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Abstract

A general treatment function with an epidemic model that involves the delay in the
treatment period has been proposed and studied in this work. This model contains
two compartments, namely susceptible denoted by S(t) and infected denoted by I(t).
The existence of all the fixed points has been determined. The system has two
equilibrium points, namely the uninfected equilibrium point (UIEP) and the endemic
equilibrium point (EEP). The conditions for local stability and Hopf bifurcation have
been discussed. The stability of the periodic solutions and the direction of the Hopf
bifurcation properties have been studied analytically and numerically.

Keyword.:Infection diseases, Stability, Time delay, Hopf bifurcation, Treatment
function.
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1. Introduction

Mathematical models are powerful tools for describing the population dynamics of
infectious diseases. Mathematical models have played an essential role in the studying of
disease dynamics and control of the disease. The appearance of different infectious diseases
represents a main challenge in the modern world. The incident of infectious disease causes a
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large loss of lives and other resources. Although, there are advances in medical science and an
increased understanding of infectious disease mechanisms. Infectious diseases have caused
millions of deaths and disabilities Worldwide. As a result, researchers from various fields of
science and medicine are working to develop an effective solution to stop the transmission of
infectious diseases see [1-3]. A lack of safe drinking water causes waterborne diseases such as
cholera, typhoid, and hepatitis. The prospect of various modes of disease transmission makes
the study of waterborne disease more significant. Cholera is considered one of these diseases
that belongs to this class. Many researchers have studied the dynamic behavior of Cholera
disease. Joh et al. [4] suggested a mathematical model of Cholera disease so that the primary
mode of transmission is indirect and occurs by contact with a contaminated reservoir. In [5]
Cui et al. formulated an SVR-B Cholera model with imperfect vaccination. Wang et al. [6]
discussed and formulated a mathematical model including the of human behavior on cholera
dynamics. Ayoade et al. studied the dynamics of cholera disease with vaccination and treatment
control for Cholera outbreaks [7]. Olaniyi S .at el. presented a mathematical model for
controlling cholera outbreaks without natural recovery [8]. The hepatitis B virus causes
infection in liver cells a potentially life-threatening infection. It is a global health problem, with
HBV being the most dangerous type of viral hepatitis. Infection with hepatitis can result in both
acute and chronic symptoms (transient i.e lasting less than six months) [9]. The ability of the
infected individual's immune system to contain and eliminate the virus determines whether the
sickness is chronic (lifelong) [10]. Theoretical biologists can improve our understanding of
contributing factors in disease by applying mathematical modeling hepatitis virus dynamics.
As a result, a number of research studies have been conducted that deal with modeling and
simulating the dynamic behavior of hepatitis. Zahura et al. [11] analyzed and studied the
hepatitis B virus mathematical model. John et al. [12] developed a mathematical model
including Cytotoxic T-Lymphocytes (CTLs) immune response and focusing on the hepatitis B
and C viruses (HBV and HCV) infection in the liver and blood cells. They also developed a
mathematical model including the Cytotoxic T-Lymphocytes (CTLS) immune response.

Time delay plays asignificant role in population dynamics. The dynamics of the state
variables in many real-world processes, specifically in many biological phenomena, depend not
only on the processes' current state but also on the phenomenon's history, that is, on the state
variables' previous values. The dynamics of infectious diseases may be affected by the time
delay as shown in Zuo et al. [13]. Their formulated and studied the effect of media on
recruitment and delaying the epidemic's spread. Aekabut at el. [14] studied a delayed of SEIR
epidemic model in which the latent and infected states are infective. Naji and Majeed [15]
investigated the impact of delay on a stage-structure prey-predator model. Zhe Yin at el. [16]
studied the effect of time delay on an age-structured SEIRS Model. Mohsen and Naji [17]
studied the stability delay cancer model in a polluted environment. Zizhen et al. [18] The
proposed SVIRS epidemic model contains multiple delays with Holling type Il incidence rate
and treatment rate. Naji and Mohsen [19] studied the SVIR epidemic model including
immigrants. Hassan [20] studied the affected vaccine in the epidemic model of stage structure.
Mohsen et al. [21] suggested a mathematical model for the dynamics of the COVID-19
epidemic including infected immigrants. Hassan and Ahmed [22] proposed the following
model

B-1- P)A—E—/JS,
1)

ﬂ ﬂ_ _
—=PA+i——(u+a)l :
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Where S(t) and I(t) represent the number of susceptible and infected at time ¢, respectively.
A > 0 is the birth rate in S(t), P is the external sources of disease suchthat 0 <P < 1; B is
the infection rate; u is the natural death rate from both S(t) and I(t) ; a is the disease related
death from I(t) ; K refers to the carrying capacity of disease; r represents the maximal medical
resource per unit of time ; n is the infected size. Clearly, the above model is without delay. We
will focus on the time delay effect. So, in the first step, system (1) is modified in this paper. In
section 2, The positivity and bounded of solutions to the modified system are discussed. In
section 3, we mainly study the stability and the existence of the Hopf bifurcation. In section 4,
we study the properties of the Hopf bifurcation by using the normal theory and the center
manifold theorem. In section 5, some numerical simulations are performed to illustrate the main
results. In section 6, conclusions are given. Now, the modified system (1) can be expressed as
follows:

B-@-rP)A-E_yus,
ar _ ﬂ_ _ ri(t—71)
dt PA + K+I (h+ o)l n+I1(t-1)

Where 7 is the time delay due to the latent period of treatment. All parameters in system (2)
have the same biological meaning as those in system (1).

2. Postive and Boundedness.
In this part, we will study the positive and boundedness of the solutions to the system (2).

Theorem 1. The solutions to the system (2) are positive and bounded fort > 0.
Proof. First, we prove that the solutions of the system (2) are positive
From the first equation of the system (2) for t > 0, we have

as o _ ¢ BL
dt> S(K+I+#)'

As a result and through computation, we obtained

t
S = S@exp —{f; (G +1)d©)}
Since (0) > 0, weget S(t) >0 for allt > 0.
Now, we show that I(t) is positive

From the second equation of the system (2), it is noted that :
dl Bs@) _ ri{t-1)
=1 K+I(t) 1+ a) [n+1(t—7)]I(t)

Thus, we obtain:

1({—
1) = 10exp { [ (L~ (u+ ) - 7 E225) d(©)).

Since (0) > 0, wehave I(t)>0for allt > 0.

Following that, the proof that the system's solutions are bounded forall ¢t > 0.
Define H(t) = S(t) + 1(t)

Therefore, it is obtained that % <A-—-uH.

By using Gronwell's lemma [23], we have:

F(E) < H(0)e ™ 42 (1 — ek,
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which gives lim H(t) s% , that is independent of the initial condition. Therefore, the
n—-oo
solutions are bounded.

3. The Local stability and Hopf Bifurcation .

The local stability and Hopf bifurcation of the system (2) will be discussed in this section.
It is known that the location and number of equilibrium points do not change with time delay.
It is clear that system (2) has two equilibrium points, see [22].

. The first equilibrium point, namely the uninfected equilibrium
point(UIEP) denoted E, = (S, 0), where
So =4/ ©)
Clearly, E, existsif I =0 , p = 0 and the basic reproduction number R, < 1.
With
_ npA
Ro = pK[n(p+ a)+r] “)
. The second equilibrium point, namely the endemic equilibrium point (EEP)
denoted E; = (S4,1;), where
_ (A-P)(K+DA
17 Br+uk+Dn ®)
While I, is the positive root of the following fourth order polynomial equation

Here
0=~ +au+p]<0
Q=B+wWPA-1)+PAA—-P)— (u+ )[p(k+n)+u2+n)]
0;= BAK +n) — (B +2u)(rk + an) + uk(2PA — a) + PAn u

0, = PAK(n[B + p(2 —7rK) + (1 — P)] + Ku(1 — K))
N = K?AunP > 0

Clearly, E; existsif I # 0,p # 0 and the basic reproduction number R, > 1.

Now, the local stability analysis of the equilibrium points UIEP and EEP are discussed by
using the linearization method. This method depends on computing the Jacobian matrix that is
evaluated at each equilibrium point.

The general Jacobian matrix (JM) of the system (2) at any equilibrium point E = (S, 1) is given
by

B! BKS
N K_+I+ H ) - (K+1)2
](E) = BI ﬁKS rne—ll’ * (7)
pon ~(u+a)-
K+I (K+1)? (n+1)2

Then, the characteristic equation of the above matrix is

P+ P,(MDe =0,

(8)
Here P; (1) and P,(A) are polynomials of A, Accordingly, the (JM) of the system (2) at the
UIEP is
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_ _BS
J(Eo) = « x| 9)
o %—(uﬂr)—ml

Then the characteristic equation of J(E,) is given by

A2+ CiA+ Cy + (DA + Dy)e ™ = 0. (10)
where
S
C, = —[ %—(Z,u+a)].
S
cz——u[%—(wa)].
p. ="
l_n
U
D, =—
2 n

Now, if T = 0, then equation (10) becomes
A2+ (C,+D)A+(C,+D,)=0. (11)
Clearly, equation (11) has two roots which are negative if the following condition holds
Ry <1 (12)
Hence, the UIEP is locally asymptotically stable under the condition (12) holds for T = 0
On the other hand, for 7 > 0, suppose that equation (10) has a pair of purely imaginary roots,
namely 1 = +iw, (wy > 0) if ,in addition to condition (12), the following condition holds
D, >C,. (13)
By substituting A = tiw, inequation (10) we get:
Dy wq SinwoT + D, cos wyT + i[Dywocos woT — Dy Sinwgt] = w3 —C, — Ciwyi

Consequently, we obtain by separating the real and imaginary components

D, SinwyT + D, cos wyT = w3 — C, } (14)
Dy wycos woT — Dy sin wyT = — CLwy

Squaring the equation (14) and adding them, we obtain
where

b, = C2—-D? —2¢,

b, = C§ —=D3 = (C, = D,)(C, + D,) .

Let h = w3 , then equation (15) becomes
h?+bh+b,=0. (16)
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Obviously, due to conditions (12) and (13) , we have b, < 0. According to Descartes rule of
sign, there is a unique non-negative root say wg that satisfies equation (16). Thus wyg is the

non-negative root of equation (15) too.

Therefore, there are roots represented by +iwg that satisfy equation (10)
Corresponding to the time delay, Moreover, by substituting w; in equation.(14) and solving
the resulting system for 7, we have

‘[n — %Cos_l (DZ_ClDl)(wa )Z_CZDZ + 2_7’1;" n = 0'1'2' . (17)

@0 D7 (w5 )*+D3 @o

Thus the system (2) has no periodic when T > 0 , and UIEP is absolutely stable for all
T > 0[24]
While ,The (JM) of the system (2) at the EEP is:

—(a, + 1) —a;
E)) = 1
JEI=1 0 g v @) - e (9
where
_ ﬂ _ PKS; . T
U =, %2 = (K+1)2" 3 7 (m+1;)?"
Then, the characteristic equation of J(E;) can be written as follows:
RZ+YA+Y,+ A+ Y)e ™ =0 . (19)
Where
_ BKS, Bl ]
v [(1(+11)2 K+1, * Wt a)
_ Bl ” ] ﬁ K511
¥z = [K+11+” (K + 1,)? (+a K +1,)3
™m
Y,= ——>0
(n+1;)?
Y.
2= [(n+11) ”K+I +”] >0
So for T = 0, then equation (19) becomes
P+ +1)DA+P,+Y,=0. (20)

Clearly, the above equation has two roots, these roots have a negative real part if the
following conditions are satisfied
Ry>1 (21)
K+ [(n+1D*(BL+Cu+a)(K + 1) +rn(K +1,)) > BKS;(n+ 1,)? (22)

K+1)(n+ 1) [ (u+)BL+wl+rn[un+1L)?+pLK +1,))

> BukS;(n + 1) (23)

Hence, for = 0, the equilibrium point E; is locally asymptotically stable if conditions
(21) — (23) are satisfied.
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On the other hand, for T > 0, suppose that equation(19) has a pair of purely imaginary roots,

namely A = +iw; ( w,; > 0) if in addition to condition (23) the following condition holds
Y, > %, (24)

By substituting A = +iw, in equation(19), we obtain

Yiw;sinw,T+ Y, cos wiT + i[Yiwicos 0T — Y, sinwiT] = wi—Y, — Piwqi

Which implies

Yiw,;sinw,T+Y; cos wT = w? — P, } (25)
Yiwicos wT — Y, sinw T = — P w4

Squaring the above equations and adding them, we have
0)‘11+€1w%+82=0 y

(26)
where
€1 = l,0122 - l/'122 — 21y,
e, =9 =17 = [, - 1)@, + 13).
Let k = w? , then equation (26) becomes
k2+6’1k+82=0. (27)

Obviously, due to conditions (23) and (24) , we have e, < 0.
According to Descartes rule of the sign there is a unique non-negative root say w;j that satisfies

equation (27). Thus w7 is the non-negative root of equation (26) too.

Therefore, there are roots represented by +iw; that satisfy equation (19)
Corresponding to the time delay, Moreover, by substituting w7 in equation (25) and solving the
resulting system for t, then we have

-1 -1 2=v1¥ 1) ()2 =5y, 2m

Now define that 7, = mion 7, then A(7) = n(r) + iw,(r) is a root of equation (19) that
1=
satisfies n(zy) = 0 and w,(7y) = wi > 0. Then, we obtain the following theorem.

Theorem 2 . If the following condition is satisfied

Y? -2y <yf - 207 (29)
Then E; is conditionally stable.
Proof.We will show that E; is conditionally stable. Firstly, we show that E; is asymptotically
stable for t € [0, Ty). Moreover, as shown in conditions (21) - (23).
Secondly, we show the transcendental characteristic equation(19) has roots which are
represented by +iwj att = Ty, Thatis ['HRZ—)TL(T))] # 0.

T=Tpo

If we suppose that A(t) = n(t) + iw,(7) is the eigenvalue of equation (19) such that
n(ty) = 0and w,(ty) = w7 > 0. T, define in equation (28).
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If we use A(t) in equation (19), and take the derivative of that equation with respect to z, then
we get the following:

_ —21dA _
[21 + Y, + v AT — T(y1id +y2)e M] i Ayid +v2)e o (30)
ant 20+, n__ T
[E] T CAAZ4PiAtYy) | AaAtye) A (31)
Since fort =7y, and 1 = iw] , we have
[d_/'l]_l _ Y1 +2ie] + 7 T
drlr=z, Pr(w])?—iw] Y- (w])?]  —-rnwi+iy,w] iw]
Now since
. [d(Red)
sign [—dT ]T= = sign [Re( )~ L or (32)

It is clear that :

Re Yy + 2iwy ] _ 2[, — (wD)?] - ¢12
Y1 (w)? —iwy [, — (D)2 Pi(w])? + [, — (w)?]?
rel Y1 ] _ ¥i
—y107 +ivo0r]  wf (7 + 5 wr)
Re T—ON] = zero
iw]

Hence, we have

1 ~
Re[Z] " = [=e +207)]

where
Wo = Yi(w)? + [Y — (@) + w7 (¥f +y307) >0
and e, isgiven in equation (26)

d(ReA(T))
dt

Thus, we get [ ] > 0 under the condition (29).
T=Tp

This result shows that if z passes through t,, then the roots of the characteristic
equation(19) cross the imaginary axis from left to right. As a result, system (2) loses stability
and when t = 1, , then a Hopf bifurcation is apparent.

4. The Direction and Stability of the Hopf Bifurcation

Sometimes external factors that influence the dynamic behavior can cause sudden changes
in solutions. These changes are called bifurcation. We demonstrate in the preceding section that
system (2) exhibits a Hopf bifurcation near the endemic equilibrium point E;. In this section,
we will study the properties of these changes, such as what is the direction of the solution under
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this change, whether its solution increasing or decreasing, and whether its solution stable or not.
By using normal form theory and the center manifold theory, for more details see [25].

Theorem 3.
(1) Suppose that a, determines the direction of the Hope bifurcation.
If a, > 0, then the Hopf bifurcation is supercritical and if a, < 0,
then the Hopf bifurcation is subcritical.
(if) Suppose that ¢, determines the stability of the bifurcating solution.
If £, < 0, then the bifurcating periodic solutions are stable, and
if £, > 0, then the bifurcating periodic solutions are unstable.
(iii) Suppose that T, determines the period of the bifurcating periodic solution.
If T, > 0, then the period increase
and if T, < 0, thenthe period decrease
where a,, £,, and T, are given as follows:

|gozI? )
C,(0) = E(Qn 920 = 219111° — go; ) +%‘
0 = — Re{C1(0)}
2= T T qax,_ oy
RE{E(T())} > (33)

¢, = 2Re{(C,(0)},

_—Imi{C, ()} +ay Im{%(zo))
2 — wITO ) J

and g1, 920, 9oz and g,; are given in the proof of the theorem.

Proof. Let u (t) =S(t) —S;, uy(t) =1(t) — I and T =15+ 0 where t, is defined by
equation (28) and o € R then o = 0 is the Hopf bifurcation value of the system (2). The
functional differential equation in C([—1,0], R?) for the system (2) as:

u'(t) = Ly (ue) + h(o, uyp). (34)
Here, u(t) = (uy(t),uy(t))T € ¢ =C([—-1,0]),R?») and L,:C > R?> , :RXC —» R? are
given respectively :

Ls(¢p) = (19 + 0)(N19(0) + Np(—1)) . (35)
and the nonlinear term is

Mo = @ +o) (1),

where

_ [hi? hé?] _ [—(al + 1) —a, I
hiso hots @ 4~ uta)

w=lo )=l el
27 1o h((,%)l_O as

with a4, a,, a; are define in the j(E;), while

1 .
Hy = Sirkaz 7z hiy) 01 (0095 (0),

H, = L@ o)k @@r (-1)
2 T kin! itn P1\YV) @3 %)

i+k+n=2

Where (v) = (@, (v), ¢,(v))! € C([-1,0],R?),—1 < v < 0, with
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) ai+kh(1)
h 91005 (0) = ——— ,
P192 1(4,,02)=(0,0)
) ai+k+nh(2)
@ i k “n
h; 0 0 -1))="————
ikn (P1( )(Pz( ) @5 -1 6<p{<p§¢§

((P 1,(P2,(7’2 )=(0'01_ 1)

By the Riesz representation theorem, there exists a matrix M (v,0) for -1 <v <0

such that
Lop = [0, dM©v,0)p@) for peC

In fact, choosing
M (U, 0) == (TO + 0-) (N15(U) - NI(S(U + 1))

1 v=20

where §(v) = {O v %0

For ¢ € C([—1,0]),R?), define

do(v)

T -1<v<0,
Al@)p@) =4 ,
f—l d’Y(U: O')(p(U), v=0,
And
0, -1<v<0,

RO = {15 o, =

Hence, the system (34) is equivalent to operator differential equation
u'(t) = A(o)us + R(o)u;

Where u;(v) = u(t+v),-1<v <0

For ¥ € C1([—1,0]), (R?)*), define the adjoint operator A*of A(0)

_av($)
av() =4  ®F
J_ dn"(E,0)¥ (=), $=0.

0<$H<1,

(36)

(37)

(38)

(39)

(40)

(41)

Forgo € C([—1,0]),R*) and ¥ € C*([—1,0]),(R?)*) . we define the bilinear inner product

W($), 0 =T - [, [, F (s —v)dn@e()ds,

where n() =n(v,0).

(42)

It is clear that A(0) and A* are adjoint operators. Let q(v) = (1,d;)Te™¥®1 be the
eigenvectors of A corresponding to iw;T, and let ¢*(9) = D(1,d,)Te %91 pe the
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eigenvectors of A* corresponding to —iwjt, . Thus, for ¢ = 0 by a simple computation, we
obtain

L 1 10, ~

d. = lw] —hgo) d, = — h§0)+l(1)1
1= 0 » %27 e
01 100

From bilinear inner product (42), we obtain

(q"(9),q(v)) = 5[1 + Todydy R e—irow;]

- , -1
Let.D = |1+ 1odydyhlg e ™01 | (43)
here, D represents the conjugate complex number of D such that (d;,d,) = 1 and
(dy,d3) = 0.
Next, according to the algorithm in Hassard et al. [25 ], we can determine the expression of
920 »911, 9oz and g,q as follows :

920 = ZTOE(Q’I + gsd, )
911 = Toﬁ(gvz + Qﬁedz)

h _ (44)
Joz = 270D (g3 + g,d>) |
921 = ZTOD(g’4 + g)sdz))
where
g1=hY d, +rD a2,
1 7 1 7
g, =hY (dy +dy) +2n) d,d;,
gs=hD d, +n) dz,
1 1 1 3 1 1 2 2
g4 =h® (dwP O +1 dy wP(©) +2 wP(©0) +w(0)
+h$(dy wiy(0) +2d; w?(0))
35 = W, dy + W @+ ASD) df e
2 7 2 7 2 7
g = h'2 (dy + d,) + 20 dyd; + 208, did,,
52 = Wy d + W &+ D, dF e2or,
15 1
gs = K5y (dawiP(0) +3dy wip(0) +3wie (0) + wi? (0))
+hy(dy wp) (0) +2dy wP(0)) ,
+hioy(dy wiy (1) e @i™ +2dy wiP (—1) emi@i®)
with
Wzo(6) = 225 q(0) ef@iT” + 7R (0) e NI 4 Ly eieiTo (45)
wi1(8) = — 2L q(0) elwitov 4 i g(0) emiwitov 4 L, (46)
1°0 1%t
T T
L, = (L(ll),L(lz)) and L, = (L(Zl),L(ZZ)) can be found from the following equations:
Q1L1 = 2790Q;. (47)
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éz L, = —700Q; . (48)

0
Q, = <2iw01'01 —J. aM (v) eZiWOTO”),
-1

Q, = <f_01dM(V)>,

Q1 =(g1 gs)",
Q:=(g2 s )T
it is obtained that:
g, = (2o —rY —hSY
TR 2w A - e
a2 )

- () (2) @ f

_h100 _h010 - h001

Hence, L(lj) = %
determinant 0;, Whe_re 0; is found by replacing the jt" column vector of Q, by Q, forj = 1,2,.
Similarly, LY = %,] = 1,2, where V = determinant (Q, ) and V; is the value of the

determinant E;, where E; is founded by replacing the jt" column vector of Q, by Q, forj =
1,2.

,j = 1,2, where V = determinant of (Q,) and V; is the value of the

Hence, w,,(6) and w;;(8) can be found by using equations (45) - (48). Thus, we can obtain
the expressions that are given in equation (36) depending on those given in equation (44) and
the proof is completed.

5. Numerical Simulation and Discussion
In this section, we shall use numerical simulation to illustrate the results of our analysis.
The following hypothetical parameters have been chosen throughout this section.

A=035 ,p5=0001 ,K=05 ,u=01n=03 (49)
r=20.2 , =19 ,P=0 ,a=0.003.

Matlab is used to draw each of the obtained trajectories for the system (2). Equation's
(49) parameters are used to solve system (2) numerically and to confirm our conclusions.
It is observed that for the data given by equation (49) then the trajectories of the system (2)
approach to UIEP as shown in Figure (1).
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Figure 1: The system's (2) trajectories using the information provided by equation (49).
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It is observed that for given data by equation (49) with P = 0.1 system (2) has a globally

asymptotically stable to (EEP) as shown in Figure (2).
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Now, we discuss the effect of the time delay on the system behavior near the EEP point.

Fort=9 < 1, = 10.5 and p = 0.3 with the set of data in equation (49) EEP is still globally
asymptotically stable as shown in Figure (3).
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Figure 3: The system's (2) trajectories using the information provided by equation (49) with

p = 0.3and t = 9. (A) The trajectories of system (2) approach EEP. (B) 2D phase plot for
globally asymptotically stable EEP.

On the other hand, for t, = 10.5 and P = 0.3 with the set of data in equation (49) a Hopf
bifurcation occurs at EEP as shown in Figure (4).
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Figure 4: The system's (2) trajectories using the information provided by equation (49) with
P =0.3 and

T = 10.5. (A) The existence of periodic solution neer EEP. (B) 2D periodic solution.
It is observed that for the given data by equation (49) with p = 0.3 and

=11 > 1, = 10.5 with the set of data in equation (49) EEP approaches asymptotically to
the periodic as shown in Figure (5).
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Figure 5: The system's (2) trajectories using the information provided by equation (49)with
p = 0.3 and

T = 11. (A) The existence of periodic solution neer EEP. (B) 2D periodic solution.

6.Conclusion

An epidemic model that involves a time delay for the treatment period has been proposed
and studied. The suggested system has two equilibrium points, namely UIEP and EEP. The
boundedness of the system has been studied. It is observed that the UIEP is absolutely stable
for all T = 0. While the EEP is asymptotically stable for Tt € [0,t,) and when T = 1, a Hopf
bifurcation occurs. However, the periodic dynamics appear and the point is unstable for T >
To. Analytically, the periodic dynamics direction and stability have been studied by using
normal form and center manifold theory, as well as we study them numerically using
MATLAB. Fort =9 < 1y, = 10.5 and P = 0.3 with the set of data in equation (49), the EEP
is still globally asymptotically stable. While, for t =1, = 10.5, a Hopf bifurcation is
demonstrated near EEP .
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