Salih et al. Iragi Journal of Science, 2016, Vol. 57, No.1B, pp: 530-539

N—/
Iraqi

Journal of

Science
ISSN: 0067-2904

GIF: 0.851
The Orbital Elements Variation of the Moon Through 2000-2100

Abdul Rahman H. Salih'*, Majed M. Jarad?, Fouad M. Abdulla®
'Department of Astronomy and Space, College of Science, University of Baghdad, Baghdad, Iraq
?Department of Physics, College of Science, University of Anbar, Al- Anbar, Iraq

Abstract

The locations of the Moon, velocity and distance were determined through
hundred years using a modified formula Meeus 1998, which is used to calculate the
orbit's elements, Additionally which allows us to specify the possible date for
monitoring the crescent moon. In this project we describe the orbits, orbit types and
orbital elements than describe the orbit of the Moon and the perturbations effect on
shape and direction of the Moon's orbit, the orbital elements effect by the all
perturbation were calculated directly using empirical formula. The orbital elements
of the Moon's orbit for 1326 anomalies months are calculated by our Q. Basic
programs and the time variation of the Moon's orbital element with perturbations
can be computed by development these programs. The results get the values of the
eccentricity, semi-major axis, inclination, longitude of ascending node, longitude of
perigee and the anomalistic period and there variation through many years with all
perturbations. The results appear that the Moon moves under balance perturbation
forces in other word, with constant mean value through many hundred years.
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1. Introduction

The Moon rotate around Earth Moon mass center in an elliptical orbit with a mean eccentricity of
0.0549, this orbit is unclosed orbit because the perturbation effects. Thus, the Moon- Earth distance
varies between 363000 km. to 405000 km. as a mean values. The lunar orbital period with respect to
the stars (as a mean sidereal month) is 27.32166 days (27d 07h 43m 12s). However, there are three
other orbital periods or months that are crucial to the understanding and prediction of eclipses. These
three cycles and the harmonics between them determine when, where, and how solar and lunar
eclipses occur [1].

The mutual gravitational force between the Sun and Moon is over twice as large as between the
Moon and Earth. For this reason, the Sun plays a dominant role in perturbing the Moon's motion. The
ever changing distances and relative positions between the Sun, Moon, and Earth, the inclination of
the Moon's orbit, the obletness of Earth, and the gravitational attraction of the other planets all act to
throw the Moon's orbital parameters into a constant state of change. The Solar radiation pressure on
the Moon, the oblations of Earth less than the gravitational attraction of the other planets all act to the
Moon's orbital parameters as a constant state of change which are less than the solar attraction. The
Moon's position and velocity can be described by the classic Keplerian orbital elements; such
osculating elements are only valid for a single instant in time [1, 2].

There are five periods of time that it takes for the Moon to compete cycles, traveling from one
‘observable' reference point, back to the same point [3]. The sidereal month ( 27 days, 7 h, 43 min,
and 11.6 sec), the syndic (29 days, 12 hours, 44 minutes, and 2.8 seconds), draconic month
(27.212 221days), Tropical month (27.321 582 days) and the anomalistic month is defined as the
revolution of the Moon around its elliptical orbit as measured from perigee to perigee. The length of
this period can vary by several days from its mean value of 27.55455 days (27d 13h 18m 33s) [4, 5].
The Moon orbital elements with effect of all perturbations by using a modified theoretical model were
computed through 100 years to determine the Moon periods.

2. The Moon's orbit

The orbit of the Moon is ellipse, the elliptic orbits defines as the path of a celestial body or an
artificial satellite as it revolves around another body with negative energy and eccentricity 0 < e < 1.
The six orbital elements which determine the orbit of satellite these element called Keplerian element
and there are (semi major axis a, Eccentricity e, Inclination i, longitude of the ascending node,

Argument of the perihelion ®, and Mean anomaly at epoch (ﬂfa). The Orbital elements are the
parameters required to explain a specific orbit. In celestial mechanics these elements are generally
considered in classical two-body systems, where a Kepler orbit is used (derived from Newton's laws of
motion and Newton's law of universal gravitation [6].

The orbital elements changes over time due to gravitational perturbations by other objects and the
effects of relativity. The main two elements define the shape and sizes of the ellipse are the semi
major axis and Eccentricity (a, ) [6, 7]:

Where: a=(Ta+p)/2 (1)
T 1

€= )
T, 7,

Ia : is radius at apogee point.

Tp s radius at perigee point.

Mean anomaly at epoch defines the position of the orbiting body along the ellipse at a specific time
(the epoch).The mean anomaly is a mathematically convenient "angle" which varies linearly with
time, but which does not correspond to a real geometric angle. It can be converted into the true
anomaly L/, which does represent the real geometric angle in the plane of the ellipse, between perigee
and the position of the orbiting object at any given time. The angles of inclination, longitude of the
ascending node, and argument of perigee call the Euler angles defining the orientation of the orbit
relative to equator [6].

These three angles of the Moon orbit can calculate directly using empirical formulas depending on
the Julian date.
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3. Calculate the Moon coordinates and the orbital elements:

There are many methods can use to calculate the orbit element of the moon from one of them is
calculated the position and the velocity of the moon by observing or empirical equations (first method)
[7-9].

Also these elements can be calculated from the mean motion by solving Kepler equation to find the
eccentric anomaly which is used to calculate the position and velocity coordinates of the Moon at
instant time. These coordinates used to calculate the momentum and Euler angles (second method) as

[10, 11].

The first thing to do is define the epoch on which we shall base our calculation consider:

U.T=U.T+At (3)
And input the date (day, month, and year) to calculate the Julian date (J.D)
JD=B+C+D+d+1720994.5 4
Where:

B: the correction later than 1582 October 15

B=2- A+ integer part of (A/ 4)...,.. (Otherwise B=0) (5)

C = integer part of (365.25*Y)
D = integer part of (30.001*(M+1))
Then calculate Julian century from beginning of 1% January 1900 [7, 10]

T1 = (ID - 2415020) / 36525 (6)
And after year 2000 the following formula can be used [10]
T2 = (JD - 2451545) / 36525 (7)

By using these values it can determine the geocentric ecliptic coordinates (longitude and latitude) for
the Moon at that time as in Meeus 1998[11]:

The position of the Moon as can be computed by an empirical formula.

The Moon's ecliptic longitude (Am) and latitude (Bm) is given by [11]:

Am=218.316 + 481267.881T, + 6.29 sin (134.9 + 477198.85 T,) — 1.27 sin (259.2 — 413335.38 T,) +
0.66 sin (235.7 + 890534.23 T,)+ 0.21 sin (269.9 + 954397.7 T,) — 0.19 sin (357.5 + 35999.05 T,)-

0.11 sin (186.6 + 966404.05 T,) (8)
pm = 5.13 sin (93.3 + 483202.03 T,) + 0.28 sin (228.2 + 960400.87 T,) — 0.28 sin (318.3 + 6003.18
T,) —0.17 sin (217.6 — 407332.2 T,) 9)
Conversion of Elliptical to Equatorial and to horizontal coordinates [6]:

tan(a) = [sin(A) cos(g) - tan (B) sin(g)] / cos (A) (10)
sin(8) = sin(B) cos (g) + cos (B) sin(e) sin (A) (11)
Where the obliquity angle ( €) get as:

€ = 23.452294-0.0130125T1- 0.00000164T1%*5.03x10" T1°- (12)
The horizontal coordinate (altitude and azimuth) calculated as [10]:

tan(A) = sin(H) / (cos(H) sin () - tan (8) cos(®) (13)
sin(a) = sin(g) sin(d) + cos(®) cos(H ) cos(d)) m (14)

Where: (¢) is the observer geographical latitude, (H): Hour angle.

The Julian day for crescent Moon can be calculate by the following equation [8]:

JD = 2415020.5933+29.53058868 T1+ 0.0001178 T1? + 0.00033 sin (166.56+ 132.87 T1-
0.009173T1%)-1.55*107*T13 (15)
The Moon's distance from the centre of the Earth can be calculated as the following [8]:

The equatorial horizontal Parallax of the Moon (JI) can be calculated from Moon distance (Rm) by
formula [12]:

sin (JI)= 6378.14 / Rm (16-a)
Or as ref. [10]:

Rm= 385000 — 20905 cos | — 3699 cos (2D — 1) — 2956 cos (2D) — 570 cos (21) + 246 cos (2l — 2D) -
152 cos (I + I' = 2D) (in unit km.) (16-b)
Where: the Moon's mean anomaly is (I), the Sun's mean anomaly is (I'), the difference between the
mean longitudes of the Sun and the Moon is (D), and the Moon's argument of latitude (f) which is
functions of Julian centuries (T2=Txqo) and calculated as [9, 12]:

| =134°.96292 + 477198°.86753 T, +0.0087414 (17)
I' = = 357°.52543 + 35999°.04944 T,-0.0001536T,° (18)
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D = 297°.85027 + 445267°.11135 T, -0.0018819T,° (19)
f= 93.27209 +483202.01752 T, — 0.0036539 T, (20)
Results and discussion:

The orbit of the Moon have small change in distance due to the sun attraction and the other is
attraction by the nearest planet as Jupiter this attraction forces depend on the distances from Moon to
them and it's masses, the perturbation acceleration component can be computed by complex
equations and solve the equation of motion for the moon.

The Moon coordinates, distances from the Earth and velocity through 100 years were calculated
and some of these results were plotted in Figures-1a, 1b respectively. These figs show that the distance
various between the minimum and maximum through one anomalistic month, through many periods
the minimum distances values is various between (356404 — 370346) km. Also the maximum value is
between (404050 - 406708) km through 100 year (2000-2100). The mean distances of the Moon were
(383988.8) km this value is agreed with the Moon orbit semi-major axis.

The maximum declination of the Moon represents the Moon orbit inclination. The inclination of
the Moon orbit was varies between 18.139° and 28.724° through 18.6 years, as in Figure-2, The same
variation was showed through 100 years, The Moon inclination variation equal the Serous period (18.6
years). Figure-3 show the variation of semi-major axis of the Moon orbit through 100 years, it's clear
that its value was various between (381493 - 387421) Km, and the mean value was (383988.8) Km.,
The mean value was constant with time.

Figure-4 show the perigee, Apogee and semi-major axis variation through three years (2015-2018),
the variation period near seven month and the secular variation was zero ,or the mean value of these
three parameters are constant. Figure-5show the anomalistic period of the Moon varies between
25.0146 day and 28.81106 day and the mean period value gated from our result is 27.55571 days.
The anomalistic month is various than the mean by about 2 days. When the Moon perigee nears the
Sun direction the anomalistic months are shortest correlated with values of 90° and 270°, when the
line of upsides is perpendicular to the Sun's direction. The anomalistic month of the Moon's elliptical
orbit various because one must first consider Earth's elliptical orbit around the Sun, which has a mean
eccentricity of 0.0167 and the Sun-Earth distance varies with mean values of 147,098,074 km at
perihelion to 152,097,701 km at aphelion.

The first method to calculate Euler angles of the Moon orbit take a better result from the second
method, when the results compared with some references and observations as [8 ,9], therefore the first
method used hear . The results for the orbital elements variations with time as in Table-1 and Figures-
6, 7, show the changing of the longitude of ascending node, node latitude with Julian date, there are a
long period contain four short period any one through 12 anomalistic month. Figures-8,9 show the
eccentricity changing with date it's values between 0.0439, 0.0659, the mean value equal 0.0556. The
results prove that the Moon orbit was balance through many hundred years.
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Figure la- The Moon distance (km) with J.D through three years
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Figure 3- The semi major axis (km) with date through 100 years.
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Table 1- Anomalistic month Length in 2015 (sample of results through 100 years)

Length of Difference From Mean
EERINESY e (Ler) anomaligtic month anomalistic month
month day h m s (day) (hour)
1 21 18 16 39 28.09642 0.541867
2 19 10 45 60 28.68705 1.132497
3 19 15 7 42 28.18174 0.627191
4 17 7 12 20 28.66988 1.115326
5 14 23 25 44 27.67597 0.121423
6 10 4 15 33 26.20127 -1.35328
7 5 22 20 6 25.75316 -1.80139
8 2 7 13 28 27.37039 -0.18416
8 30 18 23 30 28.4653 0.910753
9 28 1 20 45 28.28975 0.735196
10 26 10 47 21 28.39348 0.838926
11 23 23 29 14 28.52909 0.974538
12 21 346 11 27.17844 -0.37611
29.5
29
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- 28
t
g _ 27.5
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B8 27
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Figure 5- Anomalistic period with time through 100 years.
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Figure 6- The longitude of ascending node with time through 100 years.
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Figure 9- The eccentricity variation with time through 3 years.
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