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Abstract 

     A general treatment function with an epidemic model that involves the delay in the 

treatment period has been  proposed and studied in this work. This model contains 

two compartments, namely susceptible denoted by 𝑆(𝑡) and infected denoted by 𝐼(𝑡). 
The existence of all the fixed points has been determined. The system has two 

equilibrium points, namely the uninfected equilibrium point (UIEP) and the endemic 

equilibrium point (EEP). The conditions for local stability and Hopf bifurcation have 

been  discussed. The stability of the periodic solutions and  the direction of the Hopf 

bifurcation properties have been studied analytically and numerically. 

 

 Keyword.:Infection diseases, Stability, Time delay, Hopf bifurcation, Treatment 

function. 

 

ات المرض الوبائيكتأثير تأخير العلاج على ديناميل دراسة قوية  
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     الخلاصة 
  يحتوي هذا النموذج على جزأين   .علاج عامة لنموذج وبائي يتضمن التأخير في فترة العلاج  دالة دراسة  تم       

، حيث يحتوي النظام    التوازن تم تحديد وجود جميع النقاط  .  𝐼(𝑡) الافراد المصابين  و   𝑆(𝑡) الافراد الاصحاء
نقطة التوازن االمصابه     (UIEP)على نقطتي توازن ، الأولى هي نقطة التوازن غير المصابة   والثانية وهي 

(EEP)     المناسبة عند كل نقطة توازن. وأخيرا ,تم    ، وقد تمت مناقشة شروط الاستقرار المحلي وتشعب هوبف
تمت    ت النموذج المقترح ودعم النتائج التحليلية .كإجراء المحاكاة العددية لدراسة تأثير المعلمات على ديناميا

 .الدورية واتجاه خصائص تشعب هوبف تحليليًا وكذلك عدديًا الحلول دراسة استقرار  
 

1. Introduction 

     Mathematical models are powerful tools for describing the population dynamics of 

infectious diseases. Mathematical models have played an essential role in the studying of 

disease dynamics and control of the disease. The appearance of different infectious diseases 

represents a main challenge in the modern world. The incident of infectious disease causes a 
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large loss of lives and other resources. Although, there are advances in medical science and an 

increased understanding of infectious disease mechanisms. Infectious diseases have caused 

millions of deaths and disabilities Worldwide. As a result, researchers from various fields of 

science and medicine are working to develop an effective solution to stop the transmission of 

infectious diseases see [1-3]. A lack of safe drinking water causes waterborne diseases such as 

cholera, typhoid, and hepatitis. The prospect of various modes of disease transmission makes 

the study of waterborne disease more significant. Cholera is considered one of these  diseases 

that belongs to this class. Many researchers have studied the dynamic behavior of Cholera 

disease. Joh et al. [4] suggested a mathematical  model of Cholera disease so that the primary 

mode of transmission is indirect and occurs by contact with a contaminated reservoir. In  [5] 

Cui et al. formulated  an SVR-B Cholera model with imperfect vaccination. Wang et al. [6]  

discussed and formulated a mathematical model including the of human behavior on cholera 

dynamics. Ayoade et al. studied the dynamics of cholera disease with vaccination and treatment 

control for Cholera outbreaks [7]. Olaniyi S .at el. presented a mathematical model for 

controlling cholera outbreaks without natural recovery [8]. The hepatitis B virus causes 

infection in liver cells a potentially life-threatening infection. It is a global health problem, with 

HBV being the most dangerous type of viral hepatitis. Infection with hepatitis can result in both 

acute and chronic symptoms (transient i.e lasting less than six months) [9]. The ability of the 

infected individual's immune system to contain and eliminate the virus determines whether the 

sickness is chronic (lifelong) [10]. Theoretical biologists can improve our understanding of 

contributing factors in disease by applying mathematical modeling  hepatitis virus dynamics. 

As a result, a number of research studies have been conducted that deal with modeling and 

simulating the dynamic behavior of hepatitis. Zahura et al. [11] analyzed and studied the 

hepatitis B virus mathematical model. John et al. [12] developed a mathematical model 

including Cytotoxic T-Lymphocytes (CTLs) immune response and focusing on the hepatitis B 

and C viruses (HBV and HCV) infection in the liver and blood cells. They also developed a 

mathematical model including the Cytotoxic T-Lymphocytes (CTLs) immune response. 

    

     Time delay plays a significant role in population dynamics. The dynamics of the state 

variables in many real-world processes, specifically in many biological phenomena, depend not 

only on the processes' current state but also on the phenomenon's history, that is, on the state 

variables' previous values. The dynamics of infectious diseases may be affected by the time 

delay as shown  in Zuo et al. [13]. Their formulated and studied the effect of media on 

recruitment and  delaying the epidemic's spread. Aekabut at el. [14] studied a delayed  of SEIR 

epidemic model in which the latent and infected states are infective. Naji and Majeed [15] 

investigated the impact of delay on a stage-structure prey-predator model. Zhe Yin at el. [16] 

studied the effect of time delay on an age-structured SEIRS Model. Mohsen and Naji [17] 

studied the stability delay cancer model in a polluted environment. Zizhen et al. [18]  The 

proposed  SVIRS epidemic model contains multiple delays with Holling type II incidence rate 

and treatment rate. Naji and Mohsen [19] studied the SVIR epidemic model including 

immigrants. Hassan [20] studied the affected vaccine in the epidemic model of stage structure. 

Mohsen et al. [21] suggested a mathematical model for the dynamics of the COVID-19 

epidemic including infected immigrants. Hassan and Ahmed [22] proposed the following  

model 

 

            

𝑑𝑆

𝑑𝑡
= (1 − 𝑃)𝐴 −

𝛽𝑆𝐼

𝐾+𝐼
− 𝜇𝑆,                         

𝑑𝐼

𝑑𝑡
= 𝑃𝐴 +

𝛽𝑆𝐼

𝐾+𝐼
− (𝜇 + 𝛼)𝐼 −

𝑟𝐼

𝑛+𝐼
  .            

                                     (1)                             
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Where 𝑆(𝑡) and 𝐼(𝑡)  represent the number of susceptible and infected at time 𝑡, respectively. 

𝐴 > 0  is the birth rate in  𝑆(𝑡), 𝑃 is the external sources of disease such that 0 ≤ 𝑃 < 1 ;  𝛽 is 

the infection rate; 𝜇 is the natural death rate from both  𝑆(𝑡) and  𝐼(𝑡) ; 𝛼  is the disease related 

death from 𝐼(𝑡) ; 𝐾  refers to the carrying capacity of disease; 𝑟 represents the maximal medical 

resource per unit of time ;  𝑛 is the infected size. Clearly, the above model is without delay. We 

will focus on the time delay effect. So, in the first step, system (1) is modified in this paper. In 

section 2, The positivity and bounded of solutions to the modified system are discussed. In 

section 3, we mainly study the stability and the existence of the Hopf bifurcation. In section 4, 

we study the properties of the Hopf bifurcation by using the normal theory and the center 

manifold theorem. In section 5, some numerical simulations are performed to illustrate the main 

results. In section 6, conclusions are given. Now, the modified system (1) can be expressed as 

follows: 

 
𝑑𝑆

𝑑𝑡
= (1 − 𝑃)𝐴 −

𝛽𝑆𝐼

𝐾+𝐼
− 𝜇𝑆  ,                         

      
𝑑𝐼

𝑑𝑡
= 𝑃𝐴 +

𝛽𝑆𝐼

𝐾+𝐼
− (𝜇 + 𝛼)𝐼 −

𝑟𝐼(𝑡−𝜏)

𝑛+𝐼(𝑡−𝜏)
  .           

                                             (2)                                       

 

     Where 𝜏 is the time delay due to the latent period of treatment. All parameters in system (2) 

have the same biological meaning as those in system (1). 

 

2. Postive and Boundedness.     

     In this part, we will study the positive and  boundedness of the solutions to the system (2). 

 

Theorem 1. The solutions to the system (2)  are positive and  bounded for t ≥ 0 . 

Proof.  First, we prove  that the solutions of the system (2)  are positive 

 From the  first equation of the system (2) for 𝑡 ≥ 0, we have  

 

          
𝑑𝑆

𝑑𝑡
≥ −𝑆(

𝛽𝐼

𝐾+𝐼
+ 𝜇). 

  

  As a result and through computation, we obtained   

 

          𝑆(𝑡) ≥ 𝑆(0)𝑒𝑥𝑝 − {∫   (
𝛽𝐼(𝜁)

𝐾+𝐼(𝜁)
+ 𝜇)𝑑(𝜁)

𝑡

0
}  

    Since (0) > 0 ,  we get   𝑆(𝑡) > 0 for  all 𝑡 ≥ 0. 

    Now, we show that 𝐼(𝑡) is positive   

     From the second equation of the system (2), it is noted that : 

       
𝑑𝐼

𝑑𝑡
≥ 𝐼 [

𝛽𝑆(𝑡)

𝐾+𝐼(𝑡)
− (𝜇 + 𝛼) −

𝑟𝐼(𝑡−𝜏)

[𝑛+𝐼(𝑡−𝜏)]𝐼(𝑡)
]  

      Thus, we obtain: 

     𝐼(𝑡) ≥ 𝐼(0)𝑒𝑥𝑝 {∫ (
𝛽𝑠(𝜁)

𝐾+𝐼(𝜁)
− (𝜇 + 𝛼) −

rI(𝜁−τ)

n+I(𝜁−τ)I(𝜁)
)

𝑡

0
𝑑(𝜁)}. 

Since (0) > 0 ,  we have    𝐼(𝑡) > 0 for  all 𝑡 ≥ 0. 

 

Following that, the proof  that the system's solutions are bounded for all   𝑡 ≥ 0 . 

Define  ℋ(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) 

Therefore, it is obtained that 
𝑑ℋ

𝑑𝑡
≤ 𝐴 − 𝜇ℋ . 

By  using Gronwell's lemma [23], we have: 

             

        ℋ(𝑡) ≤ ℋ(0)𝑒−𝜇𝑡 +
𝐴

𝜇
(1 − 𝑒−𝜇𝑡), 
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which gives  lim
𝑛→∞

  ℋ(𝑡) ≤
𝐴

𝜇
 , that is independent of the initial condition. Therefore, the 

solutions are bounded. 

 

3. The Local stability and Hopf Bifurcation . 

     The local stability and Hopf bifurcation of the system (2) will be discussed in this section. 

It is known that the location and number of equilibrium points do not change with time delay. 

It is clear that system (2) has  two equilibrium points, see [22]. 

▪ The first equilibrium point, namely the uninfected equilibrium     

           point(UIEP)  denoted 𝐸0 = (𝑆0, 0), where 

 𝑆0 =
𝐴
𝜇⁄                                                                                                         (3)                                                                               

           Clearly,  𝐸0 exists if  𝐼 = 0  , 𝑝 = 0 and the basic reproduction number   𝑅0 < 1. 

            With 

𝑅0 =
𝑛𝛽𝐴

𝜇𝐾[𝑛(𝜇+ 𝛼)+𝑟]
.                                                                                             (4) 

            

▪  The second equilibrium point, namely the endemic equilibrium point (EEP)   

denoted 𝐸1 = (𝑆1, 𝐼1), where    

 

              𝑆1 =
(1−𝑃)(𝐾+𝐼)𝐴

𝛽𝐼+𝜇(𝐾+𝐼)
                                                                                             (5)                                                              

            While 𝐼1  is the positive root of  the following fourth order polynomial equation 

 

              𝛺1𝐼1
4 + 𝛺2𝐼1

3 + 𝛺3𝐼1
2 + 𝛺4𝐼1 + 𝛺5 = 0.                                                           (6)                                                         

              Here 

𝛺1 = −[𝜇2 + 𝛼𝜇 + 𝛽] < 0                                                                                                                                             

     𝛺2 = (𝛽 + 𝜇)(𝑃𝐴 −  𝑟) + 𝛽𝐴(1 − 𝑃) − (𝜇 +  𝛼)[𝛽(𝑘 + 𝑛) + 𝜇(2 + 𝑛)]                                                             

    

                                                    
  
  
𝛺3 = 𝛽𝐴

(𝐾 + 𝑛) − (𝛽 + 2𝜇)(𝑟𝑘 +  𝛼𝑛) + 𝜇𝑘(2𝑃𝐴 −  𝛼) + 𝑃𝐴𝑛 𝜇                                                                         
        

                   𝛺4 = 𝑃𝐴𝐾(𝑛[𝛽 + 𝜇(2 − 𝑟𝐾) + (1 − 𝑃)] + 𝐾𝜇(1 − 𝐾))                                                                                                             

                𝛺5 = 𝐾
2𝐴𝜇𝑛𝑃 > 0                                                                                                                                                                             

 

    

  Clearly, 𝐸1  exists if  𝐼 ≠ 0, 𝑝 ≠ 0 and the basic reproduction number  𝑅0 > 1. 

   

     Now, the local stability analysis of the equilibrium points UIEP and EEP are discussed by  

using the linearization method. This method depends on computing the Jacobian matrix that is 

evaluated at each equilibrium point. 

The general  Jacobian matrix (JM) of the system (2) at any equilibrium point 𝐸 = (𝑆, 𝐼) is given 

by  

 

 𝐽(𝐸) = [
−(

𝛽𝐼

𝐾+𝐼
+ 𝜇) −

𝛽𝐾𝑆

(𝐾+𝐼)2

𝛽𝐼

𝐾+𝐼

𝛽𝐾𝑆

(𝐾+𝐼)2
− (𝜇 + 𝛼) −

𝑟𝑛𝑒−𝜆𝜏

(𝑛+𝐼)2

] .                                                     (7)                     

 

Then, the characteristic equation  of the above  matrix is  

 

𝑃1(𝜆) + 𝑃2(𝜆)𝑒
−𝜆𝜏 = 0 .                                                                                 

(8)                                                                                                                                                                  

Here 𝑃1(𝜆) and 𝑃2(𝜆) are polynomials  of  𝜆 , Accordingly, the  (JM) of the system (2) at the 

UIEP is  
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   𝐽(𝐸0) = [
−𝜇 −

𝛽𝑆0

𝐾
   

0
𝛽𝑆0

𝐾
− (𝜇 + 𝛼) −

𝑟𝑒−𝜆𝜏

𝑛

]  .                                                      (9)                                                          

 

Then the characteristic equation of  𝐽(𝐸0)  is given by  

 

𝜆2 + 𝐶1𝜆 + 𝐶2 + (𝐷1𝜆 + 𝐷2)𝑒
−𝜆𝜏 = 0.                                                         (10)                                           

where  

                      𝐶1 = −[  
𝛽𝑆0
𝐾

− (2𝜇 + 𝛼)].                        

                           𝐶2 = −𝜇 [  
𝛽𝑆0
𝐾

− (𝜇 + 𝛼)] .

                       𝐷1 =
𝑟 

𝑛

                        𝐷2 =
𝑟𝜇

𝑛

                               
                             

                                                                           

 

Now, if  𝜏 = 0 , then equation (10) becomes   

 

 𝜆2 + (𝐶1 + 𝐷1)𝜆 + (𝐶2 + 𝐷2) = 0 .                                                              (11) 

 

Clearly, equation (11) has two roots  which are  negative if  the  following  condition holds 

  

𝑅0 < 1                                                                                                             (12) 

                                                    

     Hence, the UIEP  is locally asymptotically stable under  the condition (12)  holds for 𝜏 = 0  

On the other hand, for  𝜏 > 0,  suppose  that equation (10) has a pair of purely imaginary roots, 

namely 𝜆 = ±𝑖𝜔0 ( 𝜔0 > 0)  if ,in addition to condition (12), the following condition holds 

D2 > 𝐶2 .                                                                                                         (13)  

 

 By  substituting   𝜆 = ±𝑖𝜔0  in equation (10)  we get : 

 

  𝐷1𝜔0 𝑠𝑖𝑛𝜔0𝜏 + 𝐷2 𝑐𝑜𝑠 𝜔0𝜏 + 𝑖[𝐷1𝜔0𝑐𝑜𝑠 𝜔0𝜏 − 𝐷2 𝑠𝑖𝑛 𝜔0𝜏] =   𝜔0
2 − 𝐶2   −   𝐶1𝜔0𝑖                                 

  

Consequently, we obtain by separating the real and imaginary components        

       

 𝐷1𝜔0 𝑠𝑖𝑛𝜔0𝜏 + 𝐷2 𝑐𝑜𝑠 𝜔0𝜏 = 𝜔0
2 − 𝐶2              

𝐷1 𝜔0𝑐𝑜𝑠 𝜔0𝜏 − 𝐷2 𝑠𝑖𝑛 𝜔0𝜏 = − 𝐶1𝜔0               
}                                         (14)                                                         

 

Squaring  the equation (14) and adding them, we obtain   

      𝜔0
4 + 𝑏1𝜔0

2 + 𝑏2 = 0 .                                                                              (15)                                                

where 

𝑏1 = 𝐶1
2−𝐷1   

2 − 2𝐶2                                  

 𝑏2 = 𝐶2
2 −𝐷2 

2 = (𝐶2 − 𝐷2)(𝐶2 + 𝐷2)  .  
    

 

Let  ℎ = 𝜔0
2 , then equation (15) becomes 

 

ℎ2 + 𝑏1ℎ + 𝑏2 = 0 .                                                                                       (16)                        
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Obviously, due to conditions (12) and  (13) , we have 𝑏2 < 0. According to Descartes rule of 

sign, there is a unique non-negative root say 𝜔0
~
 
 that satisfies equation  (16). Thus 𝜔0

~
 
is the 

non-negative  root of equation (15) too. 

 

Therefore, there are roots represented by   ±𝑖𝜔0
~
 
  that satisfy equation (10) 

Corresponding to the time delay, Moreover, by substituting 𝜔0
~
 
 in equation.(14) and solving 

the resulting system for 𝜏, we have 

 

𝜏𝑛 =
1

 𝜔0
~
 

cos−1
(𝐷2−𝐶1𝐷1)(𝜔0

~
 
)
2
−𝐶2𝐷2

𝐷1
2  (𝜔0

~
 
)
2
+𝐷2

2
+

2𝜋𝚤

𝜔0
~
 

 ; 𝑛 = 0,1,2, ….                             (17)                                                      

 

     Thus  the system (2)  has no periodic when 𝜏 ≥ 0  , and UIEP is absolutely stable for all 

 𝜏 ≥ 0 [24] 

While ,The  (JM) of  the system (2) at the EEP is: 

 

𝐽(𝐸1) = [
−(𝑎1 + 𝜇) −𝑎2

𝑎1 𝑎2 − (𝜇 + 𝛼) − 𝑎3𝑒
−𝜆𝜏]                                            (18)                                                

where 

 𝑎1 =
𝛽𝐼1

𝐾+𝐼1
; 𝑎2 =

𝛽𝐾𝑆1

(𝐾+𝐼1)2
; 𝑎3 =

𝑟𝑛

(𝑛+𝐼1)2
. 

Then, the characteristic equation of 𝐽(𝐸1)  can be written as follows: 

𝜆2 +Ψ1𝜆 + Ψ2 + (Υ1𝜆 + Υ2)𝑒
−𝜆𝜏 = 0  .                                                        (19)                                                   

Where  

       

  Ψ1 = − [
𝛽𝐾𝑆1

(𝐾 + 𝐼1)2
−

𝛽𝐼1
𝐾 + 𝐼1

− 𝜇 − (𝜇 + 𝛼)]                                                                    

  Ψ2 = − [
𝛽𝐼1
𝐾 + 𝐼1

+ 𝜇] [
𝛽𝐾𝑆1

(𝐾 + 𝐼1)2
− (𝜇 + 𝛼)] + [  

𝛽2𝐾𝑆1𝐼1
(𝐾 + 𝐼1)3

]                                         

 Υ1 =  
𝑟𝑛

(𝑛 + 𝐼1)2
> 0                                                           

 Υ2 = [
𝑟𝑛

(𝑛 + 𝐼1)2
] [

𝛽𝐼1
𝐾 + 𝐼1

+ 𝜇] > 0                                
                                                   

 

 

So for 𝜏 = 0, then equation (19) becomes    

     

     𝜆2 + (𝛹1 + 𝛶1)𝜆 + 𝛹2 + 𝛶2 = 0 .                                                             (20)                                                           

   

     Clearly, the above equation  has two roots, these roots have a negative real part if the 

following conditions are satisfied 

 𝑅0 > 1                                                                                                                                   (21)                                        

 (𝐾 + 𝐼1) [ (𝑛 + 𝐼1)
2( 𝛽𝐼1 + (2𝜇 + 𝛼)(𝐾 + 𝐼1) + 𝑟𝑛(𝐾 + 𝐼1))  > 𝛽𝐾𝑆1(𝑛 + 𝐼1)

2   
             

           (22) 

(𝐾 + 𝐼1) (𝑛 + 𝐼1)
2[ (𝜇 + 𝛼)(𝛽𝐼1 + 𝜇)] + 𝑟𝑛[ 𝜇 (𝑛 + 𝐼1)

2 + 𝛽𝐼1(𝐾 + 𝐼1))          

> 𝛽𝜇𝐾𝑆1(𝑛 + 𝐼1)
2.

                 (23) 

    

Hence, for = 0 , the equilibrium point 𝐸1 is locally asymptotically stable if conditions 

 (21) – (23) are satisfied. 
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On the other hand,  for 𝜏 > 0, suppose that equation(19) has a pair of purely imaginary roots, 

namely 𝜆 = ±𝑖𝜔1   (  𝜔1 > 0) if in addition to condition (23) the following condition holds 

 

 𝛶2 > 𝛹2.                                                                                                      (24)  

                                                             

By substituting 𝜆 = ±𝑖𝜔1 in equation(19), we obtain 

 

𝛶1𝜔1 𝑠𝑖𝑛𝜔1𝜏 + 𝛶2 𝑐𝑜𝑠 𝜔1𝜏 + 𝑖[𝛶1𝜔1𝑐𝑜𝑠𝜔1𝜏 − 𝛶2 𝑠𝑖𝑛𝜔1𝜏] =   𝜔1
2 − 𝜓2   −   𝜓1𝜔1𝑖       

 

Which implies   

 

      𝛶1𝜔1 𝑠𝑖𝑛 𝜔1𝜏 + 𝛶2 𝑐𝑜𝑠 𝜔1𝜏 = 𝜔1
2 − 𝜓2   

𝛶1𝜔1𝑐𝑜𝑠𝜔1𝜏 − 𝛶2 𝑠𝑖𝑛 𝜔1𝜏 = − 𝜓1𝜔1
}  .                                         (25) 

                                               

Squaring  the above equations and adding them, we have  

𝜔1
4 + 𝑒1𝜔1

2 + 𝑒2 = 0   ,                                                                               

(26)                                                                                                                                                   

where  

     𝑒1 = 𝜓1
2 − 𝛶1

2 − 2𝜓2, 

     𝑒2 = 𝜓2
2 − 𝛶2

2 = (𝜓2 − 𝛶2)(𝜓2 + 𝛶2). 
 Let  𝑘 = 𝜔1

2 , then equation (26) becomes  

 

𝑘2 + 𝑒1𝑘 + 𝑒2 = 0 .                                                                                     (27)                                                           

 

Obviously, due to conditions (23) and  (24) , we have 𝑒2 < 0.  

According to Descartes rule of the sign there is a unique non-negative root say  𝜔1
~
  
that satisfies 

equation (27). Thus 𝜔1
~
 
 is the non-negative root of equation (26) too. 

 

Therefore, there are roots represented by ±𝑖𝜔1
~  that satisfy equation (19) 

Corresponding to the time delay, Moreover, by substituting 𝜔1
~ in equation (25) and solving the 

resulting system for 𝜏, then we have 

 

𝜏𝚤 =
1

 𝜔1
~ cos

−1 (𝛾2−𝛾1𝜓1)(𝜔1
~)2−𝜓2𝛾2

𝛾1
2  (𝜔1

~)2+𝛾2
2 +

2𝜋𝚤

𝜔1
~  ; 𝚤 = 0,1,2, ….                                 (28)                                                      

 

Now define that 𝜏0 = 𝑚𝑖𝑛
𝚤≥0

𝜏𝚤, then 𝜆(𝜏) = 𝜂(𝜏) + 𝑖𝜔1(𝜏)  is a root of equation (19) that 

satisfies 𝜂(𝜏0) = 0 and  𝜔1(𝜏0) = 𝜔1
~ > 0 . Then, we obtain  the following theorem. 

 

Theorem 2 . If the following condition is satisfied  

𝜓1
2 − 2𝜓1 < 𝛾1

2 − 2𝜔1
~                                                                                    (29)                                 

Then   𝐸1 is conditionally stable. 

Proof.We will show that  𝐸1 is conditionally stable. Firstly, we show that  𝐸1 is asymptotically 

stable for 𝜏 ∈  [0, τ0). Moreover, as shown in conditions (21) - (23). 

Secondly, we show the transcendental characteristic equation(19) has roots which are 

represented by  ±𝑖𝜔1
~  at 𝜏 = τ0, That is [

𝑑(𝑅𝑒𝜆(𝜏))

𝑑𝜏
]
𝜏=τ0

≠ 0.    

If we suppose that 𝜆(𝜏) = 𝜂(𝜏) + 𝑖𝜔1(𝜏) is the eigenvalue of equation (19) such that 

 𝜂(τ0) = 0 and  𝜔1(τ0) = 𝜔1
~ > 0.  τ0 define in equation (28).  
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If we  use  𝜆(𝜏) in equation (19), and take the derivative of that equation with respect to 𝜏, then 

we get the following: 

 

[2𝜆 + 𝜓1 + 𝛾1𝑒
−𝜆𝜏 − 𝜏(𝛾1𝜆 + 𝛾2)𝑒

−𝜆𝜏]
𝑑𝜆

𝑑𝜏
= 𝜆(𝛾1𝜆 + 𝛾2)𝑒

−𝜆𝜏 .                      (30)                                        

 

[
𝑑𝜆

𝑑𝜏
]
−1

=
2𝜆+𝜓1

−𝜆(𝜆2+𝜓1𝜆+𝜓2)
+

𝛾1

𝜆(𝛾1𝜆+𝛾2)
−

𝜏

𝜆
   .                                                           (31)                                                                        

 

Since for 𝜏 = 𝜏0,  and  𝜆 = 𝑖𝜔1
~ , we have 

 

         [
𝑑𝜆

𝑑𝜏
]
𝜏=𝜏0

−1

=
𝜓1+2𝑖𝜔1

~

𝜓1(𝜔1
~)2−𝑖𝜔1

~[𝜓2−(𝜔1
~)2]

+
𝛾1

−𝛾1𝜔1
~+𝑖 𝛾2𝜔1

~ −
𝜏0

𝑖𝜔1
~  .                                 

Now since 

 

       𝑠𝑖𝑔𝑛 [
𝑑(𝑅𝑒𝜆)

𝑑𝜏
]
𝜏=𝜏0

= 𝑠𝑖𝑔𝑛 [𝑅𝑒( 
𝑑𝜆

𝑑𝜏
 )−1]

𝜆=𝑖𝜔1
~
  .                                                       (32)                                                                 

 

It is clear that : 

𝑅𝑒 [
𝜓1 + 2𝑖𝜔1

~

𝜓1(𝜔1
~)2 − 𝑖𝜔1

~[𝜓2 − (𝜔1
~)2]

] =
2[𝜓2 − (𝜔1

~)2] − 𝜓1
2

𝜓1
2(𝜔1

~)2 + [𝜓2 − (𝜔1
~)2]2

 

 

𝑅𝑒 [
𝛾1

−𝛾1𝜔1
~ + 𝑖 𝛾2𝜔1

~] =
𝛾1
2

𝜔1
~(𝛾1

2 + 𝛾2
2𝜔1

~)
 

 

𝑅𝑒 [
𝜏0
𝑖𝜔1

~] = 𝑧𝑒𝑟𝑜 

Hence, we have 

 

𝑅𝑒 [
𝑑𝜆

𝑑𝜏
]
𝜏=𝜏0

−1

=
1

𝛹0
[−(𝑒1 + 2𝜔1

~)]  

where  

 

𝛹0 = 𝜓1
2(𝜔1

~)2 + [𝜓2 − (𝜔1
~)2]2 +𝜔1

~(𝛾1
2 + 𝛾2

2𝜔1
~) > 0 

 

and   𝑒1  is given in equation (26) 

 

Thus, we get [
𝑑(𝑅𝑒𝜆(𝜏))

𝑑𝜏
]
𝜏=τ0

> 0    under the condition (29). 

      

This result shows that if τ passes through τ0, then the roots of the characteristic 

equation(19) cross the imaginary axis from left to right. As a result, system (2) loses stability 

and  when 𝜏 = τ0 , then a Hopf bifurcation is apparent. 

 

4. The Direction and Stability of the Hopf  Bifurcation  

     Sometimes external factors that influence the dynamic behavior can cause sudden changes 

in solutions. These changes are called bifurcation. We demonstrate in the preceding section that 

system (2) exhibits a Hopf bifurcation near the endemic equilibrium point 𝐸1. In this section, 

we will study  the properties of these changes, such as what is the direction of the solution under 
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this change, whether its solution increasing or decreasing, and whether its solution stable or not. 

By using normal form theory and the center manifold theory, for more details see [25]. 

 

Theorem 3. 

(i) Suppose that  𝛼2 determines the direction of the Hope bifurcation.  

           If 𝛼2 > 0 , then the Hopf bifurcation is supercritical and if 𝛼2 < 0 ,  

           then  the Hopf bifurcation is subcritical. 

       (ii)   Suppose that  ℓ2 determines the stability  of the bifurcating solution. 

          If  ℓ2 < 0, then the bifurcating periodic solutions are stable, and 

          if  ℓ2 > 0, then the bifurcating periodic solutions are  unstable. 

       (iii)   Suppose that  𝑇2 determines the  period of  the bifurcating periodic solution.      

             If  𝑇2 > 0, then the  period increase  

              and   if  𝑇2 < 0 , then the  period decrease 

    where 𝛼2, ℓ2, and 𝑇2 are given as follows: 

𝐶1(0) =
𝑖

2𝜔1
~𝜏0
(𝑔11  𝑔20 − 2|𝑔11|

2 −
|𝑔02|

2

3
) +

𝑔21

2
,

𝛼2 = −
𝑅𝑒{𝐶1(0)}

𝑅𝑒{
𝑑𝜆

𝑑𝜏
(𝜏0)}

,                                                          

ℓ2 = 2𝑅𝑒{𝐶1(0)},                                                       

𝑇2 =
−𝐼𝑚{𝐶1(0)}+𝛼2  𝐼𝑚{

𝑑𝜆

𝑑𝜏
(𝜏0)}

𝜔1
~𝜏0

.                                    }
 
 
 

 
 
 

                                         (33)                                                          

and 𝑔11, 𝑔20, 𝑔02 and 𝑔21 are  given in the proof of the theorem.  

 

Proof. Let 𝑢1(𝑡) = 𝑆(𝑡) − 𝑆1, 𝑢2(𝑡) = 𝐼(𝑡) − 𝐼1 and 𝜏 = 𝜏0 + 𝜎 where 𝜏0 is defined by 

equation (28) and  𝜎 ∈ 𝑅   then 𝜎 = 0 is the Hopf bifurcation value of the system (2). The 

functional differential equation in 𝐶([−1,0], 𝑅2) for the system (2) as: 

 

𝑢′(𝑡) = 𝐿𝜎(𝑢𝑡) + ℎ(𝜎, 𝑢𝑡).                                                                                 (34)                                                                                             

Here, 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡))
𝑇 ∈ 𝐶 = 𝐶([−1,0]), 𝑅2) and  𝐿𝜎: 𝐶 → 𝑅2 , ℎ: 𝑅 × 𝐶 → 𝑅2  are  

given respectively : 

 

 𝐿𝜎(𝜑) = (𝜏0 + 𝜎)(𝑁1𝜑(0) + 𝑁2𝜑(−1)) .                                                   (35) 

                                                                                  

and the nonlinear term is                  

ℎ(𝜎, 𝜑) = (𝜏0 + 𝜎)  (
𝐻1
𝐻2
) , 

where 

  𝑁1 = [
ℎ10
(1) ℎ01

(1)

ℎ100
(2) ℎ010

(2)
] = [

−(𝑎1 + 𝜇) −𝑎2
𝑎1                𝑎2 − (𝜇 + 𝛼)

] ,   

 𝑁2 = [
0 0

0 ℎ001
(2) ]  = [

0 0
0           𝑎3

] 

 

with 𝑎1, 𝑎2, 𝑎3 are define in the 𝑗(𝐸1), while 

𝐻1 = ∑
1

𝑖!𝑘!𝑖+𝑘≥2 ℎ𝑖𝑘
(1)𝜑1

𝑖 (0)𝜑2
𝑘(0),      

  𝐻2 = ∑
1

𝑖! 𝑘! 𝑛!
𝑖+𝑘+𝑛≥2

ℎ𝑖𝑘𝑛
(2)  𝜑1

𝑖 (0)𝜑2
𝑘(0)𝜑̌2

𝑛  (−1) 

 

Where (𝜐) = (𝜑1(𝜐), 𝜑2(𝜐))
𝑡 ∈ 𝐶([−1,0], 𝑅2) , −1 ≤ 𝜐 ≤ 0, with 
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ℎ𝑖𝑘
(1)𝜑1

𝑖 (0)𝜑2
𝑘(0) =

𝜕𝑖+𝑘ℎ(1)

𝜕𝜑1
𝑖𝜑2

𝑘
|
(𝜑1,𝜑2)=(0,0)

, 

 

ℎ𝑖𝑘𝑛
(2)  𝜑1

𝑖 (0)𝜑2
𝑘(0) 𝜑̌2

𝑛 (−1) =
𝜕𝑖+𝑘+𝑛ℎ(2)

𝜕𝜑1
𝑖𝜑2

𝑘𝜑̌2
𝑛
|
(𝜑1,𝜑2,𝜑̌2  )=(0,0,−1)

 

  

By the Riesz representation theorem, there exists a matrix  ℳ (𝜐, 𝜎) for −1 ≤ 𝜐 ≤ 0   

such that  

   𝐿𝜎𝜑 = ∫ 𝑑
0

−1
ℳ(𝜐, 𝜎)𝜑(𝜐)  𝑓𝑜𝑟  𝜑𝜖𝐶                                                          (36)   

                                                          

 In fact, choosing 

  

  ℳ (𝜐, 𝜎) = (𝜏0 + 𝜎) (𝑁1𝛿(𝜐) − 𝑁1𝛿(𝜐 + 1))                                            (37) 

                                                                     

where 𝛿(𝜐) = {
1 𝜐 = 0
0 𝜐 ≠ 0

    

 

For 𝜑 ∈ 𝐶([−1,0]), 𝑅2), define  

 

𝐴(𝜎)𝜑(𝜐) = {

𝑑𝜑(𝜐)

𝑑𝜐
   ,                        −1 ≤ 𝜐 < 0 ,     

∫  𝑑
0

−1
𝜂(𝜐, 𝜎)𝜑(𝜐), 𝜐 = 0,

                              (38)                                                        

And  

 

𝑅(𝜎)𝜑(𝜐) = {
0,       −1 ≤ 𝜐 < 0  ,    

𝐻(𝜎, 𝜑), 𝜐 = 0.
                                                (39) 

                                                                   

Hence,  the system (34) is equivalent to operator differential equation  

 

𝑢′(𝑡) = 𝐴(𝜎)𝑢𝑡 + 𝑅(𝜎)𝑢𝑡                                                                       (40)  

 

Where 𝑢𝑡(𝜐) = 𝑢(𝑡 + 𝜐) , −1 ≤ 𝜐 ≤ 0      
 

For 𝛹 ∈ 𝐶1([−1,0]), (𝑅2)∗), define the adjoint operator 𝐴∗of 𝐴(0) 
 

𝐴∗𝛹(ℌ) = {
−
𝑑𝛹(ℌ)

𝑑ℌ
,                           0 < ℌ ≤ 1  ,    

∫ 𝑑
0

−1
𝜂𝑇(ℰ, 0)𝛹(−ℰ), ℌ = 0 .

                               (41) 

                                                            

For 𝜑 ∈ 𝐶([−1,0]), 𝑅2) and   𝛹 ∈ 𝐶1([−1,0]), (𝑅2)∗) . we define the bilinear inner product 

 

  〈𝛹(ℌ), 𝜑(𝜐)〉 = 𝛹(0)𝜑(0) − ∫ ∫ 𝛹
𝑇
(𝜍 − 𝜐)𝑑𝜂(𝜐)𝜑(𝜍)𝑑𝜍,

𝜐

𝜍=0

0

𝜐=−1
                     (42)                                         

 where   𝜂(𝜐) = 𝜂(𝜐, 0). 
It is clear that  𝐴(0) and 𝐴∗ are adjoint operators. Let 𝑞(𝑣) = (1, 𝑑1)

𝑇𝑒𝑖𝜏0𝑣𝜔1
~
 be the 

eigenvectors of 𝐴 corresponding to 𝑖𝜔1
~𝜏0 and let 𝑞∗(ℌ) = 𝐷(1, 𝑑2)

𝑇𝑒−𝑖𝜏0ℌ𝜔1
~
 be the 
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eigenvectors of 𝐴∗ corresponding to −iω1
~τ0 . Thus, for 𝜎 = 0 by a simple computation, we 

obtain 

𝑑1 =
𝑖𝜔1

~−ℎ10
(1)

ℎ01
(1) ,  𝑑2 = −

ℎ10
(1)
+𝑖𝜔1

~

ℎ100
(2) . 

 From bilinear inner product (42), we obtain 

 

⟨𝑞∗(ℌ), 𝑞(𝑣)⟩ = 𝐷̅[1 + 𝜏0𝑑1𝑑̅2 ℎ001
(2)  𝑒−𝑖𝜏0𝜔1

~
]

.
                                                                               

Let,𝐷 = [1 + 𝜏0𝑑̅1𝑑2ℎ001
(2) 𝑒−𝑖𝜏0𝜔1

~
 ]
−1

,                                                                                (43) 

here, D̅  represents  the conjugate complex number of 𝐷 such that  ⟨d1, d2⟩ = 1 and  

⟨𝑑1 , 𝑑̅2⟩ = 0. 

Next, according to the algorithm in Hassard et al. [25 ], we can determine  the expression of 

𝑔20  , 𝑔11, 𝑔02 𝑎𝑛𝑑 𝑔21 as follows : 

 

𝑔20 = 2𝜏0𝐷̅(ℊ1 + ℊ5𝑑̅2 )

𝑔11 = 𝜏0𝐷̅(ℊ2 + ℊ6𝑑̅2)   

𝑔02 = 2𝜏0𝐷̅(ℊ3 + ℊ7𝑑̅2)

𝑔21 = 2𝜏0𝐷̅(ℊ4 + ℊ8𝑑̅2)}
 
 

 
 

                                                                            (44)                                                                                             

where 

ℊ1 = ℎ11
(1)
  𝑑1 + ℎ02

(1)
  𝑑12

2 , 

ℊ2 = ℎ11
(1)
  (𝑑1 + 𝑑̅1) + 2ℎ02

(1)
  𝑑1𝑑̅1,    

ℊ3 = ℎ11
(1)
 𝑑̅1 + ℎ02

(1)
  𝑑1

2, 

ℊ4 = ℎ11
(1)
(  𝑑1𝑤11

(1)
(0) +

1

2
  𝑑̅1  𝑤20

(1)
(0) +

1

2
  𝑤20

(2)
(0) + 𝑤11

(2)
(0))

+ℎ02
(1)
(𝑑̅1  𝑤20

(2)
(0) + 2𝑑1  𝑤11

(2)
(0))

, 

ℊ5 = ℎ110
(2)
  𝑑1 + ℎ020

(2)
  𝑑1

2 + ℎ002
(2)
  𝑑1

2  𝑒−2𝑖𝜔1
~𝜏0, 

ℊ6 = ℎ110
(2)
(𝑑1 + 𝑑̅1) + 2ℎ020

(2)
  𝑑1𝑑̅1 + 2ℎ002

(2)
  𝑑1𝑑̅1, 

ℊ7 = ℎ110
(2)
  𝑑̅1 + ℎ020

(2)
  𝑑̅1

2 + ℎ002
(2)
  𝑑̅1

2  𝑒2𝑖𝜔1
~𝜏0, 

ℊ8 = ℎ110
(2)

(  𝑑1𝑤11
(1)
(0) +

1

2
𝑑̅1  𝑤20

(1)
(0) +

1

2
𝑤20
(2)
(0) + 𝑤11

(2)
(0))

+ℎ020
(2)
(𝑑̅1  𝑤20

(2)
(0) + 2𝑑1  𝑤11

(2)
(0))

+ℎ002
(2)
(𝑑̅1  𝑤20

(2)
(−1)  𝑒𝑖𝜔1

~𝜏0 + 2 𝑑1 𝑤11
(2)
(−1)  𝑒−𝑖𝜔1

~𝜏0)

, 

 

with 

 

𝑤20(𝜃) =
𝑖𝑔20

𝜔1
~𝜏0
  𝑞(0)  𝑒𝑖𝜔1

~𝜏0𝑣 +
𝑖𝑔̅02

3𝜔1
~𝜏0
  𝑞̅(0)  𝑒−𝑖𝜏0𝜔1

~𝑣 + 𝐿1  𝑒
2𝑖𝜔1

~𝜏0𝑣                      (45)                                       

 

  𝑤11(𝜃) = −
𝑖𝑔11

𝜔1
~𝜏0
  𝑞(0)  𝑒𝑖𝜔1

~𝜏0𝑣 +
𝑖𝑔̅11

𝜔1
~𝜏0
𝑞̅(0)  𝑒−𝑖𝜔1

~𝜏0𝑣 + 𝐿2                                    (46)                                              

 

  𝐿1 = (𝐿1
(1)
, 𝐿1
(2)
)
𝑇

 and 𝐿2 = (𝐿2
(1)
, 𝐿2
(2)
)
𝑇

 can be found  from the following equations: 

 

 𝑄̌1𝐿1 = 2𝜏0𝑄1.                                                                                      (47) 
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𝑄̌2 𝐿2 = −𝜏0𝑄2 .                                                     (48) 

                                                 

where,  

𝑄̌1 = (2𝑖𝑤0𝜏0𝐼 − ∫
0

−1

𝑑ℳ(𝑣)  𝑒2𝑖𝑤0𝜏0𝑣), 

𝑄̌2 = (∫
0

−1

𝑑ℳ(𝑣)), 

 

  𝑄1 = (ℊ1    ℊ5  )
𝑇,  

 

𝑄2 = (ℊ2     ℊ6  )
𝑇. 

 

it is obtained that: 

𝑄̌1 = (
2𝑖𝑤0 − ℎ10

(1)
−ℎ01

(1)

−ℎ100
(2)

          2𝑖𝑤0 − ℎ010
(2)

− ℎ001
(2)
𝑒−2𝑖𝑤0𝜏0𝜃

) 

 

𝑄̌2 = (
−ℎ10

(1)
−ℎ01

(1)

−ℎ100
(2)

            −ℎ010
(2)

− ℎ001
(2)
). 

 

Hence, 𝐿1
(𝑗)
=

2𝑉𝑗

𝑉
, 𝑗 = 1,2, where  V = 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 of   (𝑄̌1) and V𝑗  is the value of the 

determinant 𝑂𝑗, where 𝑂𝑗 is found by replacing the 𝑗𝑡ℎ column vector of 𝑄̌1 by 𝑄1 for 𝑗 = 1,2,. 

Similarly, 𝐿2
(𝑗)
=

2  𝑉̅𝐽  

𝑉̅
, 𝑗 = 1,2, where  𝑉̅ = 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 (𝑄̌2 ) and 𝑉̅𝐽 is the value of the 

determinant 𝐸𝑖, where 𝐸𝑖 is founded  by replacing the 𝑗𝑡ℎ column vector of Q̌2  by Q2 for j =
1,2. 

 

     Hence, 𝑤20(𝜃) and 𝑤11(𝜃) can be found by using equations (45) - (48). Thus, we can obtain 

the expressions that are given in equation (36) depending on those given in equation (44) and 

the proof is completed. 

 

5. Numerical Simulation and Discussion  

     In this section, we shall use numerical simulation to illustrate the results of our analysis.  

The following hypothetical parameters have been chosen throughout this section. 

                 

        
A = 0.35 , 𝛽 = 0.001 , 𝐾 = 0.5 , 𝜇 = 0.1, 𝑛 = 0.3                          
𝑟 = 0.2    ,      𝜏 = 1.9   , 𝑃 = 0 , 𝛼 = 0.003.                                 

    (49)                            

 

  Matlab is used to draw each of the obtained trajectories for the system (2). Equation's 

(49) parameters are used to solve system (2) numerically and to confirm our conclusions. 

It is observed that for the data given by equation (49)  then the trajectories of the system (2) 

approach to UIEP  as shown in Figure (1). 
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Figure 1: The system's (2) trajectories using the information provided by equation (49).  

(A) The trajectories of system (2)  approach to UIEP.(B)  Phase portrait of the trajectories 

of the system (2) in which the system approaches  UIEP(Red point is the equilibrium point). 

 

     It is observed that for given data by equation (49) with  P = 0.1  system (2) has a globally 

asymptotically stable to (EEP) as shown in Figure (2). 

 

  
Figure 2: The system's (2) trajectories using the information provided by equation (49). with  

 P = 0.1 .  
 

(A) The trajectories of of system (2)  approach to EEP. (B)  Phase portrait of the trajectories 

of the system (2) in which the system approaches EEP(Red point is the equilibrium point). 

 

Now, we discuss  the effect of the time delay on the system behavior near the EEP point.  

For τ = 9 < τ0 = 10.5  and 𝑝 = 0.3  with the set of data in equation (49) EEP is still globally 

asymptotically stable as shown in Figure (3).  
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Figure 3: The system's (2) trajectories using the information provided by equation (49) with  

 p = 0.3 and τ = 9. (A) The trajectories of system (2)  approach  EEP. (B) 2D phase plot for 

globally asymptotically stable EEP. 

 

On the other hand, for  τ0 = 10.5  and 𝑃 = 0.3   with the set of data in equation (49) a Hopf 

bifurcation occurs at EEP as shown in Figure (4). 

 

  
Figure 4: The system's (2) trajectories using the information provided by equation (49) with 

 P = 0.3  and  

τ = 10.5. (A) The existence of  periodic  solution  neer EEP. (B) 2D periodic solution. 

 

     It is observed that for the given data  by equation (49) with  p = 0.3  and  

 τ = 11 > τ0 =  10.5  with the set of data in equation (49) EEP approaches asymptotically to 

the periodic as shown in Figure (5). 
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Figure 5: The system's (2) trajectories using the information provided by equation (49)with   

 p = 0.3  and  

 τ = 11. (A) The existence  of  periodic  solution  neer EEP. (B) 2D periodic solution. 

 

  6.Conclusion 

     An epidemic model that involves a time delay for the treatment period has been proposed 

and studied. The suggested system has two equilibrium points, namely UIEP and EEP. The 

boundedness of the system has been studied. It is observed that the UIEP is absolutely stable 

for all 𝜏 ≥ 0. While the EEP is  asymptotically stable for τ ∈ [0, τ0)  and when 𝜏 = τ0 a Hopf 

bifurcation occurs.  However, the periodic dynamics appear  and  the point is unstable for τ >
τ0. Analytically, the periodic dynamics direction  and stability have been studied by using 

normal form and center manifold theory, as well as we study them numerically using 

MATLAB.  For τ = 9 < τ0 = 10.5  and 𝑃 = 0.3  with the set of data in equation (49), the EEP 

is still globally asymptotically stable. While, for   τ = τ0 = 10.5, a Hopf bifurcation is 

demonstrated near  EEP .  
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