Iraqi Journal of Science, 2019, Vol. 60, No.7, pp: 1546-1550 DOI: 10.24996/ijs.2019.60.7.15

ISSN: 0067-2904

On Commutativity of Prime and Semiprime Γ- Rings with Reverse Derivations

Shahed Ali Hamil^{*}, Abdulrahman H. Majeed

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

Let *M* be a weak Nobusawa Γ -ring and γ be a non-zero element of Γ . In this paper, we introduce concept of k-reverse derivation, Jordan k-reverse derivation, generalized k-reverse derivation, and Jordan generalized k-reverse derivation of Γ -ring, and γ -homomorphism, anti- γ -homomorphism of *M*. Also, we give some commutativity conditions on γ -prime Γ -ring and γ -semiprime Γ -ring.

Keywords: Gamma ring, γ -prime gamma ring, γ -semiprime gamma ring, γ -Lie ideal, k- reverse derivation, generalized k- reverse derivation.

حول الحلقات الاولية وشبه الاولية من النمط – ٢ مع المشتقات المعكوسة

شهد علي هامل*، عبد الرحمن حميد مجيد

قسم الرياضيات، كلية العلو، جامعة بغداد، بغداد، العراق

الخلاصة

لتكن M حلقة من النمط – Γ نوبوساوا ضعيفة و γ عنصر غير صفري في Γ . في هذا البحث , سنقدم تعاريف المشتقات المعكوسة من النمط –k و جوردان المشتقات المعكوسة –k, وتعميم المشتقات المعكوسة –k وجوردان تعميم المشتقات المعكوسة – k, و مفهوم التشاكل من النمط – γ .ايضا , سنعطي بعض الشروط الإبدالية لحلقة اولية وشبه اولية من النمط – γ .

1. Introduction

The concepts of a Γ -ring were first introduced by Nobusawa in 1964, this Γ -ring is generalized by Barnes. Let M and Γ be two additive abelain groups. M is called a Γ -ring in the sense of Barnes [1] if there exists a mapping of $M \times \Gamma \times M \to M$ satisfying these two conditions for all $a, b, c \in M$, $\alpha, \beta \in \Gamma$:

(i) $(a+b)\alpha c = a\alpha c + b\alpha c, a(\alpha + \beta)b = a\alpha b + a\beta b, a\alpha (b+c) = a\alpha b + a\alpha c$

(ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$

In addition, if there exists a mapping of $\Gamma \times M \times \Gamma \rightarrow \Gamma$ such that the following axioms hold for all $a, b, c \in M, \alpha, \beta \in \Gamma$:

(iii) $(a\alpha b)\beta c = a(\alpha b\beta)c$

(iv) $a\alpha b = 0$ for all $a, b \in M$ implies $\alpha = 0$ where $\alpha \in \Gamma$.

Then M is said to be a Γ -ring in the sense of Nobusawa [2]. If a Γ -ring M in the sense of Barnes satisfies only the condition (iii), then it is called weak Nobusawa Γ -ring [3]. We assume that all gamma rings in this paper are weak Nobusawa Γ -ring unless otherwise specified.

Let *M* be Γ -ring, *M* is called a Γ - prime gamma ring if $a\Gamma M \Gamma b = 0$ with $a, b \in M$ implies a = 0 or b = 0 [4], and *M* is called a Γ - semiprime gamma ring if $a\Gamma M \Gamma a = 0$ with $a \in M$ implies a = 0 [4]. $C_{\Gamma} = 0$

^{*}Email: shahedahamil@gmail.com

{ $c \in M \mid cam = mac$, for all $m \in M$, $a \in \Gamma$ } is called center of Γ -ring M and $C_{\gamma} = \{ c \in M \mid c\gamma m = m\gamma c$, for all $m \in M \}$ with $\gamma \in \Gamma$ is γ - center of Γ -ring M. An additive mapping $d : M \to M$ is called a derivation if d(aab) = d(a)ab + aad(b) for all $a, b \in M$, $a \in \Gamma$, [5] and d is said to be a reverse derivation of Γ -ring M if d(aab) = d(b)aa + bad(a) for all $a, b \in M$, $a \in \Gamma$ [6]. In 2000, Kandamar [7] firstly introduced the notion of a k-derivation for a gamma ring in the sense of Barnes a. Also Chakraborty and Paul [8] introduced the notion of generalized k- derivations for gamma rings.

In this work, we define k-reverse derivation, Jordan k-reverse derivation, generalized k-reverse derivation, Jordan generalized k-reverse derivation for a gamma ring in the sense of Barnes and γ -homomorphism, and anti- γ -homomorphism of Γ -ring M. Also we obtain some commutattivity conditions on γ -prime Γ -ring and γ -semiprime Γ -ring with k- reverse derivations and generalized k-reverse derivations.

2. K-reverse derivations on γ -prime and γ -semiprime gamma rings.

We give the following definitions that have firstly defined by Arslan and Kandamar.

Definition 2.1. [9, 10]

Let *M* be a Γ -ring, γ be a non-zero element of Γ and *I* be an additive subgroup of *M* :

M is called a γ -commutative if $a\gamma b = b\gamma a$ for all $a, b \in M$. And *M* is called a γ -prime gamma ring if there exists a non-zero element γ in Γ such that $a\gamma M\gamma b = 0$ with $a, b \in M$ implies a = 0 or b = 0. Also *M* is a γ -semiprime gamma ring if there exists a non-zero element γ in Γ such that $a\gamma M\gamma a = 0$ with $a \in M$ implies a = 0. *I* is called a γ -subring of *M* if $a\gamma b \in I$ for all $a, b \in I$. And *I* is called a γ - left ideal (resp. γ - right ideal) of *M* if $m\gamma a \in I$ (resp. $a\gamma m \in I$) for all $m \in M$, $a \in I$. If *I* is both γ -left and γ -right ideal then *I* is said to be a γ -ideal of *M*. *I* is said to be a γ - Lie ideal of *M* if $[a, m]_{\gamma} = a\gamma m - m\gamma a \in I$ for all $m \in M$ and $a \in I$.

Definition 2.2. Let *M* be a Γ -ring and γ be a non-zero element of Γ . An additive mapping $f: M \to M$ is called a γ -centralizing if $[a, f(a)]_{\gamma} \in C_{\gamma}$ for all $a \in M$ and it is called a γ -commuting if $[a, f(a)]_{\gamma} = 0$ for all $a \in M$.

Now, we introduce the following definitions:

Definition 2.3. Let *M* be a Γ -ring and $d: M \to M$, k: $\Gamma \to \Gamma$ be two additive maps, then *d* is called a k-reverse derivation if $d(a\alpha b) = d(b)\alpha a + ak(\alpha)b + b\alpha d(a)$ for all $a, b \in M$, $\alpha \in \Gamma$. And *d* is called a Jordan k-reverse derivation if $d(a\alpha a) = d(a)\alpha a + ak(\alpha)a + a\alpha d(a)$ for all $a \in M$, $\alpha \in \Gamma$.

Example 2.4. Let *R* be an associative ring with 1 of characteristic equal 2 and *d* be a reverse derivation of *R*. Consider $M = M_{1\times 2}(R)$ and $\Gamma = \left\{ \binom{n}{0} : n \text{ is an integer number} \right\}$. Then *M* is a Γ -ring. Let $N = \{(x \ x) : x \in R\}$, then *N* is a subring of *M*. Let *K* be an additive map and $D: N \to N$ defined by

 $D(x \ x) = (d(x) + x \ d(x) + x)$ for $x \in R$.

Then d is a k-reverse derivation on M.

Definition 2.5. Let *M* be a Γ -ring and γ be a non-zero element of Γ . An additive mapping $f : M \to M$ is called a γ -homomorphism if $f(a\gamma b) = f(a)\gamma f(b)$ for all $a, b \in M$ and it is called anti- γ -homomorphism if $f(a\gamma b) = f(b)\gamma f(a)$ for all $a, b \in M$. Also it is called a γ -strong commutativity preserving if $[f(a), f(b)]_{\gamma} = [a, b]_{\gamma}$ for all $a, b \in M$.

Arslan and Kandamar [10] introduced the relation between Γ -rings and rings up to γ and give some commutative properties between them.

It is clear that if *d* is a k-reverse derivation (resp. Jordan k-reverse derivation) of Γ -ring *M* and $k(\gamma) = 0$, then *d* is a reverse derivation (resp. Jordan reverse derivation) of the ring $(M, +, ._{\gamma})$. And if *f* is a generalized k- reverse derivation (resp. Jordan generalized k- reverse derivation) of Γ -ring *M* associated with a non-zero k- reverse derivation *d* of *M* such that $k(\gamma) = 0$, then *f* is a generalized reverse derivation(resp. Jordan generalized reverse derivation) of the ring $(M, +, ._{\gamma})$ associated with a non-zero k- reverse derivation *d* of the ring $(M, +, ._{\gamma})$ associated with a non-zero reverse derivation *d* of the ring $(M, +, ._{\gamma})$. Also a γ -homomorphism (resp. anti- γ -homomorphism) of a Γ -ring *M* is a homomorphism (resp. anti-homomorphism) of ring $(M, +, ._{\gamma})$. We give some results:

Theorem 2.6. Let *M* be a γ -prime gamma ring and d_1 , d_2 be non-zero k_1 , k_2 - reverse derivations of *M* such that $k_1(\gamma) = k_2(\gamma) = 0$ respectively. If char $M \neq 2$ and d_1d_2 is k_1k_2 -reverse derivation of *M*, then $d_1 = 0$ or $d_2 = 0$.

Proof. By the hypothesis $d_1 \neq 0$, $d_2 \neq 0$ and d_1d_2 are reverse derivations of the prime ring $(M, +, ._{\gamma})$. Also the characteristic of the ring $(M, +, ._{\gamma})$ is different from 2. Therefore by [11, Theorem2] one of the reverse derivations d_1 and d_2 is zero in the ring $(M, +, ._{\gamma})$. **Corollary 2.7.** Let *M* be a γ -prime gamma ring of characteristic not 2 and *d* be a 0-reverse derivation of *M* such that $d^2 = 0$. Then d = 0.

Proof. Suppose *M* be a γ-prime gamma ring, then *M* is a Γ-prime gamma ring by [10, Lemma(2.4)]. Since $d^2 = 0$ is a reverse derivation on *M*, we get d = 0 by Theorem(2.6).

Theorem 2.8. Let *M* be a Γ -ring and *d* be a k-reverse derivation of *M* such that $k(\gamma) = 0$ and $d^3 \neq 0$. Then the γ -subring generated by d(m) for all *m* in *M* contains a non-zero γ -ideal of *M*.

Proof. Since *d* is a reverse derivation of the ring $(M, +, ._{\gamma})$ and $d^3 \neq 0$, we have the subring generated by d(m) for all *m* in *M* contains a non-zero ideal of $(M, +, ._{\gamma})$ by [11, Theorem1]. Therefore the γ -subring generated by d(m) for all *m* in *M* contains a non-zero γ -ideal of *M*.

Theorem 2.9. Let *M* be a γ -prime gamma ring and *U* be a non-zero γ -right ideal of *M*. Suppose *d* is a non-zero k-reverse derivation of *M* such that $k(\gamma) = 0$. Then *M* is a γ -commutative if one of the following conditions hold:

- (i) d is a γ -commuting on M.
- (ii) char $M \neq 2$ and d is a γ -commuting on U.
- (iii) d is a γ -centralizing on U.
- (iv) char $M \neq 2$ and $[d(a), d(b)]_{\gamma} = 0$ for all $a, b \in U$.
- (v) char $M \neq 2$ and d is a γ -strong commutativity preserving on U.
- (vi) U be a γ -ideal of M and $d(U) \subset C_{\gamma}$.

Proof. (i) By the hypothesis *d* is a non-zero reverse derivation of a prime ring (M, +, ..., N). Since [a, d(a)] = 0 for all *a* in (M, +, ..., N), the ring (M, +, ..., N) is commutative by [12, Theorem1]. Therefore the gamma ring *M* is a γ -commutative since commutativity of (M, +, ..., N) requires γ -commutativity of Γ -ring *M*.

(ii) By the assumption d is a non-zero reverse derivation of prime ring $(M, +, ., \gamma)$, U is a right ideal of ring M, and the characteristic of $(M, +, ., \gamma)$ is different from 2. Also [a, d(a)] = 0 for all $a \in U$ in the ring $(M, +, ., \gamma)$. Hence M is commutative as a ring by [13, Theorem4]. Therefore M is γ -commutative.

(iii) By the hypothesis $(M, +, ._{\gamma})$ is a prime ring and *d* is a non-zero reverse derivation of ring *M*. Since [a, d(a)] is contained in the center of the ring $(M, +, ._{\gamma})$ for all $a \in U$, we get the ring $(M, +, ._{\gamma})$ is commutative by [14, Theorem(3.1)]. Therefore gamma ring *M* is a γ -commutative since commutativity of $(M, +, ._{\gamma})$ requires γ -commutativity of Γ -ring *M*.

(iv) By the hypothesis *d* is a non-zero reverse derivation of prime ring $(M, +, .\gamma)$, the characteristic of the ring *M* is different from 2 and [d(a), d(b)] = 0 for all *a*, *b* in right ideal *U* of the ring $(M, +, .\gamma)$. Hence *M* is commutative as a ring by [13, Theorem5]. Then *M* is γ -commutative.

(v) Since *d* is a non-zero reverse derivation of prime ring $(M, +, ._{\gamma})$. And characteristic of the ring $(M, +, ._{\gamma})$ is different from 2 and [d(a), d(b)] = [a, b] for all $a, b \in U$ in $(M, +, ._{\gamma})$. Hence *M* is commutative as a ring by [13, Theorem6]. We have *M* is γ -commutative.

(vi) By the hypothesis U is an ideal of prime ring $(M, +, ., \gamma)$ and d is a non-zero reverse derivation of ring M. Since d(U) is contained in center of the ring $(M, +, ., \gamma)$. Hence M is commutative as a ring by [15, Theorem1]. Therefore M is γ -commutative.

Corollary 2.10. Let *M* be a γ -prime gamma ring for all non-zero elements γ in Γ , *U* a non-zero γ -right ideal of *M* and *d* is a non-zero 0– reverse derivation on *M*. Then *M* is a Γ -commutative if one of the following conditions hold:

(i) *d* is a γ -commuting on *M* for all $\gamma \in \Gamma$.

(ii) Char $M \neq 2$ and *d* is a γ -commuting on *U* for all $\gamma \in \Gamma$.

(iii) *d* is a γ -centralizing on *U* for all $\gamma \in \Gamma$.

(iv) Char $M \neq 2$ and $[d(a), d(b)]_{\gamma} = 0$ for all $a, b \in U, \gamma \in \Gamma$.

(v) Char $M \neq 2$ and d is a y-strong commutativity preserving on U for all $\gamma \in \Gamma$.

(vi) *U* a γ -ideal of *M* and $d(U) \subset C_{\gamma}$ for all $\gamma \in \Gamma$.

Theorem 2.11 Let *M* be a γ -prime gamma ring and *d* be a non-zero k-reverse derivation of *M* such that $k(\gamma) = 0$, then *M* is a γ -commutative.

Proof. Since *d* is a non-zero reverse derivation of a prime ring $(M, +, ., \gamma)$, we get *d* is a central derivation of $(M, +, ., \gamma)$ by [16, Proposition(3.7)], we have gamma ring *M* is a γ -commutative since commutativity of $(M, +, ., \gamma)$ requires γ -commutativity of Γ -ring *M*.

Theorem 2.12. Let *M* be a γ -prime gamma ring and *U* be a non-zero γ -right ideal of *M*. If *d* is a k-reverse derivation of *M* such that $k(\gamma) = 0$ which acts as a γ -homomorphism on *U* or an anti- γ -homomorphism on *U*, then d = 0 on *M*.

Proof. By assumption U is a non-zero right ideal of a prime ring $(M, +, ._{\gamma})$ and d a reverse derivation of M. Since d acts as a homomorphism on U of ring $(M, +, ._{\gamma})$ or an anti-homomorphism on U of $(M, +, ._{\gamma})$. Therefore d = 0 in $(M, +, ._{\gamma})$ by [17, Theorem1].

3. Generalized k-reverse derivations on γ -prime and γ -semiprime gamma rings. Now, we introduce the following definition.

Definition 3.1. Let *M* be a Γ -ring. An additive mapping *f*: $M \rightarrow M$ is called a generalized k-reverse derivation if there exists a k-reverse derivation $d:M \rightarrow M$ such that $f(a\beta b) = f(b)\beta a + ak(\beta)b + b\beta d(a)$ for all $a, b \in M, \beta \in \Gamma$. And *f* is called a Jordan generalized k-reverse derivation if there exists a Jordan k-reverse derivation $d:M \rightarrow M$ such that $f(a\beta a) = f(a)\beta a + ak(\beta)a + a\alpha d(\beta)$ for all $a \in M, \beta \in \Gamma$.

Example 3.2. Let *R* be an associative ring with 1 of characteristic equal 2 and *f* be a generalized derivation on *R*, then there exists a reverse derivation *d* of *R* into itself such that f(xy) = f(x)y + xd(y) for all $x, y \in R$. Consider $M = M_{1\times 2}(R)$ and $\Gamma = \{ \binom{n}{0} : n \text{ is an integer number} \}$. Then *M* is a Γ -ring. Let $N = \{ (x \ x) : x \in R \}$, then *N* is a subring of *M*. Let *K* be an additive map and $D: N \to N$, $F: N \to N$ defined by

 $D(x \ x) = (d(x) + x \ d(x) + x)$ and $F(x \ x) = (f(x) + x \ f(x) + x)$ for $x \in R$

Then F is a generalized k-reverse derivation on N associated with k-reverse derivation D of N.

Theorem 3.3. Let *M* be a γ -prime gamma ring and *U* be a γ -right ideal of *M*. If *f* is a generalized k-reverse derivation of *M* associated with a non-zero k-reverse derivation *d* of *M* such that $k(\gamma) = 0$. Then *M* is a γ -commutative if one of the following conditions holds:

(i) $U \neq 0$ and f is a γ -commuting on U.

(ii) $U \cap C_{\gamma} \neq 0$ and *f* is a γ -commuting on *U*.

Proof. (i) By the hypothesis f is a generalized reverse derivation of a prime ring $(M, +, ., \gamma)$ associated with a non-zero reverse derivation d of M and U a non-zero right ideal of $(M, +, ., \gamma)$. Since [a, f(a)] = 0 for all $a, b \in U$ in ring $(M, +, ., \gamma)$. Hence M is commutative as a ring by [14, Theorem(3.3)]. Therefore M is a γ -commutative.

(ii) Since U is a right ideal of $(M, +, ._{\gamma})$ such that $U \cap Z \neq 0$, where Z denotes center of the ring $(M, +, ._{\gamma})$ and f a generalized reverse derivation of a prime ring $(M, +, ._{\gamma})$ associated with a non-zero reverse derivation d of M and since [a, f(a)] = 0 for all $a, b \in U$ in ring $(M, +, ._{\gamma})$. Then M is commutative as a ring by [14, Theorem(3.4)]. Hence M is a γ -commutative.

References:

- **1.** Barnes, W. E. **1966.** On the Γ-rings of Nobusawa, *Pacific J. Math.* **18**(3): 411-422.
- 2. Nobusawa, N. 1964. On a generalization of the ring theory, Osaka J. Math., 1(1964): 81-89.
- 3. Kyuno, S. 1991. Gamma Rings, Hadronic Press, Palm Habor.
- 4. Luh, J. 1969. On the theory of simple Γ -rings, *Michigan Math. J.*, 16(1): 65-75.
- **5.** Jing, F. J. **1987.** On derivations of Γ-rings, *Qu fu Shifan Daxue Xuebeo Ziran Kexue Ban*, **13**(4): 159-161.
- 6. Dey, K. Paul, A.C. and Rakhimov, I.S. 2013. Semiprime gamma rings with orthogonal reverse derivations, *International Journal of Pure and Applied Mathematics*, 83(2): 233-245.
- 7. Kandamar, H. 2000. The k-Derivation of a Gamma –Ring, Turk. J. Math., 23(3): 221-229.
- 8. CHakraborty, S. and Paul, A. C. 2007. On Jordan generalized k-derivation of 2-torsion free prime Γ_N -rings, *Int. Math. Forum*, 2/57(2007): 2823-2829.
- **9.** Arslan, O. and Kandamar, H. **2015.** γ Lie structures in γ -prime gamma rings with derivations, *J. Algebra Comb. Discrete Appl.*, **2**(1): 25-37.
- **10.** Arslan, O. and Kandamar, H. **2016.** On commutativity of prime gamma rings with derivations, *Hacettepe J. of Math. and Stat.*, **45**(5): 1321-1328.
- **11.** Jaya Subba Reddy, C., Hemavathi, K. and Gurivi Reddy, P. **2014.** Some results on reverse derivations in prime rings, *Mathematical Sciences International Research Journal*, **3**(2): 734-735.
- **12.** Jaya Subba Reddy, C., Venkata Bhaskara, G. and Mallikarjuna Rao, S. **2015.** Reverse derivations in prime rings, *International Journal of Research in Mathematics & Comptation*, **3**(1): 1-5.
- **13.** Sankara Naik, K., Sreenivasulu, S. and Suvarna, k.**2016**. Reverse derivations in prime rings with right ideals, *International Research Journal of Pure Algebra*, **6**(7): 338-341.

- 14. Afrah, M. I. 2016. Right ideals and generalized reverse derivations on prime rings, *American Journal of Computational and Applied Mathematics*, 6(4):162-164.
- **15.** Jaya Subba Reddy, C. and Hemavathi, K. **2014**. Reverse derivations on prime rings, *International Journal of Research in Electronics and Computer Engineering*, **2**(1): 28.
- 16. Samman, M. and Alyamani, N. 2007. Derivations and reverse derivations in semiprime rings, *International Mathematical Forum*, 2(39): 1895-1902.
- **17.** Jaya Subba Reddy, C. **2015**. Homomorphism and anti-homomorphism of reverse derivations on prime rings, *International Journal of Scientific & Engineering Research*, **6**(9): 74-75.