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Abstract 

In this paper, the effect of both rotation and magnetic field on peristaltic 

transport of Jeffery fluid through a porous medium in a channel are studied 

analytically and computed numerically. Mathematical modeling is carried out by 

utilizing long wavelength and low Reynolds number assumptions. Closed form 

expressions for the pressure gradient, pressure rise, stream function, velocity and 
shear stress on the channel walls have been computed numerically. Effects of 

Hartman number, time mean flow, wave amplitude, porosity and rotation on the 

pressure gradient, pressure rise, stream function, velocity and shear stress are 

discussed in detail and shown graphically. The results indicate that the effect of 

Hartman number, time mean flow, wave amplitude, porosity and rotation are very 

pronounced in the phenomena, when we change a Jeffery fluid to second order fluid 

we obtain the results of [1]. 
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 التموجي الغير خطي لمائع جيفري الجريانعلى  والمجال المغناطيسي الهيدروديناميكيتأثير التدوير 
 خلال وسط مسامي متماثلة في قناة

 

 *حمد مولود عبد الهادي، آية هادي الحدادأ
 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

 

 الخلاصة
المغناطيسي على الانتقال التموجي لمائع جيفري خلال في هذا البحث، تأثير كلا من التدوير والمجال 

طول تم النمذجه الرياضية من خلال فرضيات في القناة تم دراسته تحليلا وحسابه عدديا. وت وسط مسامي
الضغط، ،ارتفاع الضغط، ودالة  يرات شكل المغلقة ل انحدارتم احتساب تعب الطول الموجي وعدد رينولد قليل.

قناة عدديا. تاثير كلا من عدد هارتمان، معدل الجريان العلى جدران  وة التشوه المؤثرهالسرعة وقالتدفق ،
و  للضغط وارتفاع الضغط ، دالة التدفق، السرعه مسامية والتدوير على كلا من انحدارللزمن،سعة الموجه،ال

رتمان، معدل الجريان الى ان تأثير عدد ها قد نوقشت بالتفاصيل ومبينه بالرسوم. النتائج تشير قوة التشوه
للزمن،سعة الموجه،المسامية والتدوير واضح جدا في هذه الظاهرة. وعندما نقوم بتبديل المائع من جيفري الى 

 .[1]مائع من الدرجة الثانية نحصل على نفس النتائج المذكورة في 
                                                          
1. Introduction 

Flows through porous medium occur in filtration of fluids and seepage of water in river beds. 

Movement of underground, water and oils are some important examples of flows through porous 

medium. Ann oil reservoir mostly contains of sedimentary formation such as limestone and sandstone 
in which oil is entrapped. Another example of flow through porous medium is the seepage under a 

dam which is very important. There are examples of neutral porous medium such as beach sand, rye 

bread. 

ISSN: 0067-2904 
GIF: 0.851 



Abdulhadi and Al-Hadad                            Iraqi Journal of Science, 2016, Vol. 57, No.1A, pp: 223-240 

 

224 

The physics of flow through a porous media discussed by Scheidgger, A.E [2], Srinivas, S. and 

Gayathri, R. [3] have studied peristaltic transport of a Newtonian fluid in a vertical asymmetric 

channel with heat transfer and porous medium, Kothandapani, M. and  Srinivas ,S. [4]  have studied 

peristaltic transport of a Jeffery fluid under the effect of magnetic field in an asymmetric channel, 
Mahmoud S. R., Afifi N. A. S. and Al-Isede H. M., [5] have studied effect of porous medium and 

magnetic field on the peristaltic transport of a Jeffery fluid, Abd-Alla A.M. and  Abo-Dahab S.M., [6]  

have studied magnetic field and rotation effects on the peristaltic transport of a Jeffery fluid in an 
asymmetric channel, Nadeem S., Arshad riaz and  Ellahi R., [7] have studied peristaltic flow of a 

Jeffery fluid in rectangular duct having compliant walls. Mahmoud S.R., Abd-alla A.M. and El-sheikh 

M.A., [8] discussed the effect of the rotation on wave motion through cylindrical bore in a micro-polar 
porous medium. 

The aim of the paper is to discuss the peristaltic flow of Jeffery fluid through a porous medium in a 

two-dimensional channel. The governing equation is modeled and then solved analytically within the 

long wavelength and low Reynolds number approximation. The pressure gradient, stream function, 
pressure rise, friction force, shear stress and velocity to observe  the  effect of the Hartman number, 

time-mean flow, wave amplitude, porosity and rotation on the peristaltic motion of a Jeffery fluid. 

Numerical calculations are carried out and illustrated graphically in each case considered. 

2. Basic equations 
The basic vector equations governing the flow of a Jeffery fluid through a porous medium in a 

rotation frame are: 

0 V                                                                                                                                                (1) 
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Where   is the density, k , k  is the unit vector parallel to z axis,   is the  rotation, V  is the 

velocity vector, K  is the permeability of the porous  medium, f  is the body force, e  is the 

coefficient of electrical conductivity, 0P  is the magnetic field, 
Dt

D
 denote the material derivative and 

T  is the is the Cauchy stress tensor. The constitutive equation for an incompressible Jeffery fluid can 
be expressed as [6] 

SIpT                                                                                                                                           (3) 

Where p  is the pressure, I  is the identity tensor and S  is the extra stress for the Jeffrey fluid which is 

defined as [6]: 
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Where µ is the dynamic viscosity, 1  is the ratio of relaxation to retardation times, 2  is the 

retardation time,   is the shear rate. 

Where 

 TVV
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Now, substituting (5), (6) in (4), we get 
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Then the stress component are given by 
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3. Formulation of the problem 
Let us consider the peristaltic transport of Jeffery fluid through a porous medium. In the laboratory, 

we choose the Cartesian coordinates  system  YX ,  for the channel with X  along the center lineY  

transverse it, the motion of an incompressible viscous Jeffery fluid in a channel induced by sinusoidal 

wave trains propagating with constant speed c along the channel walls. The geometry of the wall 

surface is represented by 

(11)                                                                                                            tcXbatXh 


2
sin, 

Where a  is the half width of the channel, b  is the wave amplitude,   is the wave length, c  is the 

propagation velocity and t  is the time. 

We introducing a wave frame  yx,  moving with velocity c  away from the fixed frame  YX ,  by the 

transformation: 

(12)                                             .    tXPxp ,     , Vv      , cUu      , Yy      tcXx  

Where u  and v  are the dimensional velocity components in the direction of x  and y , respectively, p  

and P  are pressures in wave and fixed frame, respectively. The pressure p  remains a constant across 

any axial station of the channel under the assumption that the wavelength is large. 

In a laboratory frame, the governing equations are reduced to the following form: 
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Introduce the following non-dimensional variable and parameters [2]: 
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Where  is the amplitude ratio,   is the dimensionless wave number, 
2 is the porosity, parameter, 

Re  is the Reynolds number, M is the Hartman number.  

By using Eqs. (16)  and (12) and introducing the dimensionless stream function  yx, such that:       
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and eliminating the pressure gradient we obtain: 
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With low using the long wavelength approximation and neglecting the wave along number 

Reynolds number in our analysis, then Eqs.(18) and (19) becomes: 
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4. Boundary conditions 
The boundary conditions for the stream functions in the wave frame as given in [1]: 
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5. Solution of the problem 

Differentiating eq. (20), let
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By using boundary conditions the solution of equation (21) is 
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By using Eq. (23), we obtain: 
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The non-dimensional shear stress is 
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6. The pressure gradient 
Using Eqs.(16) and (12) and introducing the stream function from Eq. (17) and using the  along 

with low Reynolds number long wavelength approximation and neglecting the wave on Eqs. (17) -

(22), we get: 
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Now, by using Eq. (23) the solution of Eq. (26) is: 
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7. Special case 

If the porosity parameter is neglected i.e.,  02  , we obtain the following results: 
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8. The pressure rise and friction force 

The pressure rise P  and the friction force F for a channel of length L , in their dimensionless 

forms, are given by: 
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1
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2 dx
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Where, 
dx

dp
 is defined in equation (28) and equation (30) (for special case). 

9. Results and discussion 

Stream function (9.1) 

Figures (1-5) show the variation of absolute value of stream function   with respect to y, which 

has oscillatory behavior in the whole range of  the y-axis, and is reflected and refracted at 9.0,0y  

for different values of porosity , Hartman number M , rotation  and the dimensionless time -mean 

flow in the wave frame F  except when the effect of non-dimensional wave  amplitude  at 95.0y . 

It is clear that from figures the absolute value of stream function has nonzero value only in the 

bounded region of space. It observed that the absolute value of stream function decreases with 

increasing rotation and dimensionless time-mean flow, while it increases with increasing non-
dimensional wave amplitude, the porosity and Hartman number. Figures (6-9) show the variation of 

absolute of stream function  with respect to y when the porosity  is neglected and its reflected and 

refraction for different values of wave amplitude  , Hartman number M , rotation  and the 

dimensionless time-mean flow in the wave frame F  . It is clear that from figures the absolute value of 

stream function has nonzero value only in the bounded region of space. It shown that the absolute 

value of stream function decreases with increasing dimensionless time-mean flow, while it increases 
with increasing non-dimensional wave amplitude, Hartman number and rotation. 

Pressure gradient (9.2) 

Figures (10-14) show the variations of the absolute value of pressure gradient
dx

dp
 with respect to 

x, which exhibits oscillatory behavior in the whole range of x for different values of non-dimensional 

wave amplitude , porosity , Hartman number M , rotation  and the dimensionless time-mean 

flow in the wave frame F  . It is clear that the pressure gradient
dx

dp
 has nonzero value only in the 

bounded region of space. It observed  that the absolute value of pressure gradient decreases  with 

increasing dimensionless time-mean flow, while it  increases with increasing non-dimensional wave 

amplitude, the porosity, Hartman number and rotation. It is also found that
dx

dp
 intersects when the 

effect of  non-dimensional wave amplitude at 5.0x  decreases  5.00  x , while increase at 

 15.0  x . Figures (15-18) show the variations of the absolute value pressure gradient
dx

dp
 when 

the porosity  is neglected. Which has oscillatory behavior in the whole range of the x-axis for 

different values of the non-dimensional wave  amplitude , Hartman number M , rotation  and the 

dimensionless time-mean flow F  in the wave frame. It appears that the pressure gradien has non zero 

value only in the bounded region of space. It shown  that the absolute value of pressure gradient 
decreases with increasing dimensionless time-mean flow and rotation , while it increases with 

increasing non-dimensional wave amplitude and Hartman number.  It is also found that
dx

dp
 intersects 

when the effect of non-dimensional wave amplitude at 5.0x  decreases at  5.00  x  , while 

increase at  15.0  x . 

Shear stress and velocity (9.3) 

Figures (19-23) show the variations of the absolute value of shear stress xyS  with respect to x, 

which exhibits oscillatory behavior in the whole range of x-axis for different values of non-
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dimensional wave amplitude , porosity , Hartman number M , rotation  and the dimensionless 

time-mean flow in the wave frame F . It is clear that the absolute   value of shear stress xyS  has 

nonzero value only in the bounded region of space. It    observed that the absolute value of shear stress 
decreases with increasing dimensionless time-mean flow and rotation, while it increases with 

increasing non-dimensional wave     amplitude, the porosity and Hartman number. It is noted that the 

values of shear stress are very small at  35.01.0  x  for the effects of non-dimensional wave 

amplitude, Hartman number, porosity, rotation and dimensionless time-mean flow in the wave frame. 

Figures (24-27)  show the variations of the absolute value of shear stress xyS  with respect to x when 

the porosity  is neglected, which has oscillatory behavior in the whole range of the x-axis for 

different values of the non-dimensional of wave amplitude , Hartman number M , rotation  and the 

dimensionless time-mean flow F . It is clear that the absolute value of shear stress has a nonzero value 

only in the bounded region of space.  It shown that the absolute value of  shear stress decreases with 
increasing dimensionless time-mean flow and rotation , while it increases with increasing non-

dimensional wave amplitude and  Hartman number. It is noted that the absolute value of shear stress is 

very small at  35.015.0  x  for the non-dimensional wave amplitude, Hartman number, rotation 

and  the dimensionless time - mean flow, and its approaches the maximum value at  with 75.0x . 

Figures  (28-32) show the variations of the absolute value of  velocity u  respect to y,  which reveal 

oscillatory behavior in the whole range of the y-axis, and vanish at 1y  for different values of non 

dimensional wave amplitude , porosity  , Hartman number M , rotation  and the dimensionless 

time-mean flow F  in the wave frame . It is clear that the absolute value of velocity u  has a nonzero 

value only in the bounded region of space. It observed that the absolute value of velocity decreases 

with increasing dimensionless time-mean flow and rotation, while it increases with increasing non-
dimensional wave amplitude, the   porosity and Hartman number. Figures (33-36) show the absolute 

value of velocity u  with respect to y when the porosity  is neglected. It is clear that the absolute 

value of the velocity has a nonzero value only in the bounded region of space. It shown that the 

absolute value of  velocity decreases with increasing dimensionless time-mean flow , rotation and 

wave amplitude, while it increases with increasing  Hartman number. 

Pressure rise and friction force (9.4) 

Figures (37-44) show the variations of the absolute value of pressure rise P  and the absolute 

value of friction force F , respectively, with respect to the dimensionless time-mean flow in the wave 

frame F. Reflection and refraction occur at 1F  for different value of non-dimensional wave 

amplitude , porosity , Hartman number M , rotation . It is clear that the absolute of pressure rise 

and the absolute value of friction force have a nonzero value only in the bounded region of space. It 

observed that the absolute value of pressure rise and the absolute value of friction force decreases with 

increasing rotation, while it increases with increasing non dimensional wave amplitude, the porosity 

and Hartman number. It is found that the absolute value of pressure rise P  and the absolute value 

of friction force F , respectively, are reflected within  14  F  and are refracted within 

 41  F  for all four values of ,,, 2M .  

Figures (45-50) show the variations of the absolute value of pressure rise P  and the absolute 

value of friction    force F , respectively, with respect to the dimensionless time-mean flow in the 

wave frame F  which it reflects and refracts at 1F  for different values of non-dimensional wave 

amplitude  ,Hartman number M  and rotation  when the porosity  is neglected. It is clear that 

from figures the absolute value of pressure rise and the absolute value of friction force have a nonzero 

value only in the bounded region of space. It is observed that the absolute value of pressure rise and 
the absolute value of friction force increase with increasing non dimensional wave amplitude and 

Hartman number, while they decrease with increasing rotation.  
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It is found that the absolute value of pressure rise P  and the absolute value of friction 

force F , respectively, are reflected within  14  F  and refracted within  41  F  for all 

three values of ,, M . 

  

Figure 1-Variation of stream function   with 

respect to y for different values of   with other 

parameters 

,2.0,10,5.0,5,4 2  aFM  

2.0,057.1,4.0,7.0 1  x       

Figure 2-Variation of stream function   with 

respect to y for different values of   with other 

parameters 

2.0,2.0,10,5.0,52  aFM                                         

2.0,057.1,4.0,7.0 1  x  

  

Figure 3-Variation of stream function   with 

respect to y for different values of 
2M  with other 

parameters 

2.0,2.0,10,5.0,4   aF  

2.0,057.1,4.0,7.0 1  x  

Figure 4-Variation of stream function   with 

respect to y for different values of   with other 

parameters 

2.0,2.0,10,4,52   aFM  

2.0,057.1,4.0,7.0 1  x  

  

Figure 5-Variation of stream function   with 

respect to y for different values of  F with other 

parameters 

2.0,2.0,5.0,4,52   aM  

2.0,057.1,4.0,7.0 1  x  

Figure 6-Variation of stream function  with respect 

to y for different values of   with other parameters if 

 02  . 

,10,2.0,5.0,52  FaM  

2.0,057.1,4.0,7.0 1  x  
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Figure 7-Variation of stream function  with respect 

to y for different values of 
2M with other parameters 

if  02  . 10,2.0,2.0,5.0  Fa   

2.0,057.1,4.0,7.0 1  x  

Figure 8-Variation of stream function   with 

respect to y for different values of  with other 

parameters if 

 02  . 10,4.0,2.0,52  FaM   

2.0,057.1,4.0,7.0 1  x  

  

Figure 9-Variation of stream function  with respect 

to y for different values of F with other parameters if 

 02  . ,5.0,4.0,2.0,52  aM  

2.0,057.1,4.0,7.0 1  x  

Figure 10- Variation of pressure gradient
dx

dp
 with 

respect to x for different values of  with other 

parameters 

,2.0,10,5.0,5,4 2  aFM  

2.0,057.1,4.0,1 1  y  

 
 

Figure 11- Variation of pressure gradient
dx

dp
 with 

respect to x for different values of  with other 

parameters 

,2.0,10,5.0,5,2.0 2  aFM  

2.0,057.1,4.0,1 1  y  

 

 

 

 

 

Figure 12- Variation of pressure gradient
dx

dp
 with 

respect to x for different values of
2M  with other 

parameters 

,2.0,10,5.0,4,2.0  aF  

2.0,057.1,4.0,1 1  y   
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Figure 13- Variation of pressure gradient
dx

dp
 with 

respect to x for different values of  with other 

parameters 

,2.0,10,4,5,2.0 2  aFM   

2.0,057.1,4.0,1 1  y  

Figure 14- Variation of pressure gradient
dx

dp
 with 

respect to x for different values of F  with other 

parameters 

,2.0,5.0,4,5,2.0 2  aM   

2.0,057.1,4.0,1 1  y  

  

Figure 15- Variation of pressure gradient
dx

dp
 with 

respect to x for different values of with other 

parameters if  02   

,2.0,10,5.0,52  aFM  

2.0,057.1,4.0,1 1  y  

Figure 16- Variation of pressure gradient
dx

dp
 with 

respect to x for different values of
2M with other 

parameters if  02   

,2.0,10,5.0,2.0  aF  

2.0,057.1,4.0,1 1  y  

  

Figure 18- Variation of pressure gradient 
dx

dp
 

with respect to x for different values of with other 

parameters if  02   

 ,2.0,10,5,2.0 2  aFM  

2.0,057.1,4.0,1 1  y  .   

 
        

Figure 17- Variation of pressure gradient
dx

dp
 

with respect to x for different values of F  with other 

parameters if  02   

,2.0,5.0,5,2.0 2  aM  

2.0,057.1,4.0,1 1  y  

 



Abdulhadi and Al-Hadad                            Iraqi Journal of Science, 2016, Vol. 57, No.1A, pp: 223-240 

 

234 

  

Figure 19- Variation of shear stress xyS  with respect 

to x for different values of   with other parameter 

,2.0,10,5.0,5,4 2  aFM  

2.0,057.1,4.0,1 1  y  

 

Figure 20- Variation of shear stress xyS  with respect 

to x for different values of   with other parameter 

,2.0,10,5.0,5,2.0 2  aFM  

  2.0,057.1,4.0,1 1  y .                                                      

 

  

Figure 21- Variation of shear stress xyS  with respect 

to x for different values of 
2M  with other 

parameters

,2.0,10,5.0,4,2.0  aF    

2.0,057.1,4.0,1 1  y            

                                   

Figure 22- Variation of shear stress xyS  with respect 

to x for different values of   with other parameters 

,2.0,10,5,4,2.0 2  aFM  

2.0,057.1,4.0,1 1  y .      

  

Figure 23-Variation of shear stress xyS  with respect 

to x for different values of F  with other parameters if 

,2.0,5.0,5,4,2.0 2  aM  

2.0,057.1,4.0,1 1  y  

 

 

 

 

 

 

Figure 24- Variation of shear stress xyS  with respect 

to x for different values of   with other parameters if  

 02    

,2.0,10,5.0,52  aFM  

 2.0,057.1,4.0,1 1  y .                                                      
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Figure 25- Variation of shear stress xyS  with respect 

to x for different values of
2M  with other parameters 

if   02   

,2.0,10,5.0,2.0  aF  

2.0,057.1,4.0,1 1  y  

Figure 26- Variation of shear stress xyS  with respect 

to x for different values of 

  with other parameters if  02   

,2.0,10,5,2.0 2  aFM  

2.0,057.1,4.0,1 1  y  

 

  

Figure 27- Variation of shear stress xyS  with respect 

to x for different values of F  with other parameters if 

 02   

,2.0,5.0,5,2.0 2  aM  

2.0,057.1,4.0,1 1  y  

Figure 28-Variation of velocity u   with respect to y 

for different values of   with other parameters 

,2.0,10,5.0,5,4 2  aFM  

 2.0,057.1,4.0,1 1  y .    

  

Figure 29- Variation of velocity u  with respect to y 

for different values of   with other parameters  

,2.0,10,5.0,5,2.0 2  aFM    

2.0,057.1,4.0,1 1  y  

 

 

 

 

 

 

 Figure 30- Variation of velocity u  with respect to y 

for different values of
2M  with other parameters 

,2.0,10,5.0,4,2.0  aF  

2.0,057.1,4.0,1 1  y  
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Figure 31- Variation of velocity u  with respect to y 

for different values of   with other parameters 

,2.0,10,5,4,2.0 2  aFM  

2.0,057.1,4.0,1 1  y  

 

Figure 32- Variation of velocity u  with respect to y 

for different values of  F  with other parameters 

,2.0,5.0,5,4,2.0 2  aM  

2.0,057.1,4.0,1 1  y  

  

Figure 33-Variation of velocity u  with respect to y 

for different values of   with other parameters if 

 02   

,2.0,10,5.0,52  aFM  

2.0,057.1,4.0,1 1  y  

Figure 34-Variation of velocity u  with respect to y 

for different values of 
2M  with other parameters if 

 02   

,2.0,10,5.0,2.0  aF  

2.0,057.1,4.0,1 1  y . 

 

  

Figure 35- Variation of velocity u  with respect to y 

for different values of  with other parameters if  

 02   

,2.0,10,5,2.0 2  aFM  

2.0,057.1,4.0,1 1  y  

 

Figure 36- Variation of velocity u  with respect to y 

for different values of F  other parameters if  

 02   

,2.0,5.0,5,2.0 2  aM  

2.0,057.1,4.0,1 1  y  
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Figure 37- Variation of pressure rise P  with 

respect to F for different  values of  with other 

parameters 

,2.0,1,5.0,5,4 2  axM  

2.0,057.1,4.0,5.0 1  y  

Figure 38-Variation of pressure rise P  with 

respect to F for different  values of    with other 

parameters 

,2.0,1,5.0,5,2.0 2  axM  

2.0,057.1,4.0,5.0 1  y . 

 

  

Figure 39- Variation of pressure rise P  with 

respect to F for different values of 
2M  with other 

parameters 

,2.0,1,5.0,4,2.0  ax  

2.0,057.1,4.0,5.0 1  y  

 

Figure 40- Variation of pressure rise P  with 

respect to F for different values of    with other 

parameters 

,2.0,5,4,2.0 2  aM  

1,2.0,057.1,4.0,5.0 1  xy   

  

Figure 41- Variation of friction force F  with 

respect to F for different values of   with other 

parameters 

,2.0,5,4,5.0 2  aM  

1,2.0,057.1,4.0,5.0 1  xy   

Figure 42- Variation of friction force F  with 

respect to F for different values of   with other 

parameters 

,2.0,5,2.0,5.0 2  aM  

1,2.0,057.1,4.0,5.0 1  xy   
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Figure 43- Variation of friction force F  with respect 

to F for different values of
2M  with other parameters 

,2.0,4,2.0,5.0  a  

1,2.0,057.1,4.0,5.0 1  xy   

Figure 44- Variation of friction force F  with 

respect to F for different values of  with other 

parameters 

,2.0,4,2.0,52  aM   

1,2.0,057.1,4.0,5.0 1  xy   

  

Figure 45- Variation of pressure rise P  with 

respect to F for different values of   with other 

parameters if   02   

,2.0,1,5.0,52  axM  

2.0,057.1,4.0,5.0 1  y  

Figure 46- Variation of pressure rise P  with 

respect to F for different values of 
2M  with other 

parameters if   02   

,2.0,1,5.0,2.0  ax  

2.0,057.1,4.0,5.0 1  y . 

 

  

Figure 47- Variation of pressure rise P  with 

respect to F for different values of   with other 

parameters if  02   

,2.0,5,2.0 2  aM  

1,2.0,057.1,4.0,5.0 1  xy   

Figure 48- Variation of friction force F  with 

respect to F for different values of  

,2.0,5,5.0 2  aM  

1,2.0,057.1,4.0,5.0 1  xy   
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Figure 49- Variation of friction force F  with 

respect to F for different values of 
2M  with other 

parameters if  02   

,2.0,2.0,5.0  a  

1,2.0,057.1,4.0,5.0 1  xy   

Figure 50- Variation of friction force F  with 

respect to F for different values of   with other 

parameters if  02   

,2.0,2.0,52  aM   

1,2.0,057.1,4.0,5.0 1  xy   

 

10. Conclusion 

The influence of rotation and magnetic field on the nonlinear peristaltic flow of a Jeffery fluid in an 

asymmetric channel through a porous medium has been analyzed. The analytical expressions are 

constructed for the stream function, pressure gradient, pressure rise, fractional force, shear stress and 
velocity. The main findings of the present study are given in following points: 

1. The absolute value of stream function decreases with increasing rotation and dimensionless time-

mean flow, while it increases with increasing non-dimensional wave amplitude, the porosity and 

Hartman number. But when the porosity  is neglected the absolute value of stream function 

decreases with increasing dimensionless time-mean flow, while it increases with increasing non-
dimensional wave amplitude, Hartman number and rotation. 

2. The absolute value of pressure gradient decreases with increasing dimensionless time-mean flow, 

while it increases with increasing non-dimensional wave amplitude, the porosity, Hartman 

number and rotation. But when the porosity  is neglected the absolute value of pressure gradient 

decrease with increasing dimensionless time-mean flow and rotation , while it increases with 
increasing non-dimensional wave amplitude and  Hartman number. 

3. The absolute value of shear stress decreases with increasing dimensionless time-mean flow and 

rotation, while it increases with increasing non-dimensional wave amplitude, the porosity and 

Hartman number. But when the porosity  is neglected the absolute value of shear stress 

decreases with increasing dimensionless time-mean flow and rotation , while it increases with 

increasing non-dimensional wave amplitude and  Hartman number. 
4. The absolute value of velocity decreases with increasing dimensionless time-mean flow and 

rotation, while it increases with increasing non-dimensional wave amplitude, the porosity and 

Hartman number, and     when the porosity is  neglected we obtain the absolute value of 

velocity decreases with increasing dimensionless time-mean flow , rotation and wave amplitude, 

while it increases with increasing  Hartman number. 
5. The absolute value of pressure rise and the absolute value of friction force decreases with 

increasing rotation, while it increases with increasing non-dimensional wave amplitude, the 

porosity and Hartman  and the P number. And when the porosity   is neglected it is 

observed that the  absolute value of pressure rise and the absolute value of friction force increase 

with increasing non-dimensional wave amplitude and Hartman number, while they decrease with 

increasing rotation. 
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