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Abstract 
Seismic inversion technique is applied to 3D seismic data to predict porosity 

property for carbonate Yamama Formation (Early Cretaceous) in an area located in 

southern Iraq. A workflow is designed to guide the manual procedure of inversion 

process. The inversion use a Model Based Inversion technique to convert 3D seismic 
data into 3D acoustic impedance depending on low frequency model and well data is 

the first step in the inversion with statistical control for each inversion stage. Then, 

training the 3D acoustic impedance volume, seismic data and porosity wells data 

with multi attribute transforms to find the best statistical attribute that is suitable to 

invert the point direct measurement of porosity from well to 3D porosity distributed 

volume. The final subsurface porosity model greatly improves the understanding of 

the distribution of porosity in the reservoir zones and showing the variations of 

porosity both vertically and laterally. The success of the prepared workflow 

encourage the transformation it automatically to run the same workflow faster for 

the areas that have the same characteristics of carbonate Yamama Formation.   
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 بتقنيةموديل تحت سطحي ثلاثي الابعاد لتخمين المسامية من تحويل البيانات الزلزالية والابار 
 المعكوس الزلزالي المعتمد على الموديل
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 الخلاصة
نات زلزالية ثلاثية الابعاد لتخمين خاصية المسامية لتكوين اليمامة االمعكوس الزلزالي لبي تم تنفيذ تقنية

العمل والتي  خطواتليرشد تصميم مخطط  تمتاسي المبكر( في منطقة تقع جنوب العراق. يالكاربوني )الكر 
تحويل البيانات الزلزالية ل الموديل استخدمت تقنية المعكوس الزلزالي المعتمد علىراحل المعالجة. نفذت يدويا لم

 هيو والمعلومات الزلزالية ثلاثية الابعاد الى ممانعة صوتية ثلاثية الابعاد اعتمادا على موديل للترددات الواطئة 
 الممانعة الصوتية ثلاثية الابعاد تهيئة ثمالخطوة الاولى في المعالجة مع سيطرة احصائية لكل مرحلة. 

السمات المتعدد لايجاد  تتحويلا معمن الابار  المباشرهبيانات المسامية البيانات الزلزالية الثلاثية الابعاد و و 
تم الحصول  ل السمات المحسوبة احصائيا والملائمة للتحويل الى مجسم توزيع المسامية ثلاثي الابعاد.ضاف

وبشكل  جيدبيا وعموديا نجاالمسامية وتغير لتوزيع  سطحي النهائي في نطاق المستودع الت تحموديل ال على
يشجع على تحويله الى معالجة الية لتنفيذ نفس المخطط  والمنفذ يدويا نجاح مخطط العمل المعد ان كبير.

  بصورة اسرع للمناطق التي تحوي نفس الخصائص لتكوين اليمامة الكاربوني.
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Introduction 

Seismic exploration is the use of seismic techniques to map subsurface geologic structure and 

stratigraphic features [1] and 3D seismic measurements have come as an essential element for 

reservoir description [2]. The reflection of seismic waves from subsurface layers illuminate potential 
hydrocarbon accumulations, as waves reflect and their amplitudes change reveals important 

information about the underlying materials. Seismic amplitude inversion uses reflection amplitudes, 

calibrated with well data, to extract details that can be correlated with porosity, lithology, fluid 
saturation and geomechanical parameters [3]. The seismic method measures only four fundamental 

rock-physics properties; that is P-wave velocity, S-wave velocity, density, and anisotropy.  Only the 

first three properties are measured with the accuracy required for inversion. Inverting seismic data to 
other rock properties implicitly assumes a relationship between the property of one or more of these 

fundamental properties. All types of inversion require some form of constraint and need to be 

calibrated by tying the result to real or simulated well data [4]. The integration of well-log and seismic 

data has been a consistent aim of geoscientists. This has become increasingly important (and 
successful) in recent years because of the shift from exploration to development of existing fields with 

large numbers of wells penetrating them. One type of integration is forward modeling of synthetic 

seismic data from logs and the second is inverse modeling of logs from seismic data this is called 
seismic inversion. So, inversion is the process of extracting from seismic data, the underlying geology 

which gave rise to that seismic information [5]. Berge, et al. [4] defined the inversion as an attempt to 

predict rock properties (porosity, thickness, fluid content, hydrocarbon saturation, etc.) from seismic 
data. Other definition of seismic inversion is presented by [6] as the technique for creating sub-surface 

geological model using the seismic data as input and well data as controls. Kemper, 2010, [7] defined 

seismic inversion as the process of converting seismic reflectivity data to rock property information 

ranging from Acoustic Impedance (A.I.) to petrophysical properties such as porosity, volume of shale, 
and water saturation. 

The objective of the current paper is to perform inversion over 3D seismic volume to predict the 

porosity property for a selected carbonate formation located in an area in southern part of Iraq through 
utilizing CGG program.  

Methodology 

The inversion workflow includes using STRATA module for converting 3D seismic data of this 

formation into 3D A.I. model by using a suite of different logs from five wells (A, B, C, D and E) in 
the surveyed area. The suites of logs are including density, sonic P-wave, porosity, and well velocity 

survey (Check Shot). Well logs data are in depth domain while seismic data are in time domain. 

Synthetic seismogram comes to resolve this problem by unifying depth and time as one parameter. 
Target carbonate horizons are defined from synthetic and picked through all volume seismic data to 

build an initial model for inversion, next step run inversion analysis to perform inversion over volume 

and invert seismic data into 3D A.I. volume. Finally, by using EMERGE module train the inverted 3D 
A.I. with 3D seismic data and well porosity log to predict porosity property over volume. 

STRATA is a module used to perform both post-stack and pre-stack inversion. In the classic post-

stack domain, STRATA analyzes post-stack seismic volumes to produce an acoustic impedance 

volume (A.I.). In the pre-stack domain, STRATA analyzes angle gathers or angle stacks to produce 
volumes of acoustic impedance, shear impedance and density. 

EMERGE is a module uses a combination of multiple seismic attributes to predict some reservoir 

parameter of interest that can predict rock property volumes using both well logs and attributes from 
seismic data, The idea of using multiple seismic attributes to predict log properties was first proposed 

by [8]. The predicted properties can be essentially any log types available, such as porosity, velocity, 

density, and shale and water saturation. Using multi-linear regression or neural network analysis, 
EMERGE trains itself at the well locations to learn the optimum transform that relates the logs and 

seismic data. It then applies that transform to derive a volume of the log property from the seismic 

volume(s). Figures-1 and 2 summarize workflows for the steps that have been dependant in this 

research and the following gives an explanation of some details for these steps with its theoretical 
background.   
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Figure 1- Summarize the workflows for steps utilized by using CGG Strata program to convert 3D seismic data to 

3D A.I. model and depending on well logs data. 
 

 
Figure 2- Summarize the workflows for steps utilized by using CGG Emerge program to convert 3D A.I data to 

3D predicted porosity volume depending on seismic data with well log porosity data. 
 

Seismic Wavelet:  
Wavelet can be defined as the link between seismic and impedance cube and used to create 

synthytic seismogram. The seismic traces (in the stacked seismic section) can be modelled as the 

convolution of the earth’s reflectivity and a band limited seismic wavelet which can be written as: 

S=w٭r                                                                                                                                                     (1) 

Where: S is the seismic trace, w is the seismic wavelet and r is the reflectivity and *denotes 

convolution.  
The reflectivity, is related to the A.I. of the earth by: 
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Where:  

Pi is the zero-offset of P-wave reflection coefficient at the ith interface of a stack of N layers. 
ZPi = ρi×VPi  is the ith ρ-impedance of the ith layer., where ρ is density, VP is P-wave velocity [9].  
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Lindseth, 1979, [10] showed that if we assume that the recorded seismic signal is given in equation 

(2), we can invert this equation to recover the P-impedance using the recursive inversion equation 

given by: 
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By applying equation (3) to a seismic trace we can effectively transform, or invert, the seismic 

reflection data to P-impedanc (Inverse Model). The low frequency component of the reflectivity is 

removed by the effect of band limited wavelet, i.e. it cannot be recovered by the recursive inversion 
procedure of equation (3). After proper processing and scaling of the seismic data, the low frequency 

component of the reflectivity should be recoverd and this done simply in an intuitive approach by 

extracting this component from well log data and add it back to the seismic. This recent approach of 

inversion is called Model-Based Inversion [8]. In Model-Based Inversion (M.B.I.), the inversion start 
with a low frequency model of the P-impedance and then training this model until obtain a good fit 

between the seismic data and synthetic trace computed by applying equations (1) and (2). Both 

recursive and model-based inversion use the assumption that extracted a good estimate  of the seismic  
wavelet [11]. A wavelet amplitude spectrum could be extracted by analyzing the autocorrelation of a 

set of traces over a selected time window [12].  

Two basic methods for extracting the wavelet could be proceeded within CGG-STRATA module, 

That is:  

 The first is statistical: by using seismic data alone to extract the wavelet and estimate the 

amplitude spectrum from seismic data, the phase of the wavelet cannot be determined from the 

data itself, so the phase must supply by user. Zero phase is the default and is commonly used for 

wavelets for log correlation [13]. The extracted wavelet from the stacked seismic data is shown in 
Figure-3, where the time domain response of the wavelet is shown on the top, and its frequency 

domain response on the below. 

 The second method is by using the well data (sonic and density log) to give a good estimate of 

both amplitude and phase spectra of the wavelet, but this method should be used after correlated 
wells and determine the proper depth-time relationship [13] Figure-4. the methods applaied in this 

research during create synthetic seismogram process. 
 

 
Figure 3- Extracted wavelet statistically from input seismic data. 
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Figure 4- Wavelet extracted for all wells with their phases in the study area. 
 

Synthetic seismogram: 
Synthetic seismogram is a plot compare between synthetic trace and composite trace (original 

seismic data collected near the well location), synthetic trace created by convolution process between 

reflectivity calculated from well data and statistical extracted wavelet. The primary well data required 
to generate a synthetic trace are sonic log (inverse of the sonic log is the acoustic velocity), density log 

and check shots data which are also very important. Sonic log is the principle source of well velocity 

data. It provides direct information about the borehole and the rocks penetrated by the drill bit. The 
sonic log is a measure of the time necessary for a sound wave to traverse one unit of the earth along 

the well bore, usually labeled ‘DT’ and the reciprocal of DT is the velocity (in m/s). The unit for sonic 

log is microseconds per foot or microseconds per meter [14]. The aim is to match the measurements 

made through well logs (in depth domain) to the seismic data (in the time domain). Thus, check shot 
correction had been applied with STRATA-CGG program to make appropriate well-seismic tie for all 

wells in the study area. Later on, the corrected synthetic seismogram is correlated with the seismic 

volume in wells location to optimize depth-to-time conversion Figure-5.  

 
Figure 5- Check shot correction is applied using STRATA-CGG program. 
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The procedure of creating synthetic is by multiplying the velocity (time-depth relation resulted 

from check shot correction) and density data to produce the A.I. data for each reflecting interface in 

the subsurface and according to the following equations: 

ZPi=ρi×VPi                                                                                                                                              (4) 
Where: ZPi is acoustic impedance, ρi is density and VPi is velocity from sonic log. 

Reflection coefficient: The reflection coefficient is simply the difference in A.I. between stratigraphic 

layers divided by their sum (equation 2). After that, computed reflection coefficient is convolved with 
the statistical wavelet to perform a well-to-seismic tie and time shift between synthetic and composite 

trace. Then, after stretch and squeeze for the synthetic trace a correlation is made for wavelet extracted 

from well to give a good estimate of both amplitude and phase spectra of the wavelet and Maximum 
Correlation (M.C.). Group Wavelet (average wavelet for all wells) was used for creating the synthetic 

seismogram with STRATA-CGG program which give M.C. 0.72 Figure-6. 
  

 
Figure 6- Synthetic seismogram shows correlation between composite trace with red color and synthetic trace 

with blue color using group wavelet (Corr. Coef. is 0.717 for highlighted area).  
 

The target horizon and interpretation – STRATA module:  

The inversion process is aimed to predict the porosity property of Yamama Formation in an area 

located in southern Iraq. Yamama Formation is a complex carbonate lithology with highly variable 

porosity of Cretaceous age. Five wells is chosen (named A to E) for accurate well-to-seismic tie, the 
top and bottom of Yamama Formation are picked in the 3D seismic data for structural mapping 

Figure-7. The seismic data are then inverted to obtain acoustic impedance (A.I.) using constrained 

inversion algorithm (M.B.I.) to improve the vertical resolution and the prediction of lateral variations 
in reservoir quality.  
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Figure 7- Picked horizon, the left is top Yamama Formation time ranges between (2200 msec with red color and 

2390 msec with violet color) and the right is bottom of Yamama Formation time ranges between 

(2320 msec with red color and 2540 msec with violet color). Map scale: 1:265477 
 

The porosity distribution of the reservoirs is estimated using inverted data of (A.I.). It will be start 

with building Low Frequency Model (LFM) (Initial Model). The M.B.I. schemes use well logs and 
picked horizon to construct the LFM and for account the missing low frequencies in the recorded 

seismic data under the constraints of the geological model and seismic horizons [15,16]. So that, the 

result with more low frequency information can lead the inversion to be directed by the seismic as 
opposed to single point location of well logs [15]. The missing frequency bands in recorded seismic 

data cause problems in the reconstruction of A.I. [17]. When the model is not filled with frequencies 

that are missing from the low end of the seismic bandwidth, the inversion result becomes driven more 

by the wells and less by the seismic [18 in 15]. For that, low frequency range between (0 -15 Hz) is 
added in building the initial model depending on extracted amplitude spectrum from the whole 3D 

seismic volume Figure-8. The LFM for M.B.I. is formed by blocking an impedance log from well 

Figure-9. 

 
Figure 8- Amplitude spectrum of recorded seismic data, frequency range (0 -80). 

 
Figure 9- Initial Model used in inversion. The figure shows location of top and bottom of Yamama Formation 

Green color represents low Acoustic Impedance and violet high Acoustic Impedance in the color 

scale. Yamama Formation has an impedance values within range between (8188 and 13180). 
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Inversion analysis: 

The inversion analysis tool shows the results of inverted traces at each well location, overlain on 

top of the original impedance logs. It is also shows the synthetic traces that result from the inverted 

data and compares them to the input seismic volume. This allows for fast and exact calibration 
between inversion results with well logs, allowing quality control and parameter refinement to be 

carried out interactively at the well locations before inversion of the full volume [13].  

Figure-10a shows the inversion analysis window to well A. The left hand represents A.I. (original 
in blue color, low frequency in black color and inverted in red color). It shows the wavelet that has 

been used in the convolution. In the middle are the synthetic traces (with total M.C. 0.991 after using 

GROUP WAVELET, Figure-10b for all wells) in red color and original seismic traces in black color. 
In the right is the picked horizon and the difference Error (=0.068) between synthetic and seismic 

trace. Another window of the inversion analysis is shown in Figure-11 that represents the crossplot 

between original A.I. and inverted A.I. with M.C. 0.76.  

 
Figure 10a- The inversion analysis window for well A. 

 

 
Figure 10b- Base map show the best correlation between original and inverted A.I. at each well location after 

using group wavelet in inversion analysis. 
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Figure 11-The crossplot between original A.I. calculated by equation (4) from well data and inverted A.I. 

calculated by equation (2) from seismic data (M. C. = 0.76). Data points for each well are shown in 

one color. 
 

Final step of M.B.I. is running inversion process for the whole 3D seismic data and the result is 3D 

A.I. data. Figure-12 exhibit impedance slice extracted within 3D A.I. guided by picked horizon (top 

Yamama Formation).  
 

 
Figure 12- M.B.I. inverted (impedance) slice extracted from inverted data within Yamama Formation (30 msec 

below top Yamama Formation) green color represents low Acoustic Impedance and violet high 

Acoustic Impedance in the color scale. 
 

There are two important approaches for checking an inversion results. These are impedance 

prediction at wells and synthetic–seismic error plots. If the initial model is created using the well as 
input, then the match is always likely to be good. A better test is to use a ‘blind’ well, not incorporated 

in the M.B.I. (Quality Control QC well). This is sometimes referred to as ‘cross validation’ [19]. The 

two approaches are used in this research. The first is the synthetic–seismic error plots with least Error 

(0.06) and M.C. 0.997 (Figure-10a) and the second use well C as blind well when inversion process is 
applied, Figure (13) shows an example of a blind well test with M.C. 0.685.  
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Figure 13- Well C as a blind well to check an inversion results. The M.C. is 0.685. 
 

Predicted porosity property - EMERGE module: 
In seismic reservoir characterization, porosity is the main property which controlled hydrocarbon 

accumulation. Actually this property cannot be measured directly away from the well point. Therefore, 

seismic inversion is the best tool to predict this property and others such as lithology, volume of shale 

and (water, gas and oil) saturation with best distribution and create subsurface 3D model for each 
depending on seismic and well data. 

In this research 3D model of porosity is created depending on the information mentioned above 

(see Figures-1 and 2). EMERGE module is applied using the inverted 3D A.I. data as external attribute 
and compare it with 3D seismic and well data (porosity log) to create relationship in well location 

Figure-14 through using internal algorithm provided in this application (No. of the internal algorithm 

is 28). These algorithms are representing different types of attributes. This step in the EMERGE is 
named training and sometimes called multiattribute transforms. The result of the training is a crossplot 

validation error graph which estimate the best algorithm (statistically best fit attributes) correlated to 

log porosity in the wells location and used to predicting of porosity over 3D A.I. data Figure-15. 

Finally and depending on the relation with well location, a conversion for all data is applied to produce 
a 3D porosity data. Porosity slice guided by picked horizon extracted along the 3D porosity which 

represents the final model and greatly improves the understanding of the distribution of porosity in the 

reservoir zones showing variations in porosity both vertically and laterally Figure-16. 

 
Figure 14-Crossplot shows a relation between inverted data and porosity from well log with M.C. is 0.78. The 

figure shows a good agreement to predict porosity using multi attribute transforms. Data points for each 

well are shown in one color. At lower porosity the model slightly under predicts the porosities. 
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Figure 15- Crossplot validation error, the left shows No. of algorithm in the horizontal axis and Prediction Error 

in The vertical axis. The lower (black) curve shows the error calculated using the Training Data and 

the upper (red) curve shows the error calculated using the validation Data. This meaning, only the first 

four algorithms will be used for porosity prediction. The right used algorithm (Inverted A.I., Second 

Derivative, Instantaneous Frequency and Filter 55/60-65/70). 

  

 
Figure 16- 3D model of porosity extracted along Yamama Formation. Yellow color area shows locations of 

higher porosity. 
 

Conclusions: 
The prediction of porosity property by using seismic inversion method is needed for intensive and 

judicious systematic work. The results is depending on the suitable designed workflow for wavelet 

extraction and controled by statistical assessment in each steps of the inversion workflow. Crossplot of 
each step should be used to check its success. Otherwise, the step should be repeated to enhance the 

statistical values of the results. The enhanced repetition in the steps of the workflow and the inversion 

results showed that, wavelet extracted from well data give good correlation in creating synthetic 
seismogram than statistical and group wavelet used in inversion analysis that gives the best 

correlation. It is found that, low frequency between (0 to 15 Hz) when added to seismic data in the 

creation of initial model stage is leading to increase the seismic data control during the inversion 

process. The inversion result at well C is not bad when it is used as blind well. Porosity around well A, 
B, D and E gives good discrimination than well C. Locations of low A.I. in all wells within Yamama 

Formation show high porosity in the inversion result and that support the determination of the 
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predicted porosity for the remaining area of the formation depending on seismic inversion. The 

execution of each step in the workflow is done manualy. The success of the workflow guide to convert 

it to automatic design to be run more fast and to be applied directly for the same formation in anothor 

different area in the region that has same depositional environment for Yamama Formation 
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