
 

𝐼

𝐼1
(  

  

  1
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𝑅

𝑅1
 

𝑅  

𝑅1  1
(  

𝑅1

𝑅
)] ≤ 0 

[  
 1

 
 

𝐼

𝐼1
(  

 

 1
)] ≤ 0        

[  
𝐼

𝐼1
 

𝐼𝑅

𝐼1𝑅1
(  

𝐼1

𝐼
)] ≤ 0.    

                                          (22) 

If the initial conditions of the system lie in the set described by (22), we are able to prove the 

following: 

 

Theorem 2. For orbits evolving in the set described by (22), if ℛ0 >  , the endemic 

equilibrium point 𝑒  of (1) is asymptotically stable. 

Proof. We introduce the following Lyapunov function: 

𝐿  ∫ (  
  1

𝑥
) 𝑑𝑥  ∫ (  

  1

𝑥
)𝑑𝑥  

  

  1
∫ (  

 1

𝑥
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𝑥
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𝑅
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𝐼

𝐼1

 

 1

  

  1
𝑅1

𝑥
)𝑑𝑥 .  

The derivative of 𝐿 (𝑡) with respect to the time variable 𝑡 is 

 
 𝐿2

  
 (  
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)
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   (23)           

  After some algebraic simplification we can rewrite it as follows 
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Now by substituting equations (24)-(28) in equation (23), we obtain 
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If the conditions (22) are satisfied, the largest invariant subset 
 𝐿2

  
≤ 0, is 𝑒 . Then as a 

consequence of LaSalle’s theorem, the endemic equilibrium point of system (1) is globally 

asymptotically stable. 

 

6. Numerical simulation 

  The interaction between the various compartments of the system (1) exhibits convergence 

towards either the disease-free equilibrium 𝑒0 , in the case ℛ0 <  , or the endemic 

equilibrium 𝑒 , in the case ℛ0 >  . In this section, we provide numerous numerical 

simulations of our model to confirm the theoretical discussions that are established in the 

previous sections. All the simulations of system (1) are executed using the Matlab and 

MatCont programs. To examine the stability of the equilibria points as a result of variations 

of the parameters, we have used the following values as initial conditions for the population 

(𝑆𝑛(0)  𝑆𝑎(0)  𝑉 (0)  𝐼(0)  𝑅(0)).  

 

 
( 50 750 25  0  50)  ;  (500  500  00 4000 50);         
(300  000 200 200 300) ;  ( 000 50  000  000 750).

                (29) 

  

We refer to Figures 2 and 3 for plots of solutions to system (1). The values of the parameters 

that are used in Figure 2 are: 

 
    0.3;      500;      0. ;      0.3;      0.0 ;      0.0002;  µ   0. ;
     0.0 ;      0.000 ;      0.00 ;      0.0000 ; 𝜀   0.00 ;  𝛼   0.2.

         

                                                                 …..(30) 
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For the values (30) and in accordance with Theorem 2, Figure 2 shows the convergence 

towards the endemic point 𝑒 . In such a setting, meningitis remains endemic.  

 

Figure 2: The global asymptotic stability of the endemic equilibrium point 𝑒 when 

ℛ0  2.567 >  . The initial values of each compartment are given in (29), and the 

parameters in (30). 

  If we decrease the contact rate between susceptible individuals under 20-year 𝑆𝑛 with the 

infected I to      0.00002, and keep the remaining values listed in equation (30), we bring 

ℛ0 below the threshold value 1. In accordance with Theorem 1,  Figure 3 shows the 

asymptotic stability of the disease-free point 𝑒0. In such a setting, meningitis becomes 

extinct, this confirms the intuition that the decrease of the contact rates, even assuming all the 

other parameters in the model are fixed, allows to control and eradicate the disease.  
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Figure 3: The global asymptotic stability of the disease-free equilibrium point 𝑒0 when 

ℛ0  0.664 <  . The initial values of each compartment are given in (29), and the 

parameters in (30). 

   In Figure 4, we observe the influence of the parameter    (vaccination rate of susceptible 

under 20 years) on the dynamical solution to the model (1). When   <   
∗ ≈  0.3253, and 

keep all the other parameter values constant as in (30), the endemic equilibrium point 𝑒  is 

asymptotically stable. However, increasing this value to   >   
∗  ≈  0.3253, the disease-free 

equilibrium point 𝑒0 becomes asymptotically stable. The existence of a bifurcation point 

between the two chosen values of    is illustrated in Figures 4a and 4b which is confirmed 

through the use of the MatCont [44], see Figure 6a. In Figure 5, we show the effect of 

changing the recovery rate 𝛼. Increasing 𝛼 corresponds to a shortening of the infectious 

period, i.e. speeding the recovery up. Consider the  influence the parameter 𝛼 has on the 

basic reproduction number ℛ0. Clearly, if all the other values are fixed, there exists a value 

𝛼∗  ≈  0.67 7 below which ℛ0 >  , and above which ℛ0 <  . Using the values (30). if 

𝛼 <  𝛼∗, the endemic equilibrium 𝑒  is asymptotically stable. 

  However, taking 𝛼 ≥  𝛼∗, the endemic equilibrium loses its stability, and the trajectory 

converges towards the disease-free equilibrium 𝑒0. The existence of a bifurcation point 

between the two chosen values of 𝛼 is illustrated in Figures 5a and 5b which is confirmed 

through the use of the MatCont [44], see Figure 6b. In addition, Figure 7 shows the 

relationship between ℛ0 and several parameters in the model(1).  
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Figure 4: Effect of   on the dynamics of model (1). (a) For    0.3 <   
∗ ≈ 0.3253 with 

ℛ0   .034 >  . (b) For    0.35 >   
∗ ≈  0.3253 with ℛ0  0.94 <  . 
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Figure 5: Effect of α on the dynamics of model (1). (a) For 𝛼  0.6 < 𝛼∗ ≈ 0.67 7 with 

ℛ0   .3 >  . (b) For 𝛼  0.7 > 𝛼∗  ≈  0.67 7 with ℛ0  0.96 <  . 
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Figure 6: Bifurcation analysis of system (1) for the parameters listed in (30). (a) Bifurcation 

diagram of the effect of varying   on the asymptotic values of 𝐼. (b) Bifurcation diagram of 

the effect of varying 𝛼 on the asymptotic values of 𝐼. 
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Figure 7: The relationship between ℛ0 with some parameters. 
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7. Conclusions 

  The behavior of a newly proposed model is analyzed and presented as a nonlinear system 

of ODE. The model describes the evolution in time of a bacterial meningitis epidemic in a 

non-constant population. We provided the classic threshold value ℛ0 for our model, which 

proved to be a surprisingly intricate combination of all the parameters in our system. We 

proved, under some restrictions, that the asymptotic behavior is either convergence towards 

the disease-free equilibrium point or the endemic equilibrium point. Our numerical analysis 

confirms the theoretical results regarding the asymptotic behavior of the model. Moreover, 

our bifurcation analysis provides a glimpse into the possible control measures for such an 

epidemic. Some of the parameters of the system are embedded in the disease, such as the 

duration of the immunity window; other parameters such as the contact rates can be reduced 

through various precautions. Our analysis aims at the qualitative properties of the system, 

rather than at precise predictions, and we leave the calibration of our model with real-world 

data as a viable research outlook. 
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