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Abstract

This paper studies the influence of an inclined magnetic field on peristaltic transport
of incompressible Bingham plastic fluid in an inclined symmetric channel with heat
transfer and mass transfer. Slip conditions for heat transfer and concentration are
employed. The formulation of the problem is presented through, the regular perturbation
technique for small Bingham number Bn is used to find the final expression of stream
function, the flow rate, heat distribution and concentration distribution. The numerical
solution of pressure rise per wave length is obtained through numerical integration
because its analytical solution is impossible. Also the trapping phenomenon is analyzed.
The effect of the physical parameters of the problem are discussed and illustrated
graphically

Keywords: an inclined magnetic field, Bingham plastic fluid, an inclined symmetric
channel, slip conditions.
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1. Introduction

Peristaltic flow in the presence of slip conditions in comparison to non-slip conditions has an
important role in many applications especially in the modern material industry (polymer industry where it
is given as a microscopic wall slip), medical application (for example polishing artificial hearts),
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engineering, and the technological process. Its importance inspired many researchers to study the impact
of slip conditions on the peristaltic flow problem for Newtonian and non-Newtonian fluids. Hayat et al.
[1] analyzed the effect of an inclined magnetic field on peristaltic flow of Williamson fluid in an inclined
channel with convective slip condition. Hayat et al. [2] analyzed the effect of slip conditions on peristaltic
flow of Powell- Eyring fluid. Adel and Abdualhhadi [3] studied the peristaltic transport of MHD Powell-
Eyring fluid through a porous medium in an asymmetric channel with slip condition. Bhatti et al. [4]
investigated the simultaneous effect of slip and MHD on the peristaltic blood flow of a Jeffery fluid model
in a non- uniform porous channel. Tanveer et al. [5] discussed the influence of an inclined magnetic field
on the peristaltic flow of a hyperbolic tangent nonofluid in an inclined channel which has flexible walls.
Adnan and Abdualhhadi [6] investigated the effect of a magnetic field on a peristaltic transport of
Bingham plastic fluid in a symmetrical channel. Adnan and Abdualhhadi [7] studied the effect of the
magnetic field on a peristaltic flow of Bingham plastic fluid. Ahmed and Abdualhhadi [8] investigated the
effect of a magnetic field on peristaltic flow of Jeffery fluid through a porous medium in a tapered
asymmetric channel.

In this study the effect of an inclined magnetic field on the peristaltic transport of Bingham plastic fluid
through an inclined symmetric channel with the slip conditions of heat and concentration will be
investigated. The large wave length and small Reynolds number concept are taken into considersion to
simplify the problem. The regular perturbation technique for small Bingham number Bn < 1 is used to
find the final expression of stream function, heat distribution and concentration distribution. The
numerical integration of pressure rise is found by using series solution. Finally the influence of different
parameters on velocity axial, pressure gradient, pressure rise, the local shear stress, the temperature
distribution, the concentration, and the trapping phenomenon are discussed in details with the use of
graphs.

2. The mathematical model of the problem

Assume the peristaltic flow of incompressible Bingham plastic fluid in a two dimension tapered
symmetric channel with thickness (2d). Both the magnetic field and the channel are inclined at angles @
and a. The x- axis is taken along the length of the channel and y- axis is the opposite of it [see Figure-1)].
A uniform magnetic field B = (B, sin®, B, cos®,0) is applied. The flow is generated by sinusoidal
waves propagating along the compliant walls of the channel.
The structures of the wall geometry is described as follows

Y,=H X, t)=d, +a sin%ﬂ()? — ct) Upper wall (1)
Y, = H,(X,t) = —[d; + a sin%n()? —ct)] Lower wall 2)

In which Y; and Y, are the upper and lower wall respectively, a is the wave amplitude, A is the wave
length, c is the wave speed and t is the time.

F-anis

Figure 1-Geometry of the problemﬂ
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3. The fundamental equation of the problem

The governing equation for the conservation of mass, momentum, energy and concentration for
incompressible Bingham plastic fluid in an inclined symmetric channel can be written as follows:
Equation of mass conservation

divU =0 )
Equation of momentum in x- direction
pi—?=divf—0302 cos@ (Ucos@ — Vsin®) + pgsina (4)
Equation of momentum in y- direction
pi—z=divf+ oB3sin® (Ucos® — Vsin®) — pg cosa (5)
Equation of energy conservation
pcpd—_— KV2T + S.(grad U) + 0By (U? cos? @ + V2 sin®> @ — 20UV sin @ cos @) + KTVZ (6)
Equation of particles concentration
%zDWC+%%WT @)
%z 9% . d 9 , =0 , 50 I
Where V2= T 37 is the Laplace operator. And FFAmirT; U—}? V—17 is the material time

derivative.

Where (p, 0, cy, K1, D, Ty, g, and Cs)denotes the fluid density, o is the electrical conductivity, the
specific heat, the thermal diffusion ratio, the coefficient of mass diffusivity, the mean temperature, the
gravity effect and the concentration susceptibility respectively. Where T is the temperature of the material.
The stress tensor for Bingham plastic fluid is described as follows:

— 2 T e

5= (H(Y) + VY) A, Fort = 1y,

And the Cauchy stress tensor denoted by T

T=—PI+S, where P is the pressure, and T the identity tensor then

‘_EXX = _—ﬁ + §XX

Txy = Sxy

Tyx = Syx

Tyy = —P+Syy o _ _ 8

Writing the system in laboratory frame, the continuity equation can be written as:
WL _ )
ax ay

The X and Ycomponents of the equation of motion are respectively given by
p(ﬁ+ Uﬁ+ Vﬁ) = a;’)f(x +a;%— 8By? cos® (U cos® — Vsin®) + pgsina (10)
p (Z—Z + UZ_VX-l_ Vaa—;) = a;%+ vy 4 oB3sin® (Ucos® — Vsin@) — pg cosa (11)

The energy equation becomes
pCy [a—T+ Ua—T+V£ =
DKT

(ﬁ+ﬁ)+s (grad U) + 6By*(U? cos? @ + V? sin® @ — 2UV sin @ cos @) + —+

" G+

62

a7

The equation of particle s concentration follows as
ac _ o2 DKT 92T
dt =DViC+T- (6X2 6Y2)

The associated boundary condltlons are

=0 atY=H

—0 at Y = H,

(12)

(13)
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K%‘l‘nl(T_To):O at Yzﬁl

K%'*‘r]l(TO_T) = O at 7=H2

D +n,(C—C)=0 at ¥ =H,

D +1,(Co—C)=0 at ¥ =10,

(14)

Applying the mixed condition of heat transfer and mass transfer where 7 is the heat transfer coefficient
and n, is the mass transfer coefficient. T, is the temperature at the upper wall and C, is the concentration
at the lower wall.

The flow is time dependent with respect to the laboratory frame (X,Y, %) while in the wave frame with
coordinate (x,y) moving with the wave speed ¢ the flow is considered steady. Where % and ¥ are
velocity components and P(x, y) the pressure in the wave frame. Writing the system equations in a wave
frame needs the following transformation between the laboratory frame and wave frame.
x=X—-ct,y=Y,u=UX,Y,0)—c,v=V(X,Y,©)

P(x,7) = P(X,Y,0),T(x,y) =T(X,Y,0),C(%,y) = C(X,Y,?) (15)

And defining the following dimensionless quantltles

2nx _y _u v 2md, %P _ 27T_cE _2md, __ ped,
x_/l'y_dl'u c'v_c'p_ cul'hl hz d - 1'6_ /'l 'Re_uo ’

— 2 24 2
y=vl-, s=1ts, 2=—"B°"1,Pr=”°°”,5c ,Br=PrEc,6 =" , Bn=

HoC Ho k To D To

Tydy b= C—Co sc=Y sr= DKrTy D, = _ DKrTy(C1—Co) Fr _ <
HoC C1—Co D VT (C1—Co) Hocp Cp To gd,

(16)

Where p is the pressure, (hy, h,) are channel walls, § is the wave number, Re is the Reynolds number, M
is the Hartman number, Pr is the Prandtl number, Ec is the Eckert number, Br is the Brinkman number, 6
is the temperature, Bn is the Bingham number, Sc is the Schmidt number, Sr is the Soret number, and
D,, is the Dufour number.

Making use of the above mentioned dimensionless parameter, the channel walls, the continuity equation,
motion equations, energy equation and concentration equation and by using the stream function [If

Y(x,y,t) is the stream function, the velocity components in terms of stream function are: u = g—i’ ,U =
—Sa—f ] then the resulting system will be reduced as follows:
hy =1+ e€sinx
h, = -1 — € sinx an
In which e = i is called the geometric parameter (amplitude ratio)
v _ 0 00 _ 9, §95xx , 9Sxy _ 2 ik

6 Re ( +1) Re5ax 3y 6x+56x +— 3y M cos@(( +1)cos(2)+6 sm(Z))
Re .
—Sina
Fr
(19)
_g§3 00% | s3p, 000 0% _ 5205y 0p , 505y 2 W

53 Re ( +1) L o3Re LI = 52 Py 50y S sm(?)((ay+1)cos®+

oy
é 5, Sin (Z)) - E cosa (20)
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Repr [5(3% +1)%2~ 02228 = (0752 + 22) + Brooee —5) 2 (5) + 1 (5(52) -

52 i(aw)>sxy+EcBrM2((Z—1£+1) cos? @ + (— 8 )Zsm Q)+2( +1)5 sin @ cos @) +

0x \0x

2 @ 070
Du Pr(6* —— yz) (21)
Where sy, = u(y) ( ) + B, and B, iscalled Bingham fluid number.

oY O 5200 L 2%
Re(8 (55 + 1) ) 5 et o Yoy (22)

Finally the d|men5|onless of the corresponding boundary condltlon
u=-1 aty=h
u=-1 at y=h,
M _ _ _
gff, =—1 aty=h
% =-1 at y=h,
5‘}'3119:0 aty=h1
a6
E—Bile :0 at y:hz
oD
$+xilcb= 0 aty=h
Z—f—inQDZO at y =h, (23)
Where B;; = "1:1, is the heat transfer Biot number and x;; = "2 L, is the mass transfer Biot number.

Defining® = F + 2, where 0 is the non-dimensional time mean flow in the fixed frame and F is the non-
dimensional time mean flow in the wave frame. And the expression of non-dimensional pressure
difference per wave length APA is
AP, = [ 2d (24)

4. Solution to the problem

The resulting system of equations consists of highly nonlinear partial differential equations,
because of its hard to find the exact solution. Laminar flow is achieved for a low Reynolds number which
produces a free initial term, therefore the solution of this problem is determined by adopting this
assumption. The long wave length § « 1 and a low Reynolds number are widely used in the analysis of
peristaltic flow. This approximation of a long wave length is based on that the assumption the wave length
of the peristaltic wave is larger than the half width of the channel/ tube. Under this assumption neglecting
the wave number § of the equations (19), (20), (21), and (22), the system becomes

9p _ 9xv _ pp2 2( (%% Re i

% =y M= (cos @) <(ay + 1)) + —sina (25)
3_5 =0 (26)

g% oY 20(% 4 1)° cos? )

357 + Br <6y (ay )) Sxy + BrM ((ay + 1) cos“® + Du Pr ( ayz) =0 (27)
1 0%

5S¢ 352 Sr— =0 (28)

Assuming the dlmen5|onless quantities, the stream functiony, the flow rate F, the temperature
distribution 8 and the concentration distribution @ will be expended by about the small values of Bingham
number Bn.

Y =v9o+Bny,
F=Fy+BnF,
0=00+Bn01
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® =y + Bnd, (29)
Putting the above quantities (29) into the equations (25), (27) and (28), then collecting the (terms of
like) power of Bn, we obtain the following zeroth and first order systems.
4.1 Zeroth order system
The coefficients of BnO are defined as follows

0%y _ = M2 (cos @)2 1.00

63/

o 6°+B r &L )2+BnBra "’°+B Mz(a"’° +1)2 =0
i a2, a 0

Sc 0y? Tayz =0

Associated with the boundary conditions

wO:%,%zﬂ 69°+Bu€0—0 a‘I"’+xll<11>0_0 at y=h,
Fo
1/)0:—?0,(_%0:—1 .E—Bu@o:();g—xmq’o—() at y =h,

4.2 First order system
The coefficients of Bn! are defined as follows

0%y 0%y, 0%Yo) _ ap2 2 0%y
(6y4 y ay* 2 ay3 ) = M* (cos @) 2

a 91 2% 0%y %o %y, 2 (9o oy,

+28r ZHTh— ypr (TL) + Bnpr S8+ 28rM? (% +1) Y =0
i 82, 82 91
% e TS5 =0

Along with the corresponding boundary conditions

Y1 = %,66_1/;1 =0, 691 + Bi16, =0, a¢1 +x1P1=0 aty=h
F, 0y 69 6<I>
1!)1:—?1,6—311:0 771 31191 0 E—xllcbl—o aty—hz

Solving the above zeroth and first order forms with the corresponding boundary conditions, the final

form of the stream function, heat and concentration.
5. Result and Discussion

In this section, the numerical and computational results are illustrated and plotted for the problem
of the peristaltic transport of Bingham plastic fluid in an inclined symmetric channel with convective
condition. Analytical results are shown by using the regular perturbation technique for small value of
Bingham parameter Bn. The analysis for velocity distribution, pressure gradient, pressure rise, the local
shear stress, the temperature distribution, the concentration, and the trapping phenomenon for the
peristaltic flow of Bingham plastic fluid in an inclined symmetric channel.
5.1 Velocity distribution

The outcomes of the axial velocity in terms of different parameters have been plotted and
analyzed in this subsection, and it is clear from these graphs that the velocity profiles attain parabolic in
nature except if there are some points of reflection on curves of velocity which versa the situations from
the increase or decrease. Figures-(2- 6) show the behavior of axial velocity with variation of inclined
angle of magnetic field ¢, the Hartman number M, amplitude ratio €, the parameter of Bingham fluid Bn,
and flow rate.
Figure-2 describes the behavior of axial velocity with an increase of inclined angle of magnetic field ¢. It
shows that the velocity profile decreases at the walls but increases in the central part of the channel. The
effect of the Hartman number M and amplitude ratio ¢ are sketched in Figures-(3,4), reduction effect of
Hartman number and amplitude ratio for axial velocity is observed as the values of M and ¢ increase in the
central part of the channel, this is a result of the Lorentz force which opposes the fluid motion and
therefore reduces the velocity profile. The velocity profile upon the parameter of Bingham fluid Bn in
Figure-5 shows than an increase in the value of the parameter Bn decreases the velocity profile in the
lower part of the channel and increases the velocity profile in the upper part of the channel. Figure-6 is
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presented to figure out the behavior of an increase of flow rate on the velocity profile. It shows that the
velocity profile decreases at the lower and upper parts of the channel while on the central part of the
channel the velocity profile increases.

0.07F
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0.04F
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0.03F

— 40
— ¢=11/6
— ¢=r3
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0.00[

-0.5 0.0 0.5 1.0

-1.0

Figure 2- Effect of ¢ on the velocity profile whenM = 2,Bn = 0.1,e = 0.2,F0 = 0.1,F1 = 0,x = 0.3
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Figure 3- Effect of M on the velocity profile when ¢ = Pi/6,Bn = 0.1,¢ = 0.2,F0 = 0.1,F1 = 0,x =
0.3
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Figure 4- Effect of € on the velocity profile when ¢ = Pi/6,M = 2,Bn = 0.1,F0 = 0.1,F1 = 0,x =
0.3
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Figure 5- Effect of Bn on the velocity profile when ¢ = Pi/6,M = 2,e = 0.2,F0 = 0.1,F1 =0,x =
0.3

— Fp=01
— Fp=02
Fo=03

Figure 6- Effect of FO on the velocity profile when ¢ = Pi/6,M =2,Bn =0.1,e = 0.2,F1 =0,x =
0.3

5.2 Pressure gradient
The physical impact of pertinent parameters on the pressure gradient 2—2 in wave are investigated

through Figures-(7-14). The effect of an inclined angle of magnetic field ¢ on the pressure gradient is
plotted in Figure-7). It has been seen that for large values of ¢, the pressure gradient increases. Figure-8
portrays that ascending values of Hartman number M provide a resistance to the flow rate and the
pressure gradient decreases. Figure-9 discusses the influence of increasing the Bn pressure gradient. It
shows that the pressure gradient decreases with an increase in the Bingham parameter. Figure-10 shows
the effect of amplitude ratio € increasing on the pressure gradient, in the vicinity of the channel walls (-
1< x < 0); (x > 3.2) the magnitude of the pressure gradient decreases but this action reverses in the

. . . dapP .
central part of the channel when the pressure gradient increases. The increase of flow rate on - 1s

discussed in  Figure-11. It is observed that an increase of the flow rate decreases the magnitude of the
pressure gradient. Figures-(12, 13) demonstrate the physical reaction of an inclined angle of the channel
and Reynolds number on the magnitude of the pressure gradient, an increase in the pressure gradient is
noticed upon the increasing of @ and Re. Figure-14 shows that an increase of the Froude number
decreases the pressure gradient.
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dP/dx

-1 0 1 2 3 4 5

Figure 7- Pressure gradientZ—z withM =0.5,Bn =0.1,e = 0.2,F0 =0.1,F1 =0,a =7/6,Re =

0.2,fr =0.8,
00f | ‘ ‘ | | ]
—oal /\'
_Qs—’/////////""——"“““\\\\\\\\\\_——
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© -04F
-05¢ — M=02
—06F — M=05 |
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-1 0 1 2 3 4 5
X

Figure 8- Pressure gradientj—z with ¢ = g,Bn =0.1,¢=02F0=01,F1=0,a =n/6,Re =
0.2,fr=0.8

~0.15
-020 |
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~0.30 |

-035 |

~040 |

Figure 9- Pressure gradientZ—z with ¢ = g,M =0.5,e=02F0=01,F1=0,a =n/6,Re =
0.2,fr=10.8
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dP/dx

—04f

-1 0 1 2 3 4 5

Figure 10- Pressure gradientZ—i with ¢ = %,M =0.5,Bn=0.1F0 =0.1,F1 =0,a =w/6,Re =
0.2,fr = 0.8wheree = 0.1,e = 0.2,e = 0.3
_os| |

~10}

-15}

dP/dx

—20F

~25}

Figure 11- Pressure gradientj—z with ¢ = g,M =0.5Bn=01¢e=02F1=0,a =n/6,Re =
0.2,fr=10.8
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Figure 12- Pressure gradientZ—i with ¢ = %,M =0.5Bn=0.1,¢ =0.2,F0=0.1,F1 = 0,Re =
0.2,fr=0.8
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Figure 13- Pressure gradientZ—i with ¢ = %,M =05Bn=01,¢=02F0=01F1=0,a =
m/6,fr =0.8
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Figure 14- Pressure gradientZ—i with 8 = %,M =0.5Bn=01¢6=02F0=0.1,F1=0,a =
m/6,Re =0.2

5.3 Pressure rise

In this subsection, the linear relationship that relates non dimensional average pressure rise per wave
length AP, and dimensionless mean flow rate ©® can be seen in the plots (15)-(21). The influence of
various parameters on the pressure rise per wave length AP, against © were investigated. The final

expression of AP, is obtained by numerical integration of series approximation for 2—2 by a Mathematica

program. The pumping region is divided in to four regions

1. Retrograde (back word) region where AP > 0,0 < 0.

2. The co- pumping region where AP < 0,0 < 0.

3. The augmented region creates for AP > 0,0 > 0.

4. The free pumping region achieved when AP = 0.

Figure-15 illustrates the effect of ¢ on the pumping. It has been seen for large values of ¢ that the
pumping rate increase in free pumping and the augmented regions. Figure-16 deduced the pumping via
variation of ¢, it has been noticed that the pumping rate in augmented region and decreases in free
pumping and retrograde region. However the opposite results were noticed when the Bingham number
increased in Figure-17. It is visualized from Figure-18 that an increase in magnitude of Hartmam number
M increases the pumping rate in retrograde region, especially at ® < —2,and decreases the pumping rate
in the augmented region and the free pumping region. Figures-(19, 20) show the effect of an increase of
the inclined angle of the channel and the Reynolds number on the pressure rise per wave length AP,
against O respectively. It is noticed that the pumping rate increases in the augmented region, free
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pumping region and retrograde region. The opposite results were noticed for ascending values of Froude
number as is shown in Figure-21
4 L

Figure 15- Pressure Rise per wave length with Bn = 0.5,¢ = 0.2,M = 0.5, = w/6,Fr =
0.8,Re = 0.5

Figure 16- Pressure rise per wave length with ¢ =n/6,Bn =0.5,M = 0.5, = /6,Fr =
0.8,Re = 0.5

-3 -2 -1 0 1 2 3

Figure 17- Pressure rise per wave length with ¢ = /6,6 = 0.2, M = 0.5, = t/6,Fr = 0.8,Re =
0.5
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e 1 2 3

®
Figure 18- Pressure rise per wave length with ¢ = n/6,Bn = 0.5, = 0.2, = /6,Fr =
0.8,Re = 0.5

®
Figure 19- Pressure rise per wave length with ¢ = n/6,Bn = 0.5,¢ = 0.2,M = 0.5,Fr =
0.8,Re = 0.5

-3 -2 -1 0 1 2 3

Figure 20- Pressure Rise per wave length with ¢ = n/6,Bn = 0.5,e = 0.2,M = 0.5,a =
n/6,Fr=10.8
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-3 -2 -1 0 1 2 3
(C]

Figure 21- pressure rise per wave length with ¢ = 7/6,Bn = 0.5,e = 0.2,M = 0.5, = 1/6,Re =
0.5

5.4 Shear stress
The purpose of this subsection is to investigate the effect of various parameters on the local Shear stress
equation in the wave frame. The values of shear stress evaluated at a fixed value for y = 0.1. Figure-22
detected the impact of increasing the value in ¢ on the S,,,. It shows that S, is a decreasing function.
For a large value of Hartman number M and Bingham number Bn the local Shear stress increases
through Figure-23, 24. Figure-25 ensures that when the magnitude of amplitude ratio € increases, the
value of shear stress decreases at the central part of the channel and increases at the walls of the channel.
The impact of the flow rate on the local Shear stress is depicted in Figure-26. It shows that the Shear
stress is decreasing in the whole channel and attains its minimal value in the central part of the channel.

1.995 |

1.990 |

sXy

1.985 |

P=77/3

1.980 |

1.995 |

1.990 |

SXY

1.985 |

1.980 |

X

Figure 23- Shear stress with ¢p = %,Bn =0.1,¢ =0.2,F0 = 0.1
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Figure 24- Shear stresswith¢p ==, M = 2,¢ = 0.2,F0 = 0.1
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Figure 26- Shear stress with ¢ = %,M =2,Bn=01,e=0.2

5.4 Temperature distribution

The effect of different emerging parameters on the temperature distribution 8(y) are observed
physically at a fixed value of x = 0.3.through Figures-(27-37). It is observed that throughout all the
figures, 6(y) attains a maximum value near the central part of the channel. Figure-27 shows the effect of
¢ on the temperature profile. It is noted that an increase in the angle ¢ decreases the temperature profile.
Figure-28 shows that the temperature profile is an increasing function with an increase of Bingham
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number Bn. The variation in temperature with an increase of amplitude ratio € is discussed in Figure-29. It
is noted that the temperature profile increases. The influence of the flow rate on the temperature profile
increase in Figure-30, where it is noted that there is an increase in the central part of the channel. The
temperature profile shows an increased function for higher values of Hartman number M, Dufour number,
Soret number, Schmidt number, Prandtl number, and Brinkman number as illustrated in Figures-(31-36).
Figure-37 is devoted to explain the influence of variations of B;;, the heat transfer Biot number. It is
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Figure 27- Effect of ¢ on 8(y)when Bn = 0.1,¢ = 0.2,F0 = 0.1,M = 2,Du = 0.5,Sr = 0.5,Sc =
0.5,B;1 =5Pr=2,Br=2
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Figure 28- Effect of Bn on 8(y)when ¢ = n/6,¢ = 0.2,F0 = 0.1,M = 2,Du = 0.5,Sr = 0.5,Sc =
0.5,B;; = 5,Pr=2,Br=2
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Figure 29- Effect of € on of 8(y)when ¢ = t/6,Bn = 0.1,FO = 0.1,M = 2,Du = 0.5,Sr = 0.5,Sc =
0.5,B;1 =5Pr=2,Br=2
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Figure 30- Effect Of FO on 8(y)when ¢ = t/6,Bn = 0.1, = 0.2,M = 2,Du = 0.5,Sr = 0.5,Sc =
0.5,B;; = 5,Pr=2,Br =2

15/

10/
- |
5
!
~10 ~05 0.0 05 10
y

Figure 31- Effect of M on of 8(y)when¢ =mn/6,Bn =0.1,¢ = 0.2,F0 = 0.1,Du = 0.5,Sr =
0.5,Sc=0.5,B;1 =5Pr=2,Br=2
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Figure 32- Effect of Duon 6(y)when¢ =mn/6,Bn =0.1,e = 0.2,F0 =0.1,M = 2,Sr = 0.5,Sc =
0.5,B;1 =5Pr=2,Br=2
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Figure 33- Effect Of Sron 8(y)when¢ = n/6,Bn = 0.1,¢ = 0.2,F0 = 0.1,M = 2,Du = 0.5,Sc =
0.5,B;; = 5,Pr=2,Br =2

— & =05
— S =08

—iO —d5 dO Qé Lb
y
Figure 34- Effect of Sc on 8(y)when ¢ = /6,Bn = 0.1,¢ = 0.2,F0 = 0.1,M = 2,Du = 0.5,Sr =

0.5,B;; = 5,Pr = 2,Br = 2
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Figure 35- Effect of Pr on 8(y)when ¢ = n/6,Bn =0.1,e = 0.2,F0 = 0.1,M = 2,Du = 0.5,Sr =
0.5,Sc=0.5,B;; =5,Br=2
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Figure 36- Effect of Br on 6(y)when¢ =n/6,Bn =0.1,¢ = 0.2,F0 =0.1,M = 2,Du = 0.5,Sr =
0.5,Sc=0.5,B;1 =5,Pr=2
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Figure 37- Effect of B;; on of 8(y)when ¢ = n/6,Bn = 0.1, = 0.2,F0 = 0.1,M = 2,Du = 0.5,Sr =
0.5,Sc=05Pr=2,Br=2

5.6 Concentration distribution

The concentration of particles for various parameters is checked through Figures-38-47 at a fixed
value of x = 0.3. The results are a similar trend to the effect of the parameters on the temperature to
particles, and being opposite to the effect of parameters on the temperature. Figure-38 shows the impact
of increasing the value in ¢ on the concentration profile ®(y). It is observed that ®(y) increases.
Figure-39 illustrates the effect of amplitude ratio € on the concentration profile ®(y). It has been seen that
for large values of € the concentration profile decreases. It is visualized from Figures-(40-46) that an
increase in magnitude of the Hartman number M, the flow rate F,, the Dufour number Du, the Soret
number Sr, the Schmidt number Sc,the Prandtl number and the Pr and the Brinkman number Br
increases the concentration profiles ®(y). Figure-47 deduced that the concentration profile ®(y)
increases with an increase of the mass transfer Biot number x;;.

oo;\ /]
—os[
< -10f
_15f
20p T
~10 ~05 0.0 05 10

y
Figure 38- The Effect of ¢ on the ®(y) with Bn = 0.1,¢ = 0.2,F0 = 0.1,M = 2,Du = 0.5,Sr =
0.5,Sc=0.5,x;4y =5Pr=2,Br=2
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Figure 39- The Effect of € on the ®(y) with¢ = n/6,Bn = 0.1,F0 = 0.1,M = 2,Du = 0.5,Sr =
0.5,Sc=0.5,x;1 =5,Pr=2,Br=2.
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Figure 40- The Effect of M on the ®(y) with ¢ = /6,Bn = 0.1,¢ = 0.2,F0 = 0.1,Du = 0.5,Sr =
0.5,Sc=0.5,x;4y =5Pr=2,Br=2
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Figure 41- The effect of FO on the ®(y) with ¢ = n/6,Bn = 0.1, = 0.2,M = 2,Du = 0.5,Sr =
0.5,Sc=0.5,x;4y =5Pr=2,Br=2
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Figure 42- The effect of Du on the ®(y) with¢p =n/6,Bn=0.1,¢ =0.2,F0 =0.1,M = 2,Sr =
0.5,Sc=0.5,x;4 =5Pr=2,Br=2
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Figure 43- The effect of Sron the ®(y) with ¢ = /6,Bn = 0.1,¢ = 0.2,F0 = 0.1,M = 2,Du =
0.5,Sc=0.5,x;4y =5Pr=2,Br=2
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Figure 44- The effect of Sc on the ®(y) with¢p = n/6,Bn =0.1,e = 0.2,F0 =0.1,M = 2,Du =
0.5,x4 =5Pr=2,Br=2
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Figure 45- The effect of Pr on the ®(y) with ¢ = n/6,Bn =0.1,e = 0.2,F0 =0.1,M = 2,Du =
0.5,Sr =0.5,Sc =0.5,x;4 =5Br=2
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Figure 46- The effect of Br on the ®(y) with¢p =n/6,Bn =0.1,¢ = 0.2,F0 =0.1,M = 2,Du =
0.5,Sr =0.5,Sc =0.5,x;1 =5Pr=2
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Figure 47- The effect of x;; on the ®(y) with¢ = nt/6,Bn =0.1,¢ = 0.2,F0 =0.1,M = 2,Du =
0.5,Sr =0.5,Sc=0.5,Pr=2,Br =2

5.7 Trapping

An interesting topic in peristaltic transport is the phenomenon of trapping. The formation of an
internally circulating bolus of fluid through closed stream lines is called trapping and this trapped bolus is
moving ahead through the peristaltic waves with the same speed as the wave. This phenomenon physically
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appears in thrombus in blood and the movement of blood bolus. The trapping for different values of
parameters are shown in Figures-(48-51). The stream lines of different values of ¢ is shown in Figure-
48. It has been noticed that the size and the number of trapped bolus increased. Figure-49 deduced that for
large values of the Hartman number M, the size of the bolus get smaller. Figure-50 display the impact of
Bingham number  Bn on the stream lines. It is noticed that the number and the size of the bolus
decreases for large values of the Bingham number. Figure-51 shows the effect of amplitude ratio € on the
stream lines. It is observed that the number and the size of the bolus increases with an increase of e
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Figure 48-Effect of [¢ = 0,¢ = §,¢ = g] on stream lines when M = 2,Bn = 0.4,e = 0.1

Figure 49-Effect of [M = 1.5,M = 2,M = 2.5] on stream lines when ¢ = 1/6,Bn = 0.4,¢ = 0.1

Figure 50-Effect of [Bn = 0.4, Bn = 0.5, Bn = 0.6] on stream lineswhen ¢ = /6, M = 2,e = 0.1
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Figure 51-Effect of [e = 0.05,e = 0.1, = 0.2] on stream lines when ¢ = /6, M = 2,Bn = 0.

6. Conclusion

1. Velocity profiles show a parabolic in nature. Furthermore, it has an increasing behavior at the center

part of the channel with an increase of ¢, F,  where the flow is reflected at the walls of the channel.

Opposite behavior is noted with the increasing of M, e.

2. Pressure gradient magnitude is an increasing function due to the increase of ¢, @, Re, while it is a

decreasing function with the increase of Fr, M, and it has mixed behavior with the increase of e.

3. In the pumping regions, the pumping rate increases in the retrograde region with an increase of

Bn, M, a, Re. The pumping rate increases in the free pumping region with an increase of ¢, Bn, a, Re. The

pumping rate increases in the augmented region with an increase of ¢, €, a, Re.

4. 1t is noticed that the values of the axial shear stress increase with the increase of M, Bn. While it

decreases with the increase of ¢, F,,.

5. The temperature distribution increases at the central region of the channel with an increase of

€,Fy,M,Du, Sr,Sc,Pr and Br and it decreases with an increase of ¢ and B;;.

6. The profiles of the temperature distribution are parabolic.

7. The Concentration distribution decreases at the central region of the channel with an increase of

€,Fy, M, Du, Sr,Sc,Pr and Br and it increases with an increase of ¢ and x;;.

8. The number and the size of bolus rise up with an increase of ¢ and €. But the converse is seen with an

increase of M and Bn.
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