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Abstract

In this paper, the effect of both rotation and magnetic field on peristaltic
transport of Jeffery fluid through a porous medium in a channel are studied
analytically and computed numerically. Mathematical modeling is carried out by
utilizing long wavelength and low Reynolds number assumptions. Closed form
expressions for the pressure gradient, pressure rise, stream function, velocity and
shear stress on the channel walls have been computed numerically. Effects of
Hartman number, time mean flow, wave amplitude, porosity and rotation on the
pressure gradient, pressure rise, stream function, velocity and shear stress are
discussed in detail and shown graphically. The results indicate that the effect of
Hartman number, time mean flow, wave amplitude, porosity and rotation are very
pronounced in the phenomena, when we change a Jeffery fluid to second order fluid
we obtain the results of [1].
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1. Introduction

Flows through porous medium occur in filtration of fluids and seepage of water in river beds.
Movement of underground, water and oils are some important examples of flows through porous
medium. Ann oil reservoir mostly contains of sedimentary formation such as limestone and sandstone
in which oil is entrapped. Another example of flow through porous medium is the seepage under a
dam which is very important. There are examples of neutral porous medium such as beach sand, rye
bread.
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The physics of flow through a porous media discussed by Scheidgger, A.E [2], Srinivas, S. and
Gayathri, R. [3] have studied peristaltic transport of a Newtonian fluid in a vertical asymmetric
channel with heat transfer and porous medium, Kothandapani, M. and Srinivas ,S. [4] have studied
peristaltic transport of a Jeffery fluid under the effect of magnetic field in an asymmetric channel,
Mahmoud S. R., Afifi N. A. S. and Al-Isede H. M., [5] have studied effect of porous medium and
magnetic field on the peristaltic transport of a Jeffery fluid, Abd-Alla A.M. and Abo-Dahab S.M., [6]
have studied magnetic field and rotation effects on the peristaltic transport of a Jeffery fluid in an
asymmetric channel, Nadeem S., Arshad riaz and Ellahi R., [7] have studied peristaltic flow of a
Jeffery fluid in rectangular duct having compliant walls. Mahmoud S.R., Abd-alla A.M. and El-sheikh
M.A., [8] discussed the effect of the rotation on wave motion through cylindrical bore in a micro-polar
porous medium.

The aim of the paper is to discuss the peristaltic flow of Jeffery fluid through a porous medium in a
two-dimensional channel. The governing equation is modeled and then solved analytically within the
long wavelength and low Reynolds number approximation. The pressure gradient, stream function,
pressure rise, friction force, shear stress and velocity to observe the effect of the Hartman number,
time-mean flow, wave amplitude, porosity and rotation on the peristaltic motion of a Jeffery fluid.
Numerical calculations are carried out and illustrated graphically in each case considered.

2. Basic equations

The basic vector equations governing the flow of a Jeffery fluid through a porous medium in a

rotation frame are:

V.V =0 1)
DV Ox(Oxv = N | o= H 4T

—+ 9 Ox(QXV )+2Qx— |=V.-T -£V + f—ePU 2
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Where p is the density, Q = Qk ,k is the unit vector parallel to z axis, Q is the rotation, V is the
velocity vector, K is the permeability of the porous medium, f is the body force, e is the
coefficient of electrical conductivity, P, is the magnetic field, Dt denote the material derivative and
T s the is the Cauchy stress tensor. The constitutive equation for an incompressible Jeffery fluid can
be expressed as [6]

T=—pi +S )

Where p is the pressure, I is the identity tensor and S is the extra stress for the Jeffrey fluid which is
defined as [6]:

M
S= *r+ A 4
o G+ 4,7) @
Where p is the dynamic viscosity, A, is the ratio of relaxation to retardation times, A, is the
retardation time, y is the shear rate.

Where
- - —\T
7 =W +(W) )
D
7—57——%(\/ V) (6)
Now, substituting (5), (6) in (4), we get
S= 1+ 4, 2 vl 7 (7)
1+ /11 ax oy
Then the stress component are given by
_ 250 A2
Sw = | 2uy+24 | 0l v oy ®)
1+ 4 ax oxoy
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3. Formulation of the problem
Let us consider the peristaltic transport of Jeffery fluid through a porous medium. In the laboratory,

we choose the Cartesian coordinates system ()? ,\7) for the channel with X along the center lineY’

transverse it, the motion of an incompressible viscous Jeffery fluid in a channel induced by sinusoidal
wave trains propagating with constant speed c¢ along the channel walls. The geometry of the wall
surface is represented by

ﬁ()?,f)za+bsin27”()?—ct') (11)

0|

Where a is the half width of the channel, b is the wave amplitude, A is the wave length, ¢ is the
propagation velocity andt is the time.
We introducing a wave frame (X, ¥) moving with velocity ¢ away from the fixed frame ()? ,\7) by the
transformation:

x=X-cf ,y=Y ,0=U-c ,v=V .p(x)=P(X,{) (12)
WhereU andV are the dimensional velocity components in the direction of X and Y, respectively, p
and P are pressures in wave and fixed frame, respectively. The pressure p remains a constant across

any axial station of the channel under the assumption that the wavelength is large.

In a laboratory frame, the governing equations are reduced to the following form:

ou  ov

—+—=0, (13)
oX 0y

7] T vV D oS 0S.
p(Ua—H+v%j—pQ(QU+2@_J:—a—?+as—_“+ —=
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p= = ®x x g IZ(u+c) ePZ(U +c), (14)
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v v 88 GS_f
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Introduce the following non-dimensional variable and parameters [2]:
o _ b i
Xzi’yzl’uzg,v=x,p ap S—ét—ﬂ h—n ¢=E,5=E,O-2:a:,
A a c c CAu MC A a a A K
Re="% \m :\/EaPO. (16)
H H

Where ¢ is the amplitude ratio, o is the dimensionless wave number, o’is the porosity, parameter,
Re is the Reynolds number, M is the Hartman number.
By using Egs. (16) and (12) and introducing the dimensionless stream function 1//(x, y)such that:

_W s (17)

oy OX

and eliminating the pressure gradient we obtain:

2
Res oy 0’y oy d*y ) (pa’Q’ oy 252Re98w
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Wlth low o using the long wavelength approximation and neglecting the wave along number
Reynolds number in our analysis, then Eqgs.(18) and (19) becomes:

a[ 1 (8 t//D (aV/Hj M [5_‘/’+1J+L2928_‘/’ (20)
yl1+ 4, oy oy uooy

4. Boundary conditions

The boundary conditions for the stream functions in the wave frame as given in [1]:
2

oy
2

(19)

w=0,%Y_0a,, y=0 ,

w=F %’” =-1, aty = h(x) =1+ ¢sin(22x) (21)

5. Solution of the problem
22

paQ
7,

Differentiating eq. (20), letg = +M? —

az( 1 azwj_ Oy _
2 1+ﬂ1 ay2 ay2

By using boundary conditions the solution of equation (21) is

then Eq. become:

(22)

_(F\/E y(L+ ﬂ,l)COSh|:\/ah(X)\/1+ﬂ1}+\/l+j‘1 [ySinh{\/Eh(X)\/“—%}
(F+h(x Slnh{\/_y\/lTDJ [\/_h 1+ 24, Cosh[\/—h \/—4
~ 1+ Sinh{\/a h(x)\/H—ﬂqD. (23)

By using Eq. (23), we obtain:

{JE (H&)(FCosh{JE (VLT 4 } (F +h(x cOsh{fy \/1+—D+ vy

Sinh{\/gh(x)\/l—D (\/_h (1+ 4, Cosh[\/—h \/1+41}—J1+/11
Sinh[\/a h(x)J1+ 4, D (24)
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The non-dimensional shear stress is

sxy=ﬁ§;f=[g<m< s.nr{mrD /gt 1)

Cosh{\/a h (x)\/1+/11}+\/1+21 Sinh{\/ﬁ h(x)J1+ 4, D (25)

6. The pressure gradient

Using Egs.(16) and (12) and introducing the stream function from Eq. (17) and using the along
with low Reynolds number & long wavelength approximation and neglecting the wave on Eqgs. (17) -
(22), we get:

0:—@+ ( 1 9 WJ O_z(a_l//+1J_M2(a_‘//+lJ+ﬂa_‘// (26)
ox oy\1+4, oy° oy oy uoooy
op

0—_ 27
> (27)

Now, by using Eg. (23) the solution of Eq. (26) is:

2 [t (b )0 e o0
—@(mh(x))(lw(gﬂ-y(w+az)+a2paz)c:osh{¢aym}
azmpmsmh[mw—D /(om0 2)

Cosh{\/a h(x)J1+ 4, }— JL1+ 2, Sinh {\/E h(x){1+ 4, m . (28)

7. Special case
If the porosity parameter is neglected i.e., (0'2 = 0), we obtain the following results:

Ju

IM 2 - apQZLySmh{ ‘/1+—‘/\/|\%# apQZ} (F +h(x))

S;inh{y‘/“—ﬂ“/lvI Hmap DJ/(— h(x)(1+ 2, ) (M2 —a2pQ?)
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8. The pressure rise and friction force
The pressure rise AP, and the friction force F, for a channel of length L, in their dimensionless

forms, are given by:

AP, = jgz dx (33)
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1 dp
F, =|-h*>— dx. 34
I s (34)

0

Where, d_p
X
9. Results and discussion

Stream function (9.1)
Figures (1-5) show the variation of absolute value of stream function |w| with respect to y, which

is defined in equation (28) and equation (30) (for special case).

has oscillatory behavior in the whole range of the y-axis, and is reflected and refracted at y = 0,0.9

for different values of porosity o, Hartman number M , rotation Q2 and the dimensionless time -mean
flow in the wave frame F except when the effect of non-dimensional wave amplitude¢g at y =0.95.

It is clear that from figures the absolute value of stream function has nonzero value only in the
bounded region of space. It observed that the absolute value of stream function decreases with
increasing rotation and dimensionless time-mean flow, while it increases with increasing non-
dimensional wave amplitude, the porosity and Hartman number. Figures (6-9) show the variation of

absolute of stream function |W| with respect to y when the porosity o is neglected and its reflected and

refraction for different values of wave amplitude ¢ , Hartman number M , rotationQ) and the

dimensionless time-mean flow in the wave frame F . It is clear that from figures the absolute value of
stream function has nonzero value only in the bounded region of space. It shown that the absolute
value of stream function decreases with increasing dimensionless time-mean flow, while it increases
with increasing non-dimensional wave amplitude, Hartman number and rotation.

Pressure gradient (9.2)

dp

Figures (10-14) show the variations of the absolute value of pressure gradient d_ with respect to
X

X, which exhibits oscillatory behavior in the whole range of x for different values of non-dimensional
wave amplitude ¢, porosity o, Hartman number M , rotation Q2 and the dimensionless time-mean

dp
dx
bounded region of space. It observed that the absolute value of pressure gradient decreases with
increasing dimensionless time-mean flow, while it increases with increasing non-dimensional wave

dp

dx
effect of non-dimensional wave amplitude at x = 0.5 decreases (0 < x <0.5), while increase at

dp
dx
the porosity o is neglected. Which has oscillatory behavior in the whole range of the x-axis for
different values of the non-dimensional wave amplitude ¢, Hartman number M , rotation Q2 and the

dimensionless time-mean flow F in the wave frame. It appears that the pressure gradien has non zero
value only in the bounded region of space. It shown that the absolute value of pressure gradient
decreases with increasing dimensionless time-mean flow and rotation , while it increases with
dp
dx
when the effect of non-dimensional wave amplitude at x = 0.5 decreases at(0< x <0.5) , while
increase at (0.5 < x <1).

Shear stress and velocity (9.3)

Figures (19-23) show the variations of the absolute value of shear stress

flow in the wave frame F . It is clear that the pressure gradient has nonzero value only in the

amplitude, the porosity, Hartman number and rotation. It is also found that intersects when the

(0.5 <X Sl). Figures (15-18) show the variations of the absolute value pressure gradient when

increasing non-dimensional wave amplitude and Hartman number. It is also found that intersects

Sy
y
which exhibits oscillatory behavior in the whole range of x-axis for different values of non-

with respect to X,
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dimensional wave amplitude ¢, porosity o, Hartman number M , rotation Q2 and the dimensionless
Sy

nonzero value only in the bounded region of space. It observed that the absolute value of shear stress
decreases with increasing dimensionless time-mean flow and rotation, while it increases with
increasing non-dimensional wave  amplitude, the porosity and Hartman number. It is noted that the

values of shear stress are very small at(0.1< x <0.35) for the effects of non-dimensional wave
amplitude, Hartman number, porosity, rotation and dimensionless time-mean flow in the wave frame.
Figures (24-27) show the variations of the absolute value of shear stress SXy with respect to x when

the porosity o is neglected, which has oscillatory behavior in the whole range of the x-axis for
different values of the non-dimensional of wave amplitude ¢ , Hartman number M , rotation 2 and the

dimensionless time-mean flow F . It is clear that the absolute value of shear stress has a nonzero value
only in the bounded region of space. It shown that the absolute value of shear stress decreases with
increasing dimensionless time-mean flow and rotation , while it increases with increasing non-
dimensional wave amplitude and Hartman number. It is noted that the absolute value of shear stress is

very small at(0.15 < x < 0.35) for the non-dimensional wave amplitude, Hartman number, rotation
and the dimensionless time - mean flow, and its approaches the maximum value at with x =0.75.
Figures (28-32) show the variations of the absolute value of velocity|u| respect to y, which reveal

time-mean flow in the wave frame F . It is clear that the absolute value of shear stress has

oscillatory behavior in the whole range of the y-axis, and vanish at y =1 for different values of non
dimensional wave amplitude ¢, porosity o, Hartman number M , rotation Q) and the dimensionless

time-mean flow F in the wave frame . It is clear that the absolute value of velocity|u| has a nonzero

value only in the bounded region of space. It observed that the absolute value of velocity decreases
with increasing dimensionless time-mean flow and rotation, while it increases with increasing non-
dimensional wave amplitude, the porosity and Hartman number. Figures (33-36) show the absolute

value of velocity |u| with respect to y when the porosity o is neglected. It is clear that the absolute

value of the velocity has a nonzero value only in the bounded region of space. It shown that the
absolute value of velocity decreases with increasing dimensionless time-mean flow , rotation and
wave amplitude, while it increases with increasing Hartman number.

Pressure rise and friction force (9.4)

Figures (37-44) show the variations of the absolute value of pressure rise|APﬂ| and the absolute

value of friction force | F,1| , respectively, with respect to the dimensionless time-mean flow in the wave
frame F. Reflection and refraction occur at F =—1 for different value of non-dimensional wave
amplitude ¢, porosity o, Hartman number M , rotation Q.. It is clear that the absolute of pressure rise

and the absolute value of friction force have a nonzero value only in the bounded region of space. It
observed that the absolute value of pressure rise and the absolute value of friction force decreases with
increasing rotation, while it increases with increasing non dimensional wave amplitude, the porosity

and Hartman number. It is found that the absolute value of pressure rise|APﬂ| and the absolute value
of friction force|Fﬂ|, respectively, are reflected Within(—4S F S—l) and are refracted within

(—1< F <4) for all four values of ¢,c,M ?,Q2.
Figures (45-50) show the variations of the absolute value of pressure rise |APA| and the absolute

value of friction force |Fﬂ|, respectively, with respect to the dimensionless time-mean flow in the

wave frame F which it reflects and refracts at F =—1 for different values of non-dimensional wave
amplitude ¢ ,Hartman number M and rotation Q2 when the porosity o is neglected. It is clear that
from figures the absolute value of pressure rise and the absolute value of friction force have a nonzero
value only in the bounded region of space. It is observed that the absolute value of pressure rise and
the absolute value of friction force increase with increasing non dimensional wave amplitude and
Hartman number, while they decrease with increasing rotation.
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It is found that the absolute value of pressure rise |APA| and the absolute value of friction

force|F, |, respectively, are reflected within (-4 < F <-1) and refracted within (—1< F < 4) for all

three values of ¢, M, Q.

¥
490

30

— ¢=02
20 — ¢=03

— ¢—=04

00 01 04 0.6 og w7

10

Figure 1-Variation of stream function |w| with

respect to y for different values of ¢ with other
parameters

c=4M?=5Q=05F=-10,a=0.2,
x=0.7,u4=04,p=1057,14, =0.2

il
0
15

10

oo 02 04 0§ 08 w0 °

Figure 3-Variation of stream function |w| with

respect to y for different values of M 2 with other
parameters

0=4,Q0=05F =-10,a=0.2,¢=0.2
x=0.7,u4=04,p=1057,14, =0.2

#
200

150

100

50

-
o 02 04 05 08 [T

Figure 5-Variation of stream function |w| with

respect to y for different values of F with other

parameters
M?=5c=40=05a=02¢=0.2
x=0.7, =04, p=1.057,1, =0.2

— o—+4
10 — o]

— o6

-
00 02 04 06 08 o

Figure 2-Variation of stream function |w| with

respect to y for different values of o with other
parameters

M?=50Q=05F =-10,a=0.2,¢=0.2
Xx=0.7,4=04,p=1057,4, =0.2

Figure 4-Variation of stream function |l//| with
respect to y for different values of () with other
parameters
M?=50c=4F =-10,a=0.2,¢=0.2
Xx=0.7,u4=04,p=1057,4, =0.2

B

10
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10. Conclusion

The influence of rotation and magnetic field on the nonlinear peristaltic flow of a Jeffery fluid in an
asymmetric channel through a porous medium has been analyzed. The analytical expressions are
constructed for the stream function, pressure gradient, pressure rise, fractional force, shear stress and
velocity. The main findings of the present study are given in following points:

1. The absolute value of stream function decreases with increasing rotation and dimensionless time-
mean flow, while it increases with increasing non-dimensional wave amplitude, the porosity and
Hartman number. But when the porosity o is neglected the absolute value of stream function
decreases with increasing dimensionless time-mean flow, while it increases with increasing non-
dimensional wave amplitude, Hartman number and rotation.

2. The absolute value of pressure gradient decreases with increasing dimensionless time-mean flow,
while it increases with increasing non-dimensional wave amplitude, the porosity, Hartman
number and rotation. But when the porosity o is neglected the absolute value of pressure gradient
decrease with increasing dimensionless time-mean flow and rotation , while it increases with
increasing non-dimensional wave amplitude and Hartman number.

3. The absolute value of shear stress decreases with increasing dimensionless time-mean flow and
rotation, while it increases with increasing non-dimensional wave amplitude, the porosity and
Hartman number. But when the porosity o is neglected the absolute value of shear stress
decreases with increasing dimensionless time-mean flow and rotation , while it increases with
increasing non-dimensional wave amplitude and Hartman number.

4. The absolute value of velocity decreases with increasing dimensionless time-mean flow and
rotation, while it increases with increasing non-dimensional wave amplitude, the porosity and
Hartman number, and when the porosity iso neglected we obtain the absolute value of
velocity decreases with increasing dimensionless time-mean flow , rotation and wave amplitude,
while it increases with increasing Hartman number.

5. The absolute value of pressure rise and the absolute value of friction force decreases with
increasing rotation, while it increases with increasing non-dimensional wave amplitude, the

porosity and Hartman and the |APl|number. And when the porosity o is neglected it is

observed that the absolute value of pressure rise and the absolute value of friction force increase
with increasing non-dimensional wave amplitude and Hartman number, while they decrease with
increasing rotation.
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