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Abstract

In this paper, a new modified variational iteration method (MVIM) with a genetic
algorithm has been applied for solving nonlinear partial differential equations.
Therefore, a new correction function through an auxiliary parameter w that makes
sure the convergence of the standard method and improved results by using genetic
techniques are introduced. The standard variational iteration method (VIM) is first
applied to solve numerically the system of two-dimensional coupled Burgers'
equations. Then an improvement on this method is done. Numerical experiments
have been conducted to demonstrate the efficiency and high-order accuracy of this
method. The algorithm converges readily which yields correct solutions. Better
accuracy in comparison with other previous methods has been noticed. Moreover,
the method can be easily applied to a wide number of linear and nonlinear
differential equations with better accuracy.

Keywords: Coupled Burgers' equations, Genetic Algorithm, Lagrange multiplier,
Modified variational iteration method, Variational iteration method.
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1. Introduction

During the past years, nonlinear differential equations are vastly utilized as models to
describe physical phenomena in different areas of science, especially in fluid mechanics,
biology, solid state physics, chemical physics, optics, hydrodynamics, plasma wave, etc. [1]-
[4]. One of the important nonlinear PDEs is known as Burgers’ equation which is used to
model a range of applications and it depicts the interaction between two fundamental physical
principles in nature, convection and diffusion. This comprises turbulence, the sedimentation
of two types of particles in fluid suspensions under the influence of gravity, which flows
through a shock wave traveling through a viscous fluid, as well as the dispersion of
contaminants in rivers [5]-[7]. Several authors solved the system of coupled Burgers'
equations by different techniques such as the Laplace decomposition method [8], the finite
difference and the modified cubic trigonometric B-spline differential quadrature method [9],
the finite difference method based on Rubin-Graves type linearization [10], the semi-implicit
characteristic Galerkin (SICG) method [11], the Bernstein differential quadrature method
[12], the Sumudu decomposition method (SDM) [13], the Gaussian-based collocation
meshless method [14], the efficient hybrid multistep numerical method [15] and the El-Zaki
transform variational iteration method [16], etc. The variational iteration method is one of the
most direct and effective ways to find approximations of PDEs. Most authors used this
approach to obtain a variety of results [17]-[20] that show this method is reliable and efficient
for a variety of technical and scientific applications. It presents convergent approximations of
the exact results when a solution exists, otherwise, only a few approximations can be
employed numerically.

The aim of this work is to solve the system of two-dimensional coupled Burgers' equations
by the standard and a new modification of the variational iteration method with a genetic
algorithm. We will also support the results by comparisons with other methods. Many plots in
3D graphics of the solutions are given.

The remainder of this essay is structured as follows: in section 2, the fundamental idea of
the standard variational iteration method. In section 3, a novel modification for the variational
iteration method is shown. Some definitions for genetic algorithms are given in section 4.
Section 5 discusses a convergence analysis. In section 6, the standard and modified
variational iteration method with the genetic technique are applied to solve the system of PDE
and we also illustrate solutions by graphing. In the last section 7, several conclusions are
made.

2. Standard Variational Iteration Method
Consider the following nonlinear PDE:
Llu()] + N[u(x)] = c(x),
1)
where c is the source term, L[u] is a linear term, and N[u] is a nonlinear term. For a given
Uy (x), the solution u,,,; (x) can be obtained as follows [21]:

U1 () = U () + [J A0 [L{un (D} + N{u, (0} — c(D)]dr, 2)
where A is the Lagrange multiplier (LM) that is gained by variational theory, where 1, is the
constrain which results in Su,, =0 and gives the following:

_ )mE-pnmt
A= — ,m=>1 3)
where m = 1, the Lagrange multiplieris A = —1, while if m = 2, then A = 7 — t.

Substituting the Eq.(3) into Eq.(2), then the following formula will be obtained:

(0 = un () + fy EEE 1w, (0} + N (0} — c(@)]dr. @
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The successive approximations u, (x,t) ,n > 0 of the solution u(x, t) will be obtained by
utilizing the obtained Lagrange multiplier and any initial condition u,(x, t), consequently, the
solution is
u(x,t)
= lim u, (x, t). (5)

In the next section, we will develop the variational iteration method for nonlinear PDEs.
We also improve the results by using genetic techniques.

3. Modified Variational Iteration Method
It takes a differential Eq. (1), the approximate result u,,;(x) of Eq.(1) for given initial
uy(x) can be obtained to clarify the MVIM as follows:

U1 (6) = Up () + w f A@)[N{un (@} - c(@]dr, (6)

where w is an auxiliary term that is used to ensure the convergence to the accurate solution
by limiting the norm 2 over the space of the presented problem. The optimal resolution of this
w increases the accuracy of the algorithm. While the Lagrange multiplier A can be found by
equation (3). Substituting Eq. (3) into Eqg. (6). Then, we have the iterative algorithm for Eq.
(1) as follows:

uy(x) is a suitable initial approximation

7)
t(-1 m —t m-1 —— (
U () = up(x) +w fo % [N{u,(®)} — c(D)]dr

The evolutionary algorithm will use to find the best value of w to solve the system of two-
dimensional Burger's equation which can supply numerical solutions for linear and nonlinear
problems immediately and very carefully.

4. Genetic Algorithms (GA)

Definition 1: Genetic algorithms are search methods utilized in computing to get approximate
results.

Definition 2: Three different types of operators are included in the form of genetic
algorithms:

selection, crossover and mutation [22].

Selection: Chromosomes in the population are selected for reproduction by this factor. If a
chromosome is acceptable, it will be likely chosen for reproduction.

Crossover: To produce two children, this factor selects a point on two chromosomes and
switches the subsequence before and after that location. Nearly identical to biological
recombination between two single-chromosome organisms.

Mutation: The chromosome's bits are flipped by this factor. The string 00000100, for
instance, might be changed to 01000100 at its second position.

Algorithm. The basics of the genetic algorithm [23]
a simple genetic algorithm works as follows:
1. Start with an nl-bit chromosomal population that was produced randomly.
2. Determine the population's total chromosomal fitness.
3. Repeat the subsequent steps until n progeny have been produced:
a. From the current population, choose a couple of parent chromosomes with an increasing
probability of selection based on fitness. Selection is carried out with replacement in the sense
that the same chromosome may be selected as a parent more than once.
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b. Cross through the couple at a randomly selected spot to produce two offspring with
probability pc. Create two offspring that are exact duplicates of each parent if there is no
Crossover.

4. Change each of the two offspring's loci with probability pc which is also known as the
mutation probability or mutation rate, and then add the resulting chromosomes to the new
population. If n is odd, a random member of the new population may be removed.

5. Move on to step 2.

5. Convergence Analysis

This section examines the convergence of our suggested modification which is known as
MVIA with the genetic algorithm when applied to equation (1). When coupled Burgers'
equations are used with the suggested approach. The operator O will now be defined as
follows.

Ou(x, t,w) =

w [ 2@ IN{ET (.7, w)} = c(D]dr, (8)
and defining v, z,,n = 0 as

vo(x,t) = up(x, t),

zo(x,t) = vo(x, 1),

vi(x, t,w) = 0zy(x, t),
z(x, t,w) = zy(x, t) + 0zy(x, t),

uy (x,t,w) = 0zy(x, t),
z,(x, t,w) = zy(x, t) + v(x, t,w),

vn+1(xr tr W) = OZn(x: t' W);

Zni1 (X, t,w) = z,(x, t,w) + Ov,(x, t,w),
Generally, for n > 0, we can write it as:

( un+1(x: t, W) = OZTL(xl t, W);

(Zpt1 (6, t, W) = z,(x, t, W) + v 01 (x, t, W).
So that

u(x, t,w) = lim,_,e z,(x, t,w) =

Vo (X, t) + Z?LO=1 Un (X, t, W) ' (9)
If the initial conditions and boundary requirements are satisfied by it, the u,(x, t) can be

chosen without restriction. The procedure will successfully produce accurate and beneficial

results if an appropriate beginning approximation is used. By using nth-order truncated series,

we may roughly estimate the solution as u,, (x, t,w) = vy (x, t) + Xn_; v (x, t, w).

By using the 2-norm error of the residual function, the parameter w in u,, (x, t, w) ensures that

the hypothesis is satisfied. The theorems in [24, 25] are used to show the error analysis and

convergence requirements of MVIA with an auxiliary parameter.

Theorem 1: Assume that O is an operator from a Hilbert space H to H which is defined in
equation (8). The series solution (9)

u(x, t) = 10z, (x, t,w) = vy (x,t) + X, v, (x, t, w).

It convergesif 3w # 0,0 < y < 1, such that
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1020 (x, DIl < yllzo(x, DI,
”Ozl(x! t; W)” < V”OZO(x) t)”)
||OZTl(x! t; W)” S y”OZTl—l(xl t; W)”I n= 213;4;
Proof. To prove that the sequence {z,};-, is a Cauchy sequence in the Hilbert space H.
Therefore, we consider
zo(x, t) = vo(x, t)
Zor1 (x, t,w) = zy(x, t) + Ovy(x, t)
Zne1 (6, t,w) = z,(x, t,w) + Ovy(x, t, w)
that implies
||Zn+1(x: t, W) - Zn(x, t, W) ” = ”0vn (x) t, W) ”
S Vllovn—l(x; t; W) ”
< Y2110V, (x, t, w)ll.
Following the same procedure, we achieve
|Zs1 (x, &, W) — Z, (x, £, W) < y™|0vo (x, £, W)
Forn — oo, y™ — 0, thus
”Zn+1(x, t, W) - Zn(xr t, W)” -0
Foreveryn > i
”Zn - Zi” = ”(Zn - Zn—l) + (Zn—l - Zn—Z) + -t (Zi+1 - Zi)”f
that implies
12 = zill < 10Vp_1 [l + 10V, || + - + [|Ov|
"HOv [l + ¥ 20V, |l + -+ ¥ Ovg

IAIA

=Y
(" 1+y” 244 yh)llovgll
1
s [0
Since 0 <y < 1, we obtain
lim ||z, — z]| = 0.
nj—oo

Hence, it is proved that {z, },—, is a Cauchy sequence in the Hilbert space H, so that
u(x, t,w) = lim,_q z,(x, t,w) = vy(x,t) + Yoz vy (x, t,w) converges.

Theorem 2. Let the definition of the operator L required in equation (1) be L = aa—ll ,i=1,2.
If we have the solution (9) which is defined as u(x,t) = vo(x,t) + Ypzq vn(x, t,w), then

u(x, t) is an exact solution to equation (1).

Proof. Suppose that the series solution u(x,t) = vy(x,t) + Yoeq v, (x, t, w) converges.

Consequently, it means that ,,'i v, (x, t, w) and

[vo(x,t) — vy (x, t,w)] + Z,=1[v, (x, 6, w) — Vi1 (x, 6, W)| = vo(x, £) — V41 (x, £, W).

Therefore,

[UO (X', t) - (X, t, W)] + Z;.;l[vj (X, t, W) - vj+1(x, t, W)] =Dy (x' t) - n1—1>r(r>lovn+1(xr t, W)
= vy (x, t).

Equation (9) leads to the conclusion that

u(x, t) =vo(x,t) + Xoeq vn(x, t,w).
By using the operator L on both sides, we obtain

Llvo(x,t) — vy (x, t,w)] + Zj"zlL[vj(x, t,w) — vj(x, t, w)] = Llvy(x,t)] = 0. (10)
So that,

Llvo(x,t) — v1(x, t, w)] = L[vp(x, t)] — L[0z,(x, t)].

For simplicity, let K = N{w, ()} — c(z), which implies
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L[ve(x,t) — v, (x, t, w)] = —L [W J3 M@Kz (x, t)dr]

= wKzy(x,t)

Llvi(x,t) — vy (x, t,w)] = Llv, (x,t)] — L[0z,(x, )],

= L[0zy(x,t)] — L[Oz,(x, t,w)],

= L|w [; A(D)Kzo(x, )]

=L [W fOtA(r)Kzl(x, t)d‘r],

= w[0z,(x,t,w) — 0zy(x, t)].

In a similar way, where j > 2,

Llvi(x,t,w) — vj41(x, t,w)] = w[0z;(x,t,w) — Oz;_, (x,1)].

Therefore, it is as follows

Llvo(x, £) — v1 (x, &, w)] + L[v; (x, £, w) — v, (x, t, w)] + Xy L[y (x, 6, w) — w44 (3, 8, W)
= wKzy(x,t) + w[0z,(x, t,w) — 0zy(x,t)] + w[0z,(x,t,w) — 0z, (x, t)]

=wKz,(x,t,w)

= WK [vo(x, t) + X7 v (x, £, w))].

Therefore,
Llvo(x, £) — v1(x, 6, w)] + X7y L[vj (x, 6, w) — vy (x, £, w)] = wK [ (x, £) +
Xyt w) (1)

Equations (10) and (11) can be used to derive

wK[vo(x, t) + Xjo; v (x, t,w)] = 0.

Hence, the auxiliary parameter w is an optimal number, and it is shown that
u(x, t) = vo(x, t) + Yomeq v (x, t, w) is an exact solution of equation (1).

6. Applications and numerical results

In this section, the variational iteration method and MVIM with genetic algorithms have
been applied to obtain approximate-exact solutions for nonlinear PDEs are displayed in the
following Burger's equation. To show the high accuracy of the solution results compared with
the exact solutions, the maximum errors are defined as follows:

1leo = Matrix (k, || Ugyace (i v £)
0<i<k

— UAppT(xil Yis t)”oo) ’ (12)
I-llzy =
k k 2
2j=0 Zi=0 (UExa“(xi'j’yU' t) — UAppr(xi,j'Yi,j, t)) (13)
and the mean square error (MSE) is
MSM =
\/Zk Z{'cz"(UExa“(xi’f’yi,j't)‘UAppr(xi,jryl‘,j't))z
Jj=0 =)
(k+1) (14)

where k represents the number of partitions of the interval 0 < x, y < 1. Moreover, giving the
maximum residual error (MRE). The computations associated with the problems were
performed using the Maple 18 package with a precision of 20 digits.

6.1. Numerical example
Consider the following two-dimensional Burger's equation [26]:

3238



Mustafa and Al-Hayani Iragi Journal of Science, 2024, Vol. 65, No. 6, pp: 3233- 3248

1
Up Uty + VU, = (tax + Uyy),

(15)

1
v+ uve +vvy, = — (vex + vyy),
where R, is the Reynolds number and is subject to the following initial conditions:

4em cos(2mx) sin(2my)

ulx, Y 0) = 2+sin(2mx) sin(my) ’ 16
v(x 0) __2m sin(2mx) cos(2my) ( )
'Y o 2+sin(2mx) sin(mwy)
The exact solutions of the system (15) were given by
. 4eme—5ToEt cos(2mx) sin(2my)
UExact (x; y; t) - 2+e—511.'28t sin(2mx) sin(y) ) (17)
2eme5ToEt sin(2mx) cos(2my)

Vexace (X, y,t) = —

1
where e = —.
Re

2+e—5T%etgin(2mx) sin(my)

Standard variational iteration method: To solve the system (15) using the variational
iteration method, the following correction functional will be constructed as follows:

t
{un+1(xr Y t) = un(xr Y t) + fO /11 (T)[(ut)n + UnUny + Unvny - g(unxx + uyy)]dT'

t (18)

Une1(6,7,8) = v (0,3, 0) + [ 2, O[@Wn + UnVnx + VaVny — EWnsx + Vyy)]dT,
where 4,(z) and 4,(7) are the general Lagrange multiplier and u,uy, , UnVny , Vyily, and
vpVp, denote restricted variations i.e., SupUpy = SupVpy = SV U,y = SVLVy, = 0. the
following stationary conditions are:

/1,1'(7:) = 0! .
{1+Ai(r)JT=t —0
1,2 (19)

So, the Lagrange multiplier can be identified as A, (t) = A,(t) = —1. Then the formulas (18)
become the following:

t
{un+1(xr Y t) = un(xr Y, t) - fO [(ut)n + UpUpy + UnUny — g(unxx + uyy)]dr;

t (20)
vn+1(xr Y t) = vn(x' Y, t) - fO [(vt)n + UpUpyx + UnUny — S(Unxx + vyy)]dr'
The different approximations can be taken by using the recurrence relations shown in
equation (20)

—8em sin(my) cos(mx)?+4em sin(mwy)

o (x' Y t) - 2+sin(my) sin(mx)cos(mx)
__ 4em cos(my) sin(mx)cos(mx)
Vo (x' Y t) o 2+sin(my) sin(mx) cos(mx)
4em sin(my)[1-2 cos(mx)? —em?t—4em?tsin(mx)?]
(251 (x, Y, t) =

2+sin(my) sin(mrx) cos(mx)
8e2tm? sin(mx)[—2sin(my)?cos(mx)3—3sin(mwy)? cos(mx)+8sin(my)? cos(mx)]

(2+sin(my) sin(mrx) cos(mx))?
32&2tm3sin(my)3[—cos(mx)?+2cos(mx)®—3cos(mx)®+sin(mx)*

T (2+sin(my) sin(mx) cos(mx))3
__ 4emsin(mx) cos(mx) cos(my)[5em?t—1]
V1 Cx, Y t) = 2+sin(my) sin(my) cos(mx)
n 8e2m3t sin(my)cos(my)[—2cos(mx)*—5cos(mx)? sin(mx)?+2cos(mx)? -2 sin(mx)?]

(2+sin(my) sin(mrx) cos(mx))?
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32e2tm3sin(my)?cos(my)[cos(mx)? sin(mx)+sin(x)3 cos(mx) —sin(mx)> cos(mx)]

(2+sin(my) sin(mtx) cos(mx))3

Tables 1 and 2 display a comparison of the numerical results applying the standard variational
iteration method with the exact solutions within the interval 0 < x,y < 1 where h = 0.1. But
in Tables 4 and 5, the numerical results applying the standard variational iteration method
developed by the genetic algorithm have been compared with the exact solutions within the
interval 0 < x,y < 1 where h = 0.1. The best value for £ and t will be selected based on the
genetic algorithm [25] and based on which the results are calculated VIM-GA.

In Table 3, the maximum errors (||-ll), I:ll2,5), MSE, MRE have been presented by the
standard variational iteration method on the interval 0 < x,y < 1, where m represents the
number of iterations, and in Table 6, the maximum errors (||*|l), II*ll25), MSE, MRE has
been shown by the standard variational iteration method developed with genetic algorithm on
the interval 0 < x,y < 1.

Modified variational iteration method: Now, to solve the system (15) with the initial
conditions in equation (16) using the MVIM, the following correction functional will be
constructed as

( t
Un1 (6, 80) = ug(x,y,t) +w j A4 (7) [ununx + UpUpy — E(Unxx t+ uyy)]dT'

X 0, (21)
Un+1(x' bz t) = Uo(x' Y, t) +w f /12(7:) [unvnx + Unvny - S(vnxx + vyy)]dr'

\ 0
In a similar way as above, the formulas of variational iteration can be obtained

( t
s (6300 = 2,3,0) =W [ [ttt + Uy = £t + )],

0, (22)
Vn1 (0,9, 8) = vo(x,y,8) —w f [UnVnx + VnVny — Wnxx + vyy)]dT,
T\he following different approxir%ations can be taken by utilizing the relations shown in
equation (22)

—8em sin(my) cos(mx)?+4em sin(mwy)

Uo (x' Y t) - 2+sin(my) sin(mx)cos(mx)
_ Aem cos(my) sin(mx)cos(mx)
Vo (x' Y t) " 2+42sin(my) sin(mx) cos(mx)
4em sin(my)[1-2 cos(mx)? —stwn? —4stwn?sin(mx)?]
(251 (x, Y, t) =

2+2sin(my) sin(mx) cos(mx)
8e2twn3sin(my)?[-2 sin(mx)cos(mwx)3 -3 sin(mx)cos(mx) +8 sin(wx)3 cos(mx)]

_|_

(2+2 sin(mry) sin(mx) cos(mrx))?2

32&2twmn3sin(my)3[cos(mx)?—sin(mx)?+2cos(mx)®—3cos(mx)®+sin(mx)*+2cos(mx) ?sin(mx)?]

(2+2sin(my) sin(mx) cos(mx))3
4ewm sin(mx) cos(mx) cos(my)[5etm?—1]

vl(x,y, t) =

2+sin(my) sin(my) cos(mx)
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8e2twn3 sin(mry)cos(my)[—2cos(mx)*—5cos(mx)? sin(mwx)?+2cos(mx)?—2 sin(mx)?]

(2+sin(my) sin(mx) cos(mx))?
32&2twn3sin(my)?cos(my)[cos(mx)3 sin(mx) +sin(mx)3 cos(mx)—sin(mx)> cos(mx)]

(2+sin(my) sin(mtx) cos(mx))3

In Tables 7 and 8, the numerical results applying the MVIM developed by the genetic
algorithm are compared with the exact solutions within the interval 0 < x,y <1 where
h = 0.1. The best value for w, € and t will be selected based on the genetic algorithm [27]
and based on which the results are calculated MVIM-GA.

In Table 9, the maximum errors (|||l), IIll2x), MSE, MRE have been found by the
MVIM developed with the genetic algorithm on the interval 0 < x,y < 1.

Table 1: Comparison of the numerical results applying the variational iteration method

(Uyppr) With the exact solutions (Ug,qc,) When & = 0.01 and ¢ = 0.01

y  Sols ad
0.1 0.2 0.4 0.6 0.8
0.1 Ugue -0.0143351594 -0.0253702178  -0.0376378474  -0.0376378474 -0.0253702178
Upppr  -0.0143351595 -0.0253702177  -0.0376378468  -0.0376378468 -0.0253702177
0.2 Ugue -0.00520873591  -0.0088850905  -0.0126721126  -0.0126721126 -0.0088850904
Upppr  -0.00520873598  -0.0088850904  -0.0126721124  -0.0126721124 -0.0088850904
0.4 Ugque 0.01433515941  0.02537021791  0.03763784748  0.03763784747 0.02537021790
Upppr  0.01433515959  0.02537021782  0.03763784687  0.03763784689 0.02537021781
0.6 Ugque 0.01718352677  0.03590276003  0.06664126580  0.06664126577 0.03590276002
Upppr  0.01718352711  0.03590276192  0.06664127202  0.06664127199 0.03590276190
0.8 Ugue -0.00699289427  -0.0157318688  -0.0334106397  -0.0334106397 -0.0157318688
Upppr  -0.0069928944 -0.0157318707  -0.0334106565  -0.0334106565 -0.0157318707

Table 2: Comparison of the numerical results applying the variational
(Vappr) With the exact solutions (Vg,ac.) When e = 0.01 and t = 0.01

iteration method

X
y  Sols
0.1 0.2 0.4 0.6 0.8
0.1 Ve 0.01602719544 -0.01268510894  -0.004442545252  0.004442545256  0.01268510894
V agpr 0.01602719568 -0.01268510908 -0.004442545284  0.004442545288  0.01268510908
0.2 Ve 002466892743 -0.01881892371 -0.006336056298  0.006336056305  0.018818923710
V appr 002466892746 -0.01881892364 -0.006336056259  0.006336056272  0.01881892364
0.4 Ve 0.01602719541 -0.01268510892 -0.004442545247  0.004442545251 0.01268510892
V appr 0.01602719564 -0.01268510906 -0.004442545275  0.004442545283  0.01268510907
0.6 Ve 0.01921176696 0.01795137999  0.007865934394  -0.007865934410  -0.01795137999
Vager  0.01921176730  0.01795138017  0.007865934133  -0.007865934143  -0.01795138017
0.8 Ve 0.03311882262 0.03332063289  0.01670531980  -0.016705319821  -0.03332063287
Vager  0.03311882399  0.03332063632  0.01670532573  -0.016705325760  -0.03332063634
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Table 3: Maximum error (||-||oo, ||-||2,2), MSE and MRE by the standard variational iteration
method on the interval 0 < x,y < 1when ¢ = 0.01and ¢t = 0.01

n i Ml lIll2,5 MSE MRE

1 1 2.402E-06 1.549E-05 1.048E-06 1.627E-04
2 1.264E-06 8.124E-06 3.740E-07 8.048E-05

2 1 2.229E-08 1.389E-05 1.587E-06 1.435E-06
2 6.12E-09 9.560E-06 7.791E-07 5.138E-07

where n is the number of iterations and i is the equation.

Table 4: Comparison of the numerical results applying the standard variational iteration
method (UAppr) developed by the genetic algorithm with the exact solutions (Ugyqc:) When
€ =0.00325and t = 0.0275

y Sols x
0.1 0.2 0.4 0.6 0.8
0.1 Ugue -0.004661167616 -0.008249010569 -0.01223731916 -0.01223731916 -0.00824901056
Upppr  -0.004661167655 -0.008249010540 -0.01223731903 -0.01223731902 -0.00824901055
0.2 Ugue -0.001693613689 -0.002888839180 -0.00411992595 -0.00411992594 -0.00288883917
Upppr  -0.001693613705 -0.002888839167 -0.00411992590 -0.00411992599 -0.00288883916
0.4 Ugue 0.004661167620 0.008249010577  0.01223731918  0.01223731917  0.008249010577
Upppr  0.004661167663  0.008249010554  0.01223731903  0.01223731904  0.008249010554
0.6 Ugue 0.005587866279  0.01167578772  0.02167415011  0.02167415011  0.035902760020
Upppr  0.005587866358  0.01167578814  0.02167415155  0.02167415154  0.035902760190
0.8 Ugwe -0.002274086840 -0.005116572784 -0.01086881712 -0.01086881711 -0.00511657278
Upppr  -0.002274086870 -0.005116573228 -0.01086882102 -0.01086882100 -0.00511657322

Table 5: Comparison of the numerical results applying the standard variational iteration
method (VAppr) developed by the genetic algorithm with the exact solutions (Vg,qc:) When

€ = 0.00325and t = 0.0275

X
Sols
/ 0.1 0.2 0.4 0.6 0.8
0.1 Ve 0.005211343824 -0.004124505285 -0.001444419590 0.001444419591 0.004124505286
V appr 0.005211343877 -0.004124505317 -0.001444419597 0.001444419598 0.004124505318
0.2 Vg 0.008021069576 -0.006118659583 -0.002059962974 0.002059962977 0.006118659584
V appr 0.008021069581 -0.006118659565 -0.002059962965 0.002059962968 0.006118659565
0.4 Ve 0005211343815 -0.004124505278 -0.001444419588 0.001444419589 0.004124505281
V appr 0005211343866 -0.004124505308 -0.001444419594 0.001444419597 0.004124505312
0.6 Vgae 0.006247424422 0.005837893854  0.002558286383  -0.00255828638 -0.00583789385
Vaper  0.006247424497  0.005837893893  0.002558286322  -0.00255828632  -0.00583789389
0.8 Vgaa 0.01077022985 0.01083707505  0.005434408543 -0.00543440854 -0.01083707505
Vaper  0.01077023017 0.01083707584  0.005434409918  -0.00543440992 -0.01083707585
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Table 6: Maximum error (||-||oo, ||-||2,2), MSE and MRE by the standard variational iteration
method developed with the genetic algorithm on the interval 0 < x,y <1, when ¢ =
0.00325 and t = 0.0275

n i I/l llll2,5 MSE MRE

1 1 6.240E-07 5.477E-05 3.847E-07 1.536E-05
2 3.284E-07 1.516E-06 2.683E-07 7.599E-06

2 1 5.18E-09 6.519E-06 7.071E-07 1.209E-07
2 1.419E-09 1.584E-06 1.109 E-07 4.336E-08

Table 7: Comparison of the numerical results applying the MVIM (UAPW) developed by
genetic algorithm with the exact solutions (Ugyqc:) When € = 0.00125,w = 0.99985 and

t =0.01
Sol X
(0]
¥ 01 0.2 0.4 0.6 08
‘1‘ Usae 0001799003758 -0.003182979921 -0.004720644433 -0.004720644433 -0.003182979920
t
Unoy  -0.001799003910 -0.003182980171 -0.004720644773 -0.004720644774 -0.003182980170
pp
% Usae 0000653548674 0001114392982 -0.001588734871 -0.001588734874  0.00111439298-
t
Unoy  -0.000653548728 -0.001114393064 -0.001588734976 -0.001588734978  -0.00111439306
pp
‘i‘ Usce 0001799003760  0.003182979924  0.004720644440  0.004720644440  0.003182979924
t
Uny 0001799003912  0.003182980176  0.004720644781  0.004720644782  0.003182980174
pp
06' Usae 002158163423 0.004511317469  0.008380177375  0.008380177368  0.004511317467
t
Uny  0.002158163644  0.004511317974  0.008380178448  0.008380178448  0.004511317973
pp
%‘ Ueae 0000878545422  -0.00197829152  -0.004209306912  -0.004209306912  -0.001978291524
t
Uny -0.000878545518 -0.00197829178  -0.004209307633 -0.004209307633 -0.001978291779
pp

Table 8: Comparison of the numerical results applying the MVIM (VAppr) developed by
genetic algorithm with the exact solutions (Vgyqc:) When € = 0.00125,w = 0.99985 and

t =0.01
y  Sols o
0.1 0.2 0.4 0.6 0.8
0.1 Vgee -0.00201134734  -0.001591489961  -0.000557196491  0.0005571964915  0.001591489961
Vaper  -0.00201134751  -0.001591490085  -0.000557196531  0.0005571965322  0.001591490085
0.2 Vewea -0.00309525095  -0.002360322217  -0.0007943674372  0.0007943674382  0.002360322218
Vaper  -0.00309525120  -0.002360322388  -0.0007943674874  0.0007943674889  0.002360322388
04 Vgee -0.00201134734  -0.001591489958  -0.0005571964903  0.0005571964910  0.001591489959
Vapr  -0.00201134751  -0.001591490082  -0.0005571965306  0.0005571965315  0.001591490084
0.6 Vewea 0.002412900059  0.002255658732  0.0009891457591  -0.000989145760  -0.00225565873
Vaper  0.002412900305  0.002255658985  0.0009891458854  -0.000989145886  -0.00225565898
0.8 Vg 0.004160850839  0.004190088683 0.002104653450 -0.002104653454  -0.00419008868
Vappr  0.004160851291  0.004190089221 0.002104653807 -0.002104653810  -0.00419008922

3243



Mustafa and Al-Hayani Iragi Journal of Science, 2024, Vol. 65, No. 6, pp: 3233- 3248

Table 9: Maximum error (||||e, II*llz5), MSE and MRE by the MVIM developed with the
genetic algorithm on the interval [0,1] when € = 0.00125, w = 0.99985 and t = 0.01.

n i Il [NIED MSE MRE
1 1 3.901E-09 1.732E-06 3.355E-07 2.754E-07
2 1.944E-09 5.3851E-07 9.327E-08 1.361E-07
2 1 1I81E-09 9.746E-07 3.716E-07 4.597E-08
2 5.40E-10 5.029E-07 6.774 E-08 2.295E-08

6.2. lllustrate solutions by graphing

In this section, Figures 1 and 2 present the plot of the absolute errors in 3D on the domain
(x,y) € [0,1] x [0,1], Figures 3 and 4 show the contour plot 3D on the domain (x,y) €
[0,1] x [0,1] and the Figures 5 and 6 present the contour plot 2D on the (x,y) — plane for
n =2, € =0.01and t = 0.01 by the standard variational iteration method.

Figure 2: VExact(x; Y t) - VAppr(x» Y t)
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Figure 3 UExact(x' Y t)» UAppr(x' Y t)

02 04 06 08 1

Figure 5: Ugyace(x, ¥, ), UAppr(x; y,t)

3245



Mustafa and Al-Hayani Iragi Journal of Science, 2024, Vol. 65, No. 6, pp: 3233- 3248

0.2 04 06 2 08

Figure 6: VExact(x' Y t): VAppr(x: Y t)

6.3. Discussions of numerical results

The two-dimensional Burgers equation system was solved by using the variational
iteration method and MVIM in turn with the help of a genetic algorithm which enhanced the
solutions. For accuracy and convergence, MVIM's numerical evidence was compared with
the exact solution and VIM. The following findings were noted. From Table 3, where n = 2
the maximum residual error (MRE)=107° but in the table 6 the (MRE)= 10~7 where n = 2.
so that the variational iteration method with genetic technique converges faster to the exact
solution than the variational iteration method. From Table 9, where n = 2 the maximum
residual error (MRE)= 10"8. Thus, it is evident that MVIM with genetic algorithm converges
better and more rapidly to exact than the standard variational iteration method and as also
seen in Figures 1 and 2.

7. Conclusion:

In this research, the system of nonlinear (PDES) that describes several physical phenomena
in three ways has been solved. In the first part, the standard variational iteration method has
been used. The variational iteration method with the genetic algorithm is utilized in the
second part. In the last part, the modified variational iteration method with genetic techniques
was successfully applied to solve the system of two-dimensional Burger's equation. By
comparing the results, the variational iteration method with the genetic algorithm is more
accurate than the standard variational iteration method and the modified variational iteration
method with genetic techniques is more accurate than the two methods that are presented in
the first and second parts. Furthermore, it has been shown that the present method is
straightforward for finding approximate solutions in many other fields. Afterward, this
notable method could be more efficiently used to find linear and nonlinear partial differential
equations which orderly emerge in engineering, physics, and other technological areas.
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