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Abstract 

     This paper studies the influence of an inclined magnetic field on peristaltic transport 

of incompressible Bingham plastic fluid in an inclined symmetric channel with heat 

transfer and mass transfer. Slip conditions for heat transfer and concentration are 

employed. The formulation of the problem is presented through, the regular perturbation 

technique for small Bingham number    is used to find the final expression of stream 

function, the flow rate, heat distribution and concentration distribution. The numerical 

solution of pressure rise per wave length is obtained through numerical integration 

because its analytical solution is impossible. Also the trapping phenomenon is analyzed. 

The effect of the physical parameters of the problem are discussed and illustrated 

graphically 

 

Keywords: an inclined magnetic field, Bingham plastic fluid, an inclined symmetric 
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بنكهام  تأثير المجال المغناطيسي المائل على الجريان التمعجي لمائع من النوع
 بلاستك خلال قناة مائلة مع وجود شروط الأنزلاق

 

،احمد مولود عبدالهادي*عدنانفرح علاء   
 قدػ الخياضيات، كلية العلؽم، جامعة بغجاد، بغجاد، العخاق

 الخلاصة
في هحه البحث قطظا بجراسة  تاثيخ الطجال الطغظاطيدي الطائل على الانتقال التطعجي لطائع  غيخ قابل      

للأنضغاط مؼ الظطط بظكهام في قظاة متظاظخة مائلة مع معادلة الحخارة ومعادلة التخكيد. وقج أخح بظعخ ألاعتبار  
شخط  الاندلاق على معادلة الحخارة ومعادلة التخكيد. تطت صياغة الطعادلات وتبديطها بأستخجام فخضية الطؽل 

لتفاضلية اللاخطية تػ حلها تحليليا بطخيقة الاهتداز الطظتعػ الطؽجي الطؽيل وتقخيب عجد ريظؽلج الصغيخ. الطعادلات ا
لثابت بظكهام الصغيخ لايجاد دالة الجخيان , معجل الجخيان ,تؽزيع الحخارة وتؽزيع التخكيد.تػ حل ارتفاع الضغط 

تقييػ باستخجام تكامل عجدي وكحلغ تطت دراسة ظاهخة الاستجاق مؼ خلال الخسؽم. كحلغ تػ تحليل الظتائج وعخض 
 الصؽري لبيان الدلؽك الطعلطات الطختلفة الطضطظة .

1.  Introduction 

             Peristaltic flow in the presence of slip conditions in comparison to non-slip conditions has an 

important role in many applications especially in the modern material industry (polymer industry where it 

is given as a microscopic wall slip), medical application (for example polishing artificial hearts), 
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engineering, and the technological process. Its importance inspired many researchers to study the impact 

of slip conditions on the peristaltic flow problem for Newtonian and non-Newtonian fluids. Hayat et al. 

[1] analyzed the effect of an inclined magnetic field on peristaltic flow of Williamson fluid in an inclined 

channel with convective slip condition. Hayat et al. [2] analyzed the effect of slip conditions on peristaltic 

flow of Powell- Eyring fluid. Adel and Abdualhhadi [3] studied the peristaltic transport of MHD Powell- 

Eyring fluid through a porous medium in an asymmetric channel with slip condition. Bhatti et al. [4] 

investigated the simultaneous effect of slip and MHD on the peristaltic blood flow of a Jeffery fluid model 

in a non- uniform porous channel. Tanveer et al. [5] discussed the influence of an inclined magnetic field 

on the peristaltic flow of a hyperbolic tangent nonofluid in an inclined channel which has flexible walls. 

Adnan and Abdualhhadi [6] investigated the effect of a magnetic field on a peristaltic transport of 

Bingham plastic fluid in a symmetrical channel.  Adnan and Abdualhhadi [7] studied the effect of the 

magnetic field on a peristaltic flow of Bingham plastic fluid.  Ahmed and Abdualhhadi [8] investigated the 

effect of a magnetic field on peristaltic flow of Jeffery fluid through a porous medium in a tapered 

asymmetric channel. 

     In this study the effect of an inclined magnetic field on the peristaltic transport of Bingham plastic fluid 

through an inclined symmetric channel with the slip conditions of heat and concentration will be 

investigated.  The large wave length and small Reynolds number concept are taken into considersion to 

simplify the problem. The regular perturbation technique for small Bingham number      is used to 

find the final expression of stream function, heat distribution and concentration distribution. The 

numerical integration of pressure rise is found by using series solution. Finally the influence of different 

parameters on velocity axial, pressure gradient, pressure rise, the local shear stress, the temperature 

distribution, the concentration, and the trapping phenomenon are discussed in details with the use of 

graphs. 

2.  The mathematical model of the problem 

           Assume the peristaltic flow of incompressible Bingham plastic fluid in a two dimension tapered 

symmetric channel with thickness (  )  Both the magnetic field and the channel are inclined at angles   

and     The x- axis is taken along the length of the channel and y- axis is the opposite of it [see Figure-1)]. 

A uniform magnetic field   (               ) is applied. The flow is generated by sinusoidal 

waves propagating along the compliant walls of the channel. 

The structures of the wall geometry is described as follows 

     (   ̅)          
  

 
( ̅    ̅)  Upper wall                                                                  (1) 

     (   ̅)            
  

 
( ̅    ̅)   Lower wall                                                            (2)  

     In which    and    are the upper and lower wall respectively,   is the wave amplitude,   is the wave 

length,    is the wave speed and t is the time. 

 

 
Figure 1-Geometry of the problem 
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3.  The fundamental equation of the problem 

The governing equation for the conservation of mass, momentum, energy and concentration for 

incompressible Bingham plastic fluid in an inclined symmetric channel can be written as follows: 

Equation of mass conservation  

     ̅                                                                                                                                                (3) 

Equation of momentum in x- direction 

 
   ̅

   ̅
      ̅     

      ( ̅        ̅     )                                                                (4) 

Equation of momentum in y- direction 

 
   ̅

   ̅
      ̅       

     ( ̅        ̅     )                                                                  (5) 

Equation of energy conservation  

   
   ̅

   ̅
       ̅ (      ̅)     

 ( ̅        ̅         ̅ ̅         )  
   

  
                 (6) 

Equation of particles concentration 
  

  ̅
      

   

  
                                                                                                                      (7) 

     Where    
  

    
  

     is the Laplace operator. And  
  

   ̅
 

  

  ̅
  ̅

  

  ̅
  ̅

 

  ̅
 is the material time 

derivative. 

     Where (                       )denotes the fluid density,   is the electrical conductivity, the 

specific heat, the thermal diffusion ratio, the coefficient of mass diffusivity, the mean temperature, the 

gravity effect and the concentration susceptibility respectively. Where T is the temperature of the material.  

The stress tensor for Bingham plastic fluid is described as follows: 

 ̅  ( ( ̅)  
  

 ̇
)  ̅    For                            

And the Cauchy stress tensor denoted by  ̅   

 ̅    ̅ ̅   ̅   where  ̅ is the pressure, and    ̅the identity tensor then  

 ̅     ̅   ̅    

 ̅    ̅    

 ̅    ̅    

 ̅     ̅   ̅                                                                                                                                             (8) 

Writing the system in laboratory frame, the continuity equation can be written as: 
  ̅

  ̅
 

  ̅

  ̅
                                                                                                                                      (9)                                 

The  ̅ and  ̅components of the equation of motion are respectively given by  

 (
  ̅ 

  ̅
  ̅

  ̅ 

  ̅
  ̅

  ̅ 

  ̅
)  

  ̅  

  ̅
 

  ̅  

  ̅
     

      ( ̅        ̅     )                      (10) 

 (
  ̅ 

  ̅
  ̅

  ̅ 

  ̅
  ̅

  ̅ 

  ̅
)  

  ̅  

  ̅
 

  ̅  

  ̅
      

     ( ̅        ̅     )                       (11)   

The energy equation becomes  

   *
  ̅

  ̅
  ̅

  ̅

  ̅
  ̅

  ̅

  ̅
+  

 (
   ̅

  ̅  
   ̅

  ̅ )   ̅ (      ̅)     
 ( ̅        ̅         ̅ ̅         )  

   

  
(
   

  ̅  

   

  ̅ )                                                                                                          (12)                                                                                                

The equation of particle s concentration follows as 
  

  ̅
      

   

  
(
   

  ̅  
   

  ̅ )                                                                                                     (13)                                                                                       

The associated boundary conditions are  

 ̅              ̅   ̅                                        

 ̅             ̅   ̅                                        
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  ̅
   (    )            ̅   ̅   

 
  

  ̅
   (    )           ̅   ̅                        

 
  

  ̅
   (    )            ̅   ̅   

 
  

  ̅
   (    )           ̅   ̅                                                                                                           

(14) 

Applying the mixed condition of heat transfer and mass transfer where    is the heat transfer coefficient 

and    is the mass transfer coefficient.     is the temperature at the upper wall and    is the concentration 

at the lower wall. 

The flow is time dependent with respect to the laboratory frame (  ̅  ̅  ̅) while in the wave frame with 

coordinate ( ̅  ̅) moving with the wave speed   the flow is considered steady. Where   ̅ and  ̅ are 

velocity components and  ( ̅  ̅) the pressure in the wave frame. Writing the system equations in a wave 

frame needs the following transformation between the laboratory frame and wave frame. 

 ̅   ̅    ̅   ̅   ̅   ̅   ̅(  ̅  ̅  ̅)      ̅   ̅(  ̅  ̅  ̅)  

 ( ̅  ̅)   (  ̅  ̅  ̅)   ( ̅  ̅)   (  ̅  ̅  ̅)  ( ̅  ̅)   (  ̅  ̅  ̅)                                                  (15)    

And defining the following dimensionless quantities 
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   (     )
     

     (     )

          
    

  

   
                                                          

(16)                                                                                   

Where   is the pressure, (     ) are channel walls,   is the wave number,    is the Reynolds number,   

is the Hartman number,     is the Prandtl number,    is the Eckert number,    is the Brinkman number,   

is the temperature,    is the Bingham number,    is the Schmidt number,    is  the Soret number, and  

    is the Dufour number. 

Making use of the above mentioned dimensionless parameter, the channel walls, the continuity equation, 

motion equations, energy equation and concentration equation and by using the stream function [If 

 (     ) is the stream function, the velocity components in terms of stream function are:   
  

  
    

  
  

  
  ] then the resulting system will be reduced as follows:  

             

                                                                                                                                                 (17) 

In which   
 

  
 is called the geometric parameter (amplitude ratio) 
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Where         ( ) (
   

   )       and      is called Bingham fluid number.                                                                                                                 

  (  (
  

  
   )
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(     
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Finally the dimensionless of the corresponding boundary condition   

                                                        

                  
  

  
                                                       

  

  
                 

  

  
                      

  

  
                                          

  

  
                     

  

  
                                                                                                                                         (23) 

Where     
    

 
, is the heat transfer Biot number and       

     

 
  is the mass transfer Biot number. 

Defining     , where    is the non-dimensional time mean flow in the fixed frame and   is the non-

dimensional time mean flow in the wave frame. And the expression of non-dimensional pressure 

difference per wave length     is  

    ∫
  

  

 

 
                                                                                                                       (24) 

4.  Solution to the problem  

  The resulting system of equations consists of highly nonlinear partial differential equations, 

because of its hard to find the exact solution. Laminar flow is achieved for a low Reynolds number which 

produces a free initial term, therefore the solution of this problem is determined by adopting this 

assumption. The long wave length     and a low Reynolds number are widely used in the analysis of 

peristaltic flow. This approximation of a long wave length is based on that the assumption the wave length 

of the peristaltic wave is larger than the half width of the channel/ tube. Under this assumption neglecting 

the wave number   of the equations (19), (20), (21), and (22), the system becomes  

  

  
 

    

  
     (    ) ((

  

  
  ))   

  

  
                                                                       (25)       

 
  

  
                                                                                                                                        (26)  
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(
  

  
 ))          ((

  

  
  )

 
           ( 

   

   )                              (27) 

 

  
 
   

      
   

                                                                                                                       (28) 

     Assuming the dimensionless quantities, the stream function  , the flow rate  , the temperature 

distribution   and the concentration distribution   will be expended by about the small values of Bingham 

number   . 
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                                                                                                                                                 (29) 

     Putting the above quantities (29) into the equations (25), (27) and (28), then collecting the (terms of 

like) power of     , we obtain the following zeroth and first order systems. 

4.1 Zeroth order system 

     The coefficients of     are defined as follows   
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Associated with the boundary conditions 

   
  

 
 
   

  
     

   

  
         

   

  
                            

    
  

 
 
   

  
      

   

  
         

   

  
                                                        

4.2 First order system  

The coefficients of      are defined as follows  

(
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Along with the corresponding boundary conditions 

   
  

 
 
   

  
    

   

  
          

   

  
                            

    
  

 
 
   

  
     

   

  
          

   

  
                                                    

     Solving the above zeroth and first order forms with the corresponding boundary conditions, the final 

form of the stream function, heat and concentration. 

5.  Result and Discussion 

  In this section, the numerical and computational results are illustrated and plotted for the problem 

of the peristaltic transport of Bingham plastic fluid in an inclined symmetric channel with convective 

condition. Analytical results are shown by using the regular perturbation technique for small value of 

Bingham parameter   . The analysis for velocity distribution, pressure gradient, pressure rise, the local 

shear stress, the temperature distribution, the concentration, and the trapping phenomenon for the 

peristaltic flow of Bingham plastic fluid in an inclined symmetric channel.  

5.1 Velocity distribution  

The outcomes of the axial velocity in terms of different parameters have been plotted and 

analyzed in this subsection, and it is clear from these graphs that the velocity profiles attain parabolic in 

nature except if there are some points of reflection on curves of velocity which versa the situations from 

the increase or decrease. Figures-(2- 6) show the behavior of axial velocity with variation of  inclined 

angle of magnetic field  , the Hartman number M, amplitude ratio  , the parameter of Bingham fluid   , 

and flow rate. 

Figure-2 describes the behavior of axial velocity with an increase of inclined angle of magnetic field  . It 

shows that the velocity profile decreases at the walls but increases in the central part of the channel. The 

effect of the Hartman number M and amplitude ratio   are sketched in Figures-(3,4), reduction effect of 

Hartman number and amplitude ratio for axial velocity is observed as the values of M and   increase in the 

central part of the channel, this is a result of the Lorentz force which opposes the fluid motion and 

therefore reduces the velocity profile. The velocity profile upon the parameter of Bingham fluid    in 

Figure-5 shows than an increase in the value of the parameter    decreases the velocity profile in the 

lower part of the channel and increases the velocity profile in the upper part of the channel. Figure-6 is 



Adnan and Hadi                                          Iraqi Journal of Science, 2019, Vol. 60, No. 7, pp: 1551-1574 
 

1557 

presented to figure out the behavior of an increase of flow rate on the velocity profile. It shows that the 

velocity profile decreases at the lower and upper parts of the channel while on the central part of the 

channel the velocity profile increases. 
 

 
Figure 2- Effect of    on the velocity profile when                                   

 
Figure 3- Effect of   on the velocity profile when      ⁄                             
   
 

 
 

Figure 4- Effect of    on the velocity profile when      ⁄                           
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Figure 5- Effect of     on the velocity profile when      ⁄                          
    
 

 
Figure 6- Effect of     on the velocity profile when      ⁄                          
   

5.2 Pressure gradient  

            The physical impact of pertinent parameters on the pressure gradient 
  

  
 in wave are investigated 

through Figures-(7-14). The effect of an inclined angle of magnetic field   on the pressure gradient is 

plotted in Figure-7). It has been seen that for large values of  , the pressure gradient increases. Figure-8 

portrays that ascending values of Hartman number M provide a resistance to the flow rate and the 

pressure gradient decreases. Figure-9 discusses the influence of increasing the     pressure gradient. It 

shows that the pressure gradient decreases with an increase in the Bingham parameter. Figure-10 shows 

the effect of amplitude ratio   increasing on the pressure gradient, in the vicinity of the channel walls (-

1    ) (     ) the magnitude of the pressure gradient decreases but this action reverses in the 

central part of the channel when the pressure gradient increases. The increase of flow rate on 
  

  
 is 

discussed in   Figure-11. It is observed that an increase of the flow rate decreases the magnitude of the 

pressure gradient. Figures-(12, 13) demonstrate the physical reaction of an inclined angle of the channel 

and  Reynolds number on the magnitude of the pressure gradient, an increase in the pressure gradient is 

noticed upon the increasing of   and    . Figure-14 shows that an increase of the Froude number 

decreases the pressure gradient.  
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Figure 7- Pressure gradient 
  

  
  with                                    ⁄     

            

 

Figure 8- Pressure gradient 
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Figure 9- Pressure gradient 
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Figure 10- Pressure gradient 
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Figure 11- Pressure gradient 
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Figure 12- Pressure gradient 
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Figure 13- Pressure gradient 
  

  
  with   
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Figure 14- Pressure gradient 
  

  
  with   

 

 
                                  

  ⁄        

5.3 Pressure rise  

          In this subsection, the linear relationship that relates non dimensional average pressure rise per wave 

length      and dimensionless mean flow rate   can be seen in the plots (15)-(21). The influence of 

various parameters on the pressure rise per wave length     against    were investigated. The final 

expression of      is obtained by numerical integration of series approximation for 
  

  
 by a Mathematica 

program. The pumping region is divided in to four regions  

1. Retrograde (back word) region where            
2. The co- pumping region where           
3. The augmented region creates for           
4. The free pumping region achieved when     . 

Figure-15 illustrates the effect of   on the pumping. It has been seen for large values of   that the 

pumping rate increase in free pumping and the augmented regions. Figure-16 deduced the pumping via 

variation of     it has been noticed that the pumping rate in augmented region and decreases in free 

pumping and retrograde region. However the opposite results were noticed when the Bingham number 

increased in Figure-17. It is visualized from Figure-18 that an increase in magnitude of Hartmam number 

M increases the pumping rate in retrograde region, especially at       and decreases the pumping rate 

in the augmented region and the free pumping region. Figures-(19, 20) show the effect of an increase of  

the inclined angle of the channel  and the Reynolds number on the pressure rise per wave length     

against    respectively. It is noticed that the pumping rate increases in the augmented region, free 
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pumping region and retrograde region. The opposite results were noticed for ascending values of Froude 

number as is shown in Figure-21 

 
Figure 15- Pressure Rise per wave length with                         ⁄     
           

 
Figure 16- Pressure rise per wave length with       ⁄                   ⁄     
           

 

 
Figure 17- Pressure rise per wave length with      ⁄                   ⁄            
    

 

0

6

4

3 2 1 0 1 2 3

4

2

0

2

4

p

0.2

0.4

0.6

3 2 1 0 1 2 3

10

5

0

5

p

Bn 0.2

Bn 0.4

Bn 0.6

3 2 1 0 1 2 3

10

5

0

5

p



Adnan and Hadi                                          Iraqi Journal of Science, 2019, Vol. 60, No. 7, pp: 1551-1574 
 

1563 

 
Figure 18- Pressure rise per wave length with      ⁄                   ⁄     
          

 

 
Figure 19- Pressure rise per wave length with       ⁄                        
           

 

 
Figure 20- Pressure Rise per wave length with     ⁄                       
  ⁄        
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Figure 21- pressure rise per wave length with      ⁄                         ⁄     
    
 

5.4 Shear stress 

The purpose of this subsection is to investigate the effect of various parameters on the local Shear stress 

equation in the wave frame. The values of shear stress evaluated at a fixed value for        Figure-22 

detected the impact of increasing the value in     on the    . It shows that      is a decreasing function. 

For a large value of Hartman number   and Bingham number     the local Shear stress increases 

through Figure-23, 24. Figure-25 ensures that when the magnitude of amplitude ratio   increases, the 

value of shear stress decreases at the central part of the channel and increases at the walls of the channel. 

The impact of the flow rate on the local Shear stress is depicted in Figure-26. It shows that the Shear 

stress is decreasing in the whole channel and attains its minimal value in the central part of the channel. 
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Figure 23- Shear stress with   
 

 
                     

Fr 0.5

Fr 1

Fr 2

3 2 1 0 1 2 3

10

5

0

5

p

0

6

3

0 2 4 6 8 10

1.980

1.985

1.990

1.995

x

sx
y

M 1

M 2

M 3

0 2 4 6 8 10

1.980

1.985

1.990

1.995

x

sx
y



Adnan and Hadi                                          Iraqi Journal of Science, 2019, Vol. 60, No. 7, pp: 1551-1574 
 

1565 

 

Figure 24- Shear stress with   
 

 
                  

 

 

Figure 25- Shear stress with   
 

 
                   

 

Figure 26- Shear stress with   
 

 
                 

 

5.4 Temperature distribution 
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number   . The variation in temperature with an increase of amplitude ratio   is discussed in Figure-29. It 

is noted that the temperature profile increases. The influence of the flow rate on the temperature profile 

increase in Figure-30, where it is noted that there is an increase in the central part of the channel. The 

temperature profile shows an increased function for higher values of Hartman number  , Dufour number, 

Soret number, Schmidt number, Prandtl number, and Brinkman number as illustrated in Figures-(31-36). 

Figure-37 is devoted to explain the influence of variations of    , the heat transfer Biot number. It is 

observed that  ( ) is decreasing with an increase of    . 

 
Figure 27- Effect of   on  ( )when                                          
                    

 
Figure 28- Effect of    on  ( )when     ⁄                                    
                    

 
Figure 29- Effect of   on of  ( )when     ⁄                                     
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Figure 30- Effect Of    on  ( )when     ⁄                                    
                    

 
Figure 31- Effect of  M on of  ( )when     ⁄                                
                           

 

 
Figure 32- Effect of  Du on  ( )when     ⁄                                    
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Figure 33- Effect Of Sr on  ( )when     ⁄                                    
                    

 
Figure 34- Effect of    on  ( )when     ⁄                                    
                    

 

 
Figure 35- Effect of    on  ( )when     ⁄                                    
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Figure 36- Effect of     on  ( )when     ⁄                                    
                      

 
Figure 37- Effect of     on of  ( )when     ⁄                                    
                    
 

5.6 Concentration distribution  

     The concentration of particles for various parameters is checked through Figures-38-47 at a fixed 
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increases the concentration profiles  ( )   Figure-47 deduced that the concentration profile  ( ) 

increases with an increase of the mass transfer Biot number    . 
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Figure 39- The Effect of   on the  ( ) with     ⁄                              
                          . 

 
Figure 40- The Effect of   on the  ( ) with     ⁄                                
                           

 
Figure 41- The effect of    on the  ( ) with     ⁄                             
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Figure 42- The effect of     on the  ( ) with     ⁄                             
                           
 

 
Figure 43- The effect of   on the  ( ) with     ⁄                             
                           

 

 
Figure 44- The effect of     on the  ( ) with     ⁄                             
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Figure 45- The effect of    on the  ( ) with     ⁄                             
                             

 
Figure 46- The effect of     on the  ( ) with     ⁄                             
                             

 
Figure 47- The effect of     on the  ( ) with     ⁄                             
                             
 

5.7 Trapping  
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appears in thrombus in blood and the movement of blood bolus. The trapping for different values of 

parameters are shown in Figures-(48-51). The stream lines of different values of     is shown in Figure-

48. It has been noticed that the size and the number of trapped bolus increased. Figure-49 deduced that for 

large values of the Hartman number M, the size of the bolus get smaller. Figure-50 display the impact of 

Bingham number       on the stream lines. It is noticed that the number and the size of the bolus 

decreases for large values of the Bingham number. Figure-51 shows the effect of amplitude ratio    on the 

stream lines. It is observed that the number and the size of the bolus increases with an increase of     

 

Figure 48-Effect of        
 

 
   

 

 
 ] on stream lines when                  

   
Figure 49-Effect of                    on stream lines when     ⁄               

 

   
Figure 50-Effect of                        on stream lines when     ⁄            



Adnan and Hadi                                          Iraqi Journal of Science, 2019, Vol. 60, No. 7, pp: 1551-1574 
 

1574 

 
Figure 51-Effect of                       on stream lines when     ⁄            

 

6.  Conclusion  

1. Velocity profiles show a parabolic in nature. Furthermore, it has an increasing behavior at the center 

part of the channel with an increase of         where the flow is reflected at the walls of the channel. 

Opposite behavior is noted with the increasing of      
2. Pressure gradient magnitude is an increasing function due to the increase of       , while it is a 

decreasing function with the increase of     , and it has mixed behavior with the increase of    
3. In the pumping regions, the pumping rate increases in the retrograde region with an increase of 

           The pumping rate increases in the free pumping region with an increase of            The 

pumping rate  increases in the augmented region with an increase of         . 

4. It is noticed that the values of the axial shear stress increase with the increase of       While it 

decreases with the increase of     . 

5. The temperature distribution increases at the central region of the channel with an increase of 

                    and    and it decreases with an increase of    and    . 

6. The profiles of the temperature distribution are parabolic. 

7. The Concentration distribution decreases at the central region of the channel with an increase of 

                    and    and it increases with an increase of    and    . 

8. The number and the size of bolus rise up with an increase of   and  . But the converse is seen with an 

increase of   and   . 
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