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Abstract 

     The continuous increases in the size of current telecommunication infrastructures 

have led to the many challenges that existing algorithms face in underlying 

optimization. The unrealistic assumptions and low efficiency of the traditional 

algorithms make them unable to solve large real-life problems at reasonable times. 

The use of approximate optimization techniques, such as adaptive metaheuristic 

algorithms, has become more prevalent in a diverse research area. In this paper, we 

proposed the use of a self-adaptive differential evolution (jDE) algorithm to solve 

the radio network planning (RNP) problem in the context of the upcoming 

generation 5G. The experimental results prove the jDE with best vector mutation 

surpassed the other metaheuristic variants, such as DE/rand/1 and classical GA, in 

term of deployment cost, coverage rate and quality of service (QoS). 

 

Keywords: differential evolution, self-adaptive, radio network planning. 

 

 دراسة مقارنة على خوارزميات الموجه العام لحل مشكلة تخطيط الشبكات الراديوية
 

 رواء داود الدباغ ، عبير سفيان خليل
 عخاقكمية العمهم، جامعة بغجاد، بغجاد، ال قدم عمهم الحاسهب،

 

 الخلاصة
أدى التهسع السدتسخ في حجم البشية التحتية للاترالات الحالية إلى أن الخهارزميات الحالية واجهت      

العجيج من التحجيات فيسا يتعمق بسذكلات التحدين الأساسية. لهحا الدبب ، فإن الافتخاضات غيخ الهاقعية 
كل الحياة الهاقعية التي يكهن حجسها والكفاءة السشخفزة لمخهارزميات التقميجية تجعمها غيخ قادرة عمى حل مذا

كبيخًا في وقت معقهل. أصبحت تقشيات التحدين التقخيبية مثل خهارزميات السهجه العام التكيفية نذطة إلى حج 
ستشهع. في هحا البحث ، اقتخحشا استخجام خهارزمية التطهر التفاضمي الحاتي التكيف البحث الكبيخ في مجال 

(jDEلحل مذكمة تخطيط ا )( لذبكة الخاديهيةRNP في سياق الجيل القادم )5G تثبت الشتائج التجخيبية أن .
jDE مثل  لطخق السهجه العام الأخخى  مع أفزل طفخة متجهة قج تجاوز الستغيخاتDE / rand / 1  وGA 

 (.QoSالكلاسيكية فيسا يتعمق بتكمفة الشذخ ومعجل التغطية وجهدة الخجمة )
1. Introduction 

     Over the last decades, cellular networks, network infrastructures, and Internet services have 

developed quickly. This development has resulted in a higher demand for data communications. 

Recently, much attention has been placed on telecommunication and technology represented by 

frequency assignment to cellular phones, optimal allocation of base stations (BSs), antenna design and 

structural design problems associated with routing information by the network [1]. One such important 

problem is the cellular network configuration or cells deployment because, at present, wireless 
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networks are consuming large power as the number of worldwide subscribers has reached 5 billion; 

therefore, cellular network operators should consider energy issues. This problem has also been 

defined as radio network planning (RNP) in which the least number of BSs needs to be planned and 

satisfy the network requirements. Thus, the modern trend in [2] was to propose a heuristic approach to 

reduce total power exhaustion in long term evolution (LTE) radio networks of the fourth generation 

(4G). The proposed heuristic has led to energy savings by turning on and off chosen BSs based on 

different traffic scenarios. By contrast, the authors in [3] focused on the BS itself because it consumes 

high power that reaches 58% of the total power used by cellular networks. Therefore, they developed a 

genetic algorithm (GA) to determine the closest optimal solution for RNP problem not only by 

considering the location of BS but also by its height. Then, the concern was towards the new 

generation of  cellular networks (5G); thus, the authors of [4] modified the approach in [2] and applied 

it to 5G networks. They used the millimeter wave (mmW) carrier frequencies with heterogeneous 

networks to achieve users’ requirements, especially in dense areas involved in the area of interest. The 

authors in [5] presented a novel view to the RNP problem and defined it as a hyperdense deployment 

problem (HDDP) of wireless communication for the requirements of 5G. Their perspective suggested 

and illustrated how multi-objective GA can be adopted to solve the HDDP efficiently. The self-

adaptive differential evolution (jDE) and Barebones DE (BDE) have been integrated  into the 

Barebones Self-adaptive Differential Evolution (BSADE), which has been used to maximize the 

coverage and minimize the power consumption in 4G networks [6]. The work in [7] formulated the 

capacity and coverage problem in the context of 4G as a multi-objective optimization problem and 

used MOGA to solve it. The main focus was on optimizing the transmitted sector and antenna pattern 

with respect to its pointing direction. Finally, the mechanisms of artificial intelligence (AI) have been 

increasingly investigated to solve different cellular networks problems in the context of 5G, especially 

in planning and operation processes; as such, [8] has been written to determine how these AI 

techniques revisited those problems to find proper understanding and solutions.  

    The main contribution of this paper is answering the problem of RNP in the context of 5G using 

self-adaptive differential evolution algorithms (i.e. jDE/rand/1 and jDE/best/1) to find a near-optimal 

deployment plan for different network scenarios. In the literature, this problem has already been 

formulated as a constraint optimization problem in [9]; in which, the objective function is to minimize 

the deployment cost of a number of candidate BSs while maintaining the converge rate within a pre-

specified threshold as the only constraint in the system [10].  

     This paper is organized as follows: Section 2 introduces the preliminary concepts and problem 

formulation of the adopted 5G system model. In Section 3, four different meta-heuristic algorithms 

have been presented and described upon their implementation to solve the RNP problem. The results 

and discussions are presented in section 5. Finally, conclusions and future suggestions are given in 

section 6. 

2. 5G System Model and Problem Formulation 
     At present, advanced LTE and incoming 5G technologies are considered the heart of the upcoming 

advanced telecommunications. The speed of data transmission and reliability will be increased, 

whereas transmission delay will be decreased to its minimum. All these advantages and more can be 

realized with respect to the utilization of the mmWave carrier frequency and the deployment of small 

cells (in this study, macro and micro cells have been considered) [11]. Radio network planning (RNP) 

is an essential step in deploying wireless networks in which the plan should meet the deployment cost, 

quality of service, specific coverage and capacity [2]. Several 5G models are available in the literature 

because the final system configuration has yet to be settled. In this study, the 5G model in [4] was 

adopted because it involves a detailed description to constitute a reliable and complete 5G model. The 

main part of this model is the value of the received power of each mobile station   (MS). This value 

determines whether this MS is under coverage with respect to the signal power standards (i.e.     
     ). The power of the received signal can be formulated as 

    (  )         .
   

   
/                                                                          (1) 

     where     is the transmitting power of BS   depending on its type,     is the maximum number of 

users that can be connected to BS   and       is the resulting pathloss between MS   and BS  . 

Equation1, indicates that this value is affected considerably by the value of the pathloss    because 
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the larger the value of pathloss, the lesser the received power that can be gained from BS  . In this 

study, the adopted pathloss model is formulated as 

 

     (  )               (    )          ( )   (    )                           (2) 

 

     where   is the carrier frequency which is set to 28 GHz,   is the atmospheric attenuation which is 

almost ignored in 5G,      is a random number generated in the range [0, 1] to represent the channel 

loss and      is the Euclidean distance between the Cartesian coordinate of MS   (      ) and BS   

(      ) as follows, 

      √(     )
 
  (     )

                                                             (3) 

   The quality of service (QoS) of each MS   is measured by the value of signal to interference and 

noise ratio (SINR) as  

 

      
     ( )

      
                                                                       (4) 

 

     Where      ( ) is the power of the received signal by MS   from   ( ),    is the power of the 

thermal noise and     is the amount of intercell interference affected MS   by its neighboring BSs 

(   ) and can be formulated as follows,  

 

    ∑     
   
        ( )                                           (5) 

 

 In order to satisfy good QoS for each MS  , the below inequality must hold, 

 

                                                                (6) 

 

     Finally, the main objective of this system model is to minimize the deployment cost of initially 

deployed BSs and the formula proposed in [9] has been adopted as follows: 

 

   ∑         
   
                                                       (7)         

 

     where     is the total number of initially deployed BSs,    is a flag to indicate whether BS   is 

deployed and       is the deployment cost of BS   depending on its type.  

3. Metaheuristic algorithms based 5G RNP Problem  

    Metaheuristics are advanced search mechanisms such as evolutionary algorithms (EAs). They are 

based on the rules of natural evolution, namely adaptation and survival of the fittest and consist of a 

set of individuals (solutions) called population  . The quality value of each individual is assigned to a 

function, namely, fitness function. In the beginning, the population is created randomly by the meta-

algorithm. Then, at each step, new individuals are created by means of selection and variation 

operators (mutation, recombination). These steps are repeated until a maximum number of generations 

     or any other stopping criterion is fulfilled [12]. In this study, four well-known meta-algorithm 

variants, including two self-adaptive differential evolution algorithms are adopted: DE/rand/1, 

jDE/rand/1, jDE/best/1 and classical GA [13, 14]. In the following subsections, a complete description 

of the implementation of these four algorithms to the 5G RNP problem is presented in which some of 

these details have already been discussed in [9].  

3.1 Individual representation and population initialization 

    This step is a common one in all meta-algorithms because it is how the individual is represented to 

better fit the problem and the way the initial population is first created accordingly. For the RNP 

problem, each individual (or target vector)    is represented as a vector of   genes, and each gene 

consists of the location as a Cartesian coordinate (        ) of a candidate BS as,   *(      ) 
(     )   (     )+ . As such, the new population   consists of    solutions as 

  *           + 
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     The values of these individuals are initialized using a uniformly distributed random number 

generator in the interval ,     - as follows: 

    
      ,   -  (  

    
 )     

                                        (8) 
 

    Equation 8 is used to generate an individual of length     because each gene occupies two values 

with respect to the x- and y-coordinates of each BS.  

3.2 Mutation Operator  

    This step differs for different meta-algorithms, but they share the same concept in that this step is 

responsible for maintaining the genetic diversity of the individuals from one generation to another.  

In DE, the mutation operator is the first step to be implemented in the meta-algorithm; every target 

vector is passed through this stage to produce the donor vector. In the literature, DE has many 

mutation variants based on the vector to be perturbed and the number of difference vectors considered 

for perturbation [15], for example:  

 

DE/best/1  

                                                                          (       –      )                                                           (9) 

 
 

DE/rand/1  

                                                                               (       –      )                                                     (10) 

 

DE/current-to-best/1 

 

              (        –      )     (       –       )                                                   (11) 

 

     where               and they are distinct and         is the current best vector. The strategy 

DE/rand/1/bin appears to be the most successful and the most widely used strategy. It requires four 

distinct members from    to produce a new vector; thus,    must be four at the minimum. 

The control parameter    ,   - is used to control the amplification of any difference vectors in DE 

strategies. In practical terms, finding the right value of   takes an unacceptably long time and may 

differ because the problems may differ. jDE algorithm has been suggested to apply a self-adaptive rule 

to update the value of   of each individual dynamically during evolution (Eq. 12). This rule is simple 

and flexible, and can be applied to any DE strategy.  

 

       {
                                
                                                    

                                          (12) 

 

     where       ,    *   + are uniform random values   ,   -.        is the probability of 

updating the   factor,          ,         . The new    takes a random value from ,       -.  
     In GA, the mutation operator plays is essential in the genetic search that assists in exploring the 

entire search space and preventing the population from stagnating at any local optima. The mutation 

operator performs a random modification to one or more gene values and somewhat modifies the 

genetic information of the offspring. Unlike DE, this operator follows the selection and crossover 

operators in GA. Many types of mutations are available in GA, but based on the RNP problem, the 

best method would be to modify the gene value using Eq. 8 with respect to a predefined mutation 

probability    .  

                            {
    ,   -  (  

    
 )     

                         ,   )                  
                                                                                                            

          (13) 

 

     In this work, the mutation operators mentioned in Eqs. 9-10 and Eq. 13 are applied to an individual 

of length    .  
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3.3 Crossover Operator  

    In all meta-algorithms, the aim of the recombination or crossover operator is to create a mixture(s) 

of the genetic information of two or more individuals. This operator is used to explore the search space 

in which one or two offsprings are produced from two or more parents. In DE, this operator follows 

the mutation operator in which the target vector   with the donor vector   are recombined with respect 

to the following rule, the so-called binomial crossover (or bin), for producing the trial vector  .  

 

      
  {

    
                 ( )            ( ) 

    
                 ( )            ( )

                                                   (14) 

 

    where      ,     - is the crossover rate and a randomly generated   ( )  *       +. This 

condition ensures that at least one element from the donor vector is passed to the next generation. The 

control parameter    is used to determine the probability of the number of genes inherited from the 

donor vector and (    ) probability from the target vector. In the jDE algorithm, the value of    is 

also updated dynamically during evolution using the same self-adaptive rule in Eq. 12 as follows:  

 

         {
                                         
                                                  

                                       (15) 

 

     where       ,    *   + are uniform random values   ,   - and        is the probability of 

updating the    factor.  The new value of    is given within the range ,   - during evolution.  

In GA, a crossover follows the selection strategy and its main idea is to generate an offspring    that 

combines the characteristics of the selected two or more    and    parents with respect to a predefined 

crossover probability    ,   -. In literature, the most powerful crossover operator is the uniform 

crossover because it permits the offspring to search all opportunities of recombination of unlike genes 

in parents as follows:  

 

    {
   
                                   

  
                                     

                                                   (16) 

 

    where      is a uniform random number generator within the range ,   -.  
     In the RNP system, the crossover operators in Eqs. 14 and 16 are applied in the same way except 

for the value of index    , in which, it will be increased by 2 (i.e.           ) as the values of  -

coordinate and  -coordinate for one BS are considered one single problem parameter (gene).  

3.4 Selection Operator  

      In metaheuristics, this operation is responsible for selecting the best individuals to survive to the 

next generation.  Given that RNP is a minimization problem, the resultant vector of this operation is 

the vector with the lowest fitness function in which it indicates the plan with the minimum deployment 

cost   described in Eq. 7. However, minimizing the cost is normally associated with maximizing the 

coverage rate (Eq. 17) as its main constraint to obtain a near-optimal deployment plan [9]. DE with 

constraint handling selection named as feasibility rules has been adopted to satisfy both objectives. In 

this selection strategy, the deployment cost is considered to be the objective of the RNP system, 

whereas the coverage rate is treated as a constraint to guide the search towards feasible solutions, as 

follows:   

    
  {

  
        .   

  
             

    /       ( (  
 )   (  

 ))    .     
       

 / 

  
                                                                                                                                          

     (  ) 

 

where  

 

    
                        (         )

 
                                             (18) 
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     In Eq. 17,   refers to the outage rate threshold to indicate whether the deployment plan is feasible. 

In Eq. 18,   refers to the total number of users distributed in an area of interest. Notably, that 

minimizing the number of deployed BSs of RNP needs to satisfy the following coverage constraints: 

1. A user   can receive power signal from     if and only if the      of     which means     is 

deployed (see Eq. 7).  

2. Only one BS can serve a user    as maximum. 

3.     can serve a specific number of users depending on the available subcarriers and its type (i.e. 

macro or micro). 

     In GA, the selection operator is usually the first strategy to be implemented in the entire evolution 

process. In this strategy, individuals are selected from the population for reproduction to the next 

generation based on their fitness value. Many exciting types of selection methods can be found in 

GAs, including rank-based fitness assignment, roulette wheel selection, and tournament selection. 

Tournament selection, the one adopted in this study, is the most frequently used as a selection scheme. 

The basic idea is as follows. A random selection is made to a set of randomly selected individuals 

from the current population. The best individual among these individuals is then selected to survive for 

breeding using the aforementioned crossover operator (Eq. 16). In the RNP system based GA, the 

selection criteria of feasibility rules in Eq. 17 is used to decide which solution is superior to its 

alternatives in the tournament set.  

4. Experimental Results and Discussion 

     In this section, four different metaheuristic algorithms (DE/rand/1, jDE/rand/1, jDE/best/1 and GA) 

have been implemented to tackle the RNP problem in the context of the 5G network. Tables-(1, 2) 

provide the settings related to the problem in hand and the meta-algorithms adopted. Three different 

user scenarios (850, 1000 and 1200 MS) have been used. These scenarios are distributed uniformly 

randomly in an area of interest 5 km   5 km. Two outage rate values (0.15 and 0.13) were considered 

to assess the efficacy of the meta-algorithms in terms of imposing confront constraints to the search 

process. For all experiments conducted, five macrocells have been deployed randomly in the area of 

interest assuming that those fixed BSs belong to the former generation, i.e. 4G/IMT.   

    The performances of these four meta-algorithms were compared with respect to multiple metrics. 

The most important metric is the deployment cost of the best plan achieved by the algorithms after 

five independent runs. However, this best plan would not be considered if its associated outage rate 

does not fall within the pre-specified outage threshold  ; otherwise, this plan is considered unfeasible. 

The two other metrics are the average received power and the average SINR for all users. Tables-(3, 4) 

present the results obtained from the four meta-algorithms in which the best deployment plans are 

shown in bold and the second best plans are shown in italics font.  

 

Table 1-5G RNP system parameters 

Parameter description Value Parameter description Value 

No. of Macrocell 50 No. of Microcell 150 

         40 W          10 W 

         22 MS          8 MS 

          8  MS           3 MS 

        -9 dB    5.97         W 

     -80 dBm   0.15 and 0.13 

Deployment cost of 

Macrocell 
$150 

Deployment cost of 

Microcell 
$50 

No. of fixed Macrocell 5   or NB 
200 (150 macro+ 50 

micro) 

 (frequency of newly 

deployed Macro) 
28 

 (frequency of fixed 

Macro) 
3.5 
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Table 2- Metaheuristics parameters 

Parameter 

description 

Value 

NP 100 

F 0.5 

CR 0.9 

      1500 

   0.1 

   0.9 

 

Table-3 shows the results obtained for the four algorithms when the outage rate was set to a high value 

(i.e. 0.15). This table shows all meta-algorithms have successfully achieved the feasibility of the plans, 

but jDE/best/1 was managed to compete with the other three algorithms with lower cost and minimum 

outage. In this algorithm, the values of F and CR were encapsulated with each individual and updated 

dynamically during evolution. The effects of these two self-adaptive parameters together with the 

greediness tendency of jDE/best/1 successfully created the desired balance point 

between exploration and exploitation to find a near-optimal plan. Table-4 also shows jDE/best/1 

competed with the other three algorithms with respect to the deployment cost and outage rate even 

when the outage threshold has been set to a low value (i.e. 0.13), in which finding feasible solutions 

became more challenging. This behavior of jDE/best/1 can be explained by the RNP problem with 

constraints requiring a focus on good solutions, thereby indicating that the algorithm with the 

exploitation capability can perform better than the algorithms with high exploration capability, such as 

jDE/rand/1. The balance that jDE/best/1 has created can be attributed to the adaptive rule that causes 

the algorithm to perform effectively and satisfy the two contradictory search objectives. The second 

algorithm performance is of jDE/rand/1 and GA. These algorithms have almost the same randomness 

tendency, although jDE/rand/1 has self-adaptive merits that update the values of F and CR during 

evolution.   

    Experiments show the values of the average received power and SINR rate have always been within 

the required threshold. Thus, and to the make the comparison fair, we included these two values in the 

tables but not as a constraint in the main objective.  

 

Table 3-Performance comparison of the four metaheuristics after 5-independent runs in terms of the 

deployment cost and outage rate ≤ 0.15 in which feasibility of the plan is to be attained 

Meta-

algorithm 

No. of 

MSs 

Avg. 

received 

power (dbm) 

Avg. 

SINR 

Outage 

rate ≤ 

0.15 

Deployment 

Cost 

No. of 

Macro 

No. of 

Micro 

DE/rand/1 

850 -73.4111 0.2180 0.147 5300 6 88 

1000 -74.0638 0.1941 0.145 6250 10 95 

1200 -72.5709 0.2333 0.145 7300 11 113 

jDE/rand/1 

850 -72.9735 0.2243 0.1494 5150 3 93 

1000 -72.5582 0.2294 0.143 6050 6 103 

1200 -73.2761 0.3716 0.1441 7300 11 113 

jDE/Best/1 

850 -73.0448 0.2728 0.1447 5150 3 93 

1000 -72.4030 0.2394 0.136 5950 6 101 

1200 -72.3229 0.2284 0.1483 7150 10 113 

GA 

850 -72.4923 0.2647 0.147 5250 5 90 

1000 -72.6004 0.2303 0.143 5950 5 104 

1200 -72.7951 0.2580 0.1491 7150 12 107 
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Table 4-Performance comparison of the four metaheuristics after 5-independent runs in terms of the 

deployment cost and outage rate ≤ 0.13 in which feasibility of the plan is to be attained 

 

Meta-

algorithm 

No. of 

MSs 

Avg. 

received 

power 

(dbm) 

Avg. 

SINR 

Outage 

rate ≤ 

0.13 

Deploymen

t Cost 

No. of 

Macro 

No. of 

Micro 

DE/rand/1 

850 -73.3266 0.3258 0.1235 5700 7 93 

1000 -72.8762 0.2590 0.13 6550 8 107 

1200 -73.1492 0.2666 0.1275 7650 12 117 

jDE/rand/

1 

850 -72.6376 0.2263 0.1270 5450 5 94 

1000 -72.5029 0.2215 0.124 6350 8 103 

1200 -72.8042 0.2093 0.13 7450 13 110 

jDE/Best/

1 

850 -72.4638 0.2726 0.1258 5450 5 94 

1000 -72.7572 0.2107 0.129 6300 11 93 

1200 -72.5148 0.2665 0.1266 7300 11 113 

GA 

850 -72.2324 0.2875 0.1282 5450 6 91 

1000 -72.9425 0.2642 0.123 6350 8 103 

1200 -72.9009 0.2229 0.13 7550 12 115 

 

     Figure-1 depicts the results of the six deployment plans achieved by jDE/best/1 algorithm by 

visualizing the Cartesian coordinates of the deployed macro and micro cells of three users scenarios 

(850, 1000  and 1200) distributed uniformly randomly in an area of interest, and two outage rates (0.15 

and 0.13). This figure clearly shows that some of the deployment plans have deficiencies in providing 

coverage for some regions such as the plans depicted in Figures-1 (b) and (c). In these plans, many 

users are still in outage even though these are the best plans obtained to date on these scenarios.  

(a) Scenario 1[ 850MS and        ] 

with 3 macro and  93 micro 

(d) Scenario 1[ 850MS and        ] 

with 5macro and 94 micro 
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(b) Scenario 2[ 1000MS and        ] 

with 6 macro and 101 micro 

 
(e) Scenario 2[ 1000 MS and        ] 

with 11 macro and 93 micro 

 
(c) Scenario 3[ 1200MS and        ] 

with 10 macro and 113 micro 

 
(f) Scenario 3[ 1200 MS and        ] 

with 11 macro and 113 micro 

Figure 1-The best deployment plans achieved by jDE/best/1 algorithm in which the outage rate is set 

to 0.15 and 0.13 of three users scenarios (850, 1000 and 1200). The (.) represents a user, a circle with 

(▲) represents a newly deployed macro cell, a circle with (+) represents a newly deployed micro cell 

and a circle with (*) represents a fixed location macro cell.  

 

5. Conclusion  

     The problem of radio network planning has been investigated in this paper by utilizing four 

metaheuristic variants that attempt to find a near-optimal deployment plan. From the results presented, 

we can infer that the four meta-algorithms (DE/rand/1, jDE/rand/1, jDE/best/1 and GA) have 

successfully achieved feasible plans with respect to two outage rates (0.15 and 0.13) as problem 

constraints. The main comparison criterion is the deployment cost of these plans in which the 

algorithm jDE/best/1 could manage to obtain the best plan among the other algorithms in all problem 

scenarios (850, 1000 and 1200 MSs). We can conclude that the self-adaptive rule of updating F and 

CR has helped to guide the greedy algorithm towards promising search regions by acting as a local 

search for the DE/best/1 strategy. Moreover, to affirm the good performance of these self-adaptive 

algorithms, the 5G model adopted can be extended to include rain attenuation and foliage noise as a 

future work suggestion. 
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