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Abstract  

     In this paper, we introduce an approximate method for solving fractional order 

delay variational problems using fractional Euler polynomials operational matrices. 

For this purpose, the operational matrices of fractional integrals and derivatives are 

designed for Euler polynomials. Furthermore, the delay term in the considered 

functional is also decomposed in terms of the operational matrix of the fractional Euler 

polynomials. It is applied and substituted together with the other matrices of the 

fractional integral and derivative into the suggested functional. The main equations 

are then reduced to a system of algebraic equations. Therefore, the desired solution to 

the original variational problem is obtained by solving the resulting system. Error 

analysis has been discussed. An illustrative example is given in order to illustrate that 

the proposed method is very accurate and efficient for solving such kinds of problems. 
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لمتعددة حدود أويلر  مصفوفات العملياتبأستخدام الكسرية  ذات الرتبالتباطؤية التغاير نحو حل مسائل   
 

 2*, أسامة حميد محمد1حسين حسناء فيصل محمد
 قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق 1

 الرياضيات وتطبيقات الحاسوب, كلية العلوم, جامعة النهرين, بغداد, العراققسم  2
 

  الخلاصة 
بأستخدام مصفوفات     الكسرية  ائل التغاير التباطؤية ذات الرتبطريقة تقريبية لحل مسنقدم  ث  بحالفي هذا        

للتكامل الكسري والاشتقاق    العمليات ولهذا الغرض تم تصميم مصفوفات  ،  لمتعددات حدود أويلر الكسرية   العمليات 
كذلك يجزء لحدود من مصفوفة  لمتعددات حدود أويلر. علاوة على ذلك، فأن حد التباطؤ في الدالي المفترض  

ة مصفوفات التكامل الكسري والاشتقاق  يليتم تطبيقها وتعويضها مع بق  لمتعددات حدود أويلر الكسرية   العمليات 
ذلك تحويل المعادلات الرئيسية الى نظام من المعادلات الجبرية، وبالتالي يتم الحصول  في الدالي المقترح. يتم بعد  

تمت مناقشة تحليل الخطأ وتم تقديم  لناتج.  على الحل المطلوب لمسألة التغاير الاصلية عن طريق حل النظام ا
       .  من المسائل مثال توضيحي لتوضيح ان الطريقة المقترحة دقيقة للغاية وفعالة لحل مثل هذا النوع 
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     Fractional calculus is one of the most interdisciplinary fields of applied mathematics which 

deals with the derivative and integrals of any order. Nowadays, it is used to advance 

mathematical models of real-world phenomena in various areas of science and engineering [1-

3]. Fractional order derivatives are naturally related to the systems with memory that dominate 

most of the scientific system models. Models and applications containing fractional derivatives 

can be found in chemical physics, probability physics, astrophysics, and various fields of 

engineering [4-6]. There are many definitions of a fractional derivative, The commonly known 

fractional derivatives are the classical Riemann-Liouville and Caputo derivative. Fractional 

derivatives and integrals of these Riemann-Liouville and Caputo types have a huge number of 

applications in many fields of science and engineering [7-11]. 

 

     The calculus of variation has a long history of communications with other fields of 

mathematics such as differential equations, geometry and with physics. However, the calculus 

of variation has found applications in economics and some branches of engineering [12-14]. A 

fractional calculus of variations problem is a problem in which either the objective functional 

or the constraint equations or both consist of at least one fractional derivative term. In recent 

years, many numerical and approximate methods have been used to solve fractional 

order problems such as the homotopy analysis method, variational iteration method, 

homotopy perturbation method, wavelet method, collocation method, spectral tau 

method, finite element method and other methods, see [15-21]. Recently, many 

researchers used different functions and polynomials. For some orthogonal 

polynomials, the operational matrices of fractional integrals and derivatives have been 

derived such as Bernstein polynomials, the Legendre polynomials, Jacobi 

polynomials, Chebyshev polynomials and Laguerre polynomials [22-26]. Inclusion of 

delay in the fractional order variational problems seems to be opening new vistas, especially 

in the field of bioengineering [27].  

 

     In this paper, the fractional order Euler functions based on Euler polynomials are used for 

solving fractional order delay variational problems. The operational matrix is derived for the 

fractional integration. By using the operational matrix of fractional integration and the 

fractional order Euler functions, we convert the varational problem into a system of linear 

algebraic equations. Numerical solutions are obtained by solving this linear system. By 

comparing the exact solution with the numerical solution using the proposed method, 

we exhibit the precision and efficiency of the proposed technique for various values of 

𝛼.     

 

2. Preliminaries and notations 

     In this section, we introduce some basic definitions of fractional calculus, namely the 

definition of Riemann-Liouville fractional order integral and Caputo fractional order derivative 

[28]. 

 

Definition 1: The Riemann-Liouville fractional integral operator 𝐼𝛼 of order α of a function 

𝑓 ∈ 𝐶𝜇 and 𝜇 ≥ −1 is defined as follows: 

     

         𝐼𝛼  𝑓(𝑡) = {

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏,       𝛼 > 0, 𝜏 > 0

𝑡

0

𝑓(𝑡),                                      𝛼 = 0
                                           (1)        

where Γ(α) is the Gamma function. 

For the Riemann-Liouville fractional integral, we have: 

1- 𝐼𝛼(𝜆1𝑓(𝑡) + 𝜆2𝑔(𝑡)) = 𝜆1𝐼
𝛼𝑓(𝑡) + 𝜆2𝐼

𝛼𝑔(𝑡)   ,   𝜆1 and𝜆2 are constants. 
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2- 𝐼𝛼1𝐼𝛼2𝑓(𝑡) = 𝐼𝛼1+𝛼2𝑓(𝑡). 

3- 𝐼𝛼1𝐼𝛼2𝑓(𝑡) = 𝐼𝛼2𝐼𝛼1𝑓(𝑡). 

4- 𝐼𝛼𝑡𝛽 =
𝛤(𝛽+1)

𝛤(𝛽+𝛼+1)
𝑡𝛼+𝛽  ,                    𝛽 > -1  .      

Definition 2: The Caputo fractional derivative of order 𝛼 of a function 𝑓 ∈ 𝐶𝜇
𝑚 and 𝜇 ≥ −1, 

is defined as follows: 

        𝐷0
𝑐

𝑡
𝛼  𝑓(𝑡) = {

1

𝛤(𝑚−𝛼)
∫

𝑓(𝑚)(𝜏)

(𝑡−𝜏)𝛼+1−𝑚
𝑑𝜏,      𝑚 − 1 <  𝛼 < 𝑚, 𝜏 > 0

𝑡

0
, 𝑚 ∈ 𝑁

𝑑𝑚

𝑑𝑡𝑚
𝑓(𝑡)                                                       𝛼 = 𝑚.

                 (2) 

For the Caputo fractional derivative and α > 0, we have: 

1- 𝐷0
𝑐

𝑡
𝛼 (𝐼𝛼𝑓(𝑡)) = 𝑓(𝑡) ,                        𝑡 > 0 

2- 𝐼𝛼  ( 𝐷0
𝑐

𝑡
𝛼𝑓(𝑡)) = 𝑓(𝑡) − ∑ 𝑓(𝑘)(0+)

𝑡𝑘

𝑘!

𝑛−1
𝑘=0 , 

3- 𝐷0
𝑐

𝑡
𝛼(𝑐) = 0 ,                                        𝑐 ∈ 𝑅 

4- 𝐷0
𝑐

𝑡
𝛼(𝑡𝛽) =

𝛤(𝛽+1)

𝛤(𝛽−𝛼+1)
𝑡𝛽−𝛼  ,             𝛽 > −1. 

 

3. Fractional order Euler functions  

     In this section, we give some definitions and basic properties of the Euler polynomials 

that are used in this paper [29]. 

 

3.1 Euler polynomials  

     The Euler polynomials basis of degree 𝑛 which is denoted by 𝐸𝑛(𝑡) are introduced by 

using the following relation: 

     ∑ (𝑛
𝑘
)𝐸𝑘(𝑡)

𝑛
𝑘=0 + 𝐸𝑛(𝑡) = 2𝑡𝑛,                                                                    (3) 

where (𝑛
𝑘
) is a binomial coefficient, and the Euler vector 𝐸(𝑡) is defined as follows: 

    𝐸(𝑡) = [𝐸0(𝑡), 𝐸1(𝑡), … , 𝐸𝑛(𝑡)]𝑇 .                                                                    (4) 

Then, using Eq. (3), we can write 𝐸(𝑡) as follows: 

    𝐸(𝑡) = 𝐴 𝑇(𝑡)                                                                                     (5) 

where 𝑇(𝑡) = [1, 𝑡, 𝑡2, … , 𝑡𝑛] and 𝐴 is an upper triangular matrix with non-zero diagonal 

elements, thus it is a non-singular matrix and then 𝐴−1 exists. 

 

3.2 Euler polynomials Properties 

     The Euler polynomials have the following interesting properties for all 𝑛 = 1,2,… 

1- 𝐸𝑛
′ (𝑡) = 𝑛𝐸𝑛−1(𝑡) . 

2- 𝐸𝑛+1(𝑡 + 1) + 𝐸𝑛(𝑡) = 2𝑡𝑛. 

3- ∫ 𝐸𝑛(𝑡)𝑑𝑡 = −
2𝐸𝑛+1(𝑡)

𝑛+1

1

0
. 

4- 𝐸𝑛(𝑡) =
1

𝑛+1
∑ (2 − 2𝑘+1)(𝑛+1

𝑘
)𝐵𝑘(0)𝑛+1

𝑘=1 𝑡𝑛+1−𝑘, 

 

       where 𝐵𝑘(𝑡) are the Bernoulli polynomials of order 𝑘 for , 𝑘 = 0,1,… ,  which are 

defined as follows: 

      ∑ (𝑛+1
𝑘

)𝐵𝑘(𝑡) = (𝑛 + 1)𝑡𝑛𝑛
𝑘=0  .                                                                                    (6) 

 

Using the last property, the Euler polynomials can be expressed in the following matrix 

form: 

       𝐸(𝑡) = 𝐴 𝑇(𝑡) 

where  
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       𝐴=

[
 
 
 
 
 

(2−22)

1
(1
1
)𝐵1(0) 0 …                            0      

(2−23)

2
(2
2
)𝐵2(0)

(2−22)

2
(2
1
)𝐵1(0) …                            0    

⋮
(2−2𝑛+2)

𝑛+1
(𝑛+1
𝑛+1

)𝐵𝑛+1(0)

⋮
(2−2𝑛+1)

𝑛+1
(𝑛+1

𝑛
)𝐵𝑛(0)

⋱                             ⋮   

… 
(2−22)

𝑛+1
(𝑛+1

1
)𝐵1(0)

 

]
 
 
 
 
 

             

 We can write the following relation by means of property (1): 

                𝐸′(𝑡)𝑇 = 𝑀𝐸(𝑡)𝑇 ,              

where                                                

        𝑀 =

[
 
 
 
 
 
0 0 0
1 0 0
0
⋮
0
0

2
⋮
0
0

0
⋮
0
0

   

… 0 0
… 0 0
…
⋱…
…

0
⋮

𝑛 − 1
0

0
⋮
0
𝑛

    

0
0
0
⋮
0
0]
 
 
 
 
 

 

 

      Such that 𝑀 is the operational matrix of differentiation. Hence, the 𝑘𝑡ℎ derivative of 

𝐸(𝑡) can be constructed as [30]:        

             𝐸(𝑘)(𝑡)𝑇 = (𝑀𝑇)𝑘𝐸(𝑡)𝑇                                                                                       (7) 

Also, the Euler polynomials satisfy the following formula:  

    ∫ 𝐸𝑚(𝑡)𝐸𝑛(𝑡)𝑑𝑡
1

0
= (−1)𝑛−1 𝑚!(𝑛+1)!

(𝑚+𝑛+1)!
𝐸𝑚+𝑛+1(0),            𝑚, 𝑛 ≥ 1                             (8) 

Hence, they are complete basis over the interval [0,1]. 

 

3.3 Formulation of fractional order Euler functions 

     The fractional order Euler functions are constructed by replacing the variable 𝑡 by 

𝑥𝛼 , (𝛼 > 0) in the Euler polynomials. Let the fractional order Euler functions 𝐸𝑚(𝑥𝛼) be the 

basis of degree 𝑚 and denoted by 𝐸𝑚
𝛼 (𝑥), then by using Eq. (3) we get: 

      ∑ (𝑚
𝑘
)𝐸𝑘

𝛼(𝑥)𝑚
𝑘=0 + 𝐸𝑚

𝛼 (𝑥) = 2𝑥𝑚𝛼                                                                               (9) 

and, 

       𝐸𝜶(𝑥) = 𝐴𝛼  𝑇𝜶(𝑥)                                                                                  (10)  

where   𝐸𝜶(𝑥) = [𝐸0
𝛼(𝑥), 𝐸1

𝛼(𝑥), … , 𝐸𝑚
𝛼 (𝑥)], 𝑇𝜶(𝑥) = [1, 𝑥𝛼 , … , 𝑥𝑚𝛼], 

     𝐴𝛼= 

[
 
 
 
 
 

(2−22)

1
(1
1
)𝐵1(0) 0 …                            0      

(2−23)

2
(2
2
)𝐵2(0)

(2−22)

2
(2
1
)𝐵1(0) …                            0    

⋮
(2−2𝑚+2)

𝑚+1
(𝑚+1
𝑚+1

)𝐵𝑚+1(0)

⋮
(2−2𝑚+1)

𝑚+1
(𝑚+1

𝑚
)𝐵𝑚(0)

⋱                             ⋮   

… 
(2−22)

𝑚+1
(𝑚+1

1
)𝐵1(0)

 

]
 
 
 
 
 

  

And the first fractional order Euler functions are given by:      

  𝐸0
𝛼(𝑥) = 1, 

  𝐸1
𝛼(𝑥) = 𝑥𝜶 −

𝟏

2
, 

  𝐸2
𝛼(𝑥) = 𝑥𝟐𝜶 − 𝑥𝜶, 

  𝐸3
𝛼(𝑥) = 𝑥𝟑𝜶 −

𝟑

𝟐
𝑥𝟐𝜶 +

𝟏

𝟒
, 

  and so on.       

Moreover, the fractional order Euler functions satisfy the following formula: 

  ∫ 𝐸𝑚
𝛼 (𝑥) 𝐸𝑛

𝛼(𝑥) 𝑥1−𝛼𝑑𝑥
1

0
= (−1)𝑛−1 𝑚!(𝑛+1)!

(𝑚+𝑛+1)!
𝐸𝑚+𝑛+1(0),     𝑚, 𝑛 ≥ 1.                       (11)                   

Therefore, the fractional order Euler functions are complete basis over the interval [0,1]. 

 

3.4 Fractional order Euler functions approximation 
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     A function 𝛾(𝑥) which is square integrable in [0,1] can be expanded as : 

       𝛾(𝑥) = ∑ 𝑐𝑖𝐸𝑖
𝛼(𝑥) ≃∞

𝑖=0 ∑ 𝑐𝑖𝐸𝑖
𝛼(𝑥)𝑚

𝑖=0 = 𝐶𝑇𝐸𝛼(𝑥)                                                        (12)            

where  

         𝐸𝛼(𝑥) = [𝐸0
𝛼(𝑥), 𝐸1

𝛼(𝑥), … , 𝐸𝑚
𝛼 (𝑥)]𝑇 , 𝐶 = [𝑐0, 𝑐1, … , 𝑐𝑚]𝑇  

Now, to evaluate 𝑐𝑖,  we take 

   ∫ 𝐸𝑗
𝛼(𝑥)

1

0
𝛾(𝑥)𝑥1−𝛼𝑑𝑥 = ∑ 𝑐𝑖

𝑚
𝑖=0 ∫ 𝐸𝑖

𝛼(𝑥) 𝐸𝑗
𝛼(𝑡) 𝑥1−𝛼𝑑𝑥

1

0
 ,  𝑖 = 𝑗 = 0,1,2, … ,𝑚                                                                

then     𝑎𝑗 = ∑ 𝑐𝑖𝑏𝑖𝑗
𝛼𝑚

𝑖=0  ,  

where  𝑎𝑗 = ∫ 𝐸𝑗
𝛼(𝑥)

1

0
𝛾(𝑥)𝑥1−𝛼𝑑𝑥  and  𝑏𝑖𝑗

𝛼 = ∫ 𝐸𝑖
𝛼(𝑥) 𝐸𝑗

𝛼(𝑡) 𝑥1−𝛼𝑑𝑥
1

0
   

Therefore,   

         𝐴𝑇 = 𝐶𝑇𝐵                                                                                                                      (13) 

with 𝐴𝑇 = [𝑎0, 𝑎1, … , 𝑎𝑚]𝑇, 𝐵 = [𝑏𝑖𝑗
𝛼] is (𝑚 + 1) × (𝑚 + 1) matrix,  

such that       𝐵 = ∫ 𝐸𝛼(𝑥) 𝐸𝛼(𝑥)𝑇 𝑥𝛼−1𝑑𝑥
1

0
. Then we can compute the matrix 𝐵 by using Eq. 

(11). 

 

4. The operational matrix of the fractional integration  

     The fractional Riemann-Liouville integration of order α of the vector 𝐸𝜶(𝑥) that is 

defined in (12) can be expressed by the following [31]: 

     𝐼𝛽𝐸𝛼(𝑥) = 𝑃𝛼  𝐸
𝛼(𝑥)                                                                                     (14) 

where 𝑃𝛼  is the Riemann-Liouville fractional operational matrix of integration. We 

apply the properties of the operator 𝐼𝛽 and by Eq. (10), we have: 

     𝐼𝛽𝐸𝜶(𝑥) = 𝐼𝛽𝐴𝛼𝑇𝜶(𝑥) =  𝐴𝛼𝐼
𝛽   𝑇𝜶(𝑥)                                                           (15)   

then     𝐼𝛽𝑇𝜶(𝑥) = 𝐼𝛽[1, 𝑥𝛼 , 𝑥2𝛼 , … , 𝑥𝑚𝛼]𝑇   

                     = [
𝛤(1)

𝛤(𝛽+1)
𝑥𝛽 ,

𝛤(𝛼+1)

𝛤(𝛼+𝛽+1)
𝑥𝛼+𝛽 , … ,

𝛤(𝑚𝛼+1)

𝛤(𝑚𝛼+𝛽+1)
𝑥𝑚𝛼+𝛽]𝑇        

Now, we expand  
𝛤(𝑖𝛼+1)

𝛤(𝑖𝛼+𝛽+1)
𝑥𝑖𝛼+𝛽 for = 0,1,… ,𝑚 . By using FEFs,  

     
𝛤(𝑖𝛼+1)

𝛤(𝑖𝛼+𝛽+1)
𝑥𝑖𝛼+𝛽 = ∑ 𝑢𝑗

𝑖𝐸𝑗
𝛼(𝑥) = (𝑈𝑖)𝑇𝐸𝛼(𝑥)𝑚

𝑗=0  

where 𝑈𝑖 = [𝑢0
𝑖 , 𝑢1

𝑖 , … , 𝑢𝑚
𝑖 ]

𝑇
, for 𝑖 = 0,1, … ,𝑚. Also, we can obtain 𝑈𝑖 in the same way of 

Eq.(12). Therefore,  

     𝐼𝛽𝑇𝜶(𝑥) = Ψ𝐸𝛼(𝑥)                                                                                                   (16) 

where   Ψ = [𝑈0
𝑇𝑈0

𝑇 , … , 𝑈0
𝑇]𝑇. 

Clearly, 

    

  𝑃𝛼 = 𝐴𝛼Ψ.                                                                                                       (17) 

5. The operational matrix of fractional order Euler functions including delay. 

     Let  𝑦(𝑥) ∈ 𝐿2[0,1], we can use the fractional order Euler functions to expand 𝑦(𝑥) as 

follows: 

        𝑦(𝑥) = ∑ 𝑦𝑗𝐸𝑗
𝛼(𝑥) ∞

𝑗=0 ≈ ∑ 𝑦𝑗𝐸𝑗
𝛼(𝑥) 𝑚

𝑗=0 = 𝑌𝑇𝐸𝛼(𝑥) .    

Let 𝑑 ∶ [0,1] → [0,1] be a delay function. Hence, we expand 𝑦(𝑑(𝑥))  in the same way 

        𝑦(𝑑(𝑥)) = 𝑌𝑇𝐴𝛼  𝑇𝜶(𝑑(𝑥)) , 

where  𝑇𝜶(𝑑(𝑥)) = [1, (𝑑(𝑥))𝛼 , … , (𝑑(𝑥))𝑚𝛼]𝑇 . Furthermore, we can use the fractional 

order Euler functions to expand (𝑑(𝑥))𝑖𝛼 as follows: 

        (𝑑(𝑥))𝑚𝛼 = ∑ 𝑑𝑗
𝑖𝐸𝑗

𝛼(𝑥) ≈∞
𝑗=0  ∑ 𝑑𝑗

𝑖𝐸𝑗
𝛼(𝑥)𝑚

𝑗=0 = (𝐷𝑖)𝑇𝐸𝛼(𝑥)     

  where  𝐷𝑖 = [𝑑0
𝑖 , 𝑑1

𝑖 , … , 𝑑𝑚
𝑖 ]

𝑇
. So, 

        𝑦(𝑑(𝑥)) = 𝑌𝑇𝐴𝛼  Ω 𝐸𝛼(𝑥) = 𝑌𝑇𝐷𝛼  𝐸𝛼(𝑥)                                                  (18) 
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  where  Ω =

[
 
 
 
(𝐷0)𝑇

(𝐷1)𝑇

⋮
(𝐷𝑚)𝑇]

 
 
 
 and  𝐷𝛼 = 𝐴𝛼  Ω. 

 

6. The approximate solution of fractional order delay variational problems 

     In this section, we shall consider the problem of the extermination of a functional 𝐽 of the 

form: 

   𝐽[𝑦(𝑥)] = ∫ 𝐹[𝑥, 𝑦(𝑥), 𝐷𝑎
𝑐

𝑥
𝛼𝑦(𝑥)

𝑏

𝑎
, 𝐼𝛽𝑦(𝑥), 𝑧(𝑥), 𝑦(𝑑(𝑥)), 𝑦′(𝑑(𝑥))]𝑑𝑥                         (19) 

where 𝑧(𝑥) is defined by: 

     𝑧(𝑥) = ∫ 𝐿(𝑡, 𝑦(𝑡),
𝑥

𝑎
𝐷𝑎

𝑐
𝑥
𝛼𝑦(𝑡), 𝐼𝛽𝑦(𝑡))𝑑𝑡                                                                        (20) 

and the admissible functions are 𝑦(𝑏) = 𝑦𝑏 ∈ 𝑅 and 𝑦(𝑥) = 𝜑(𝑥) for any 𝑥 ∈ [𝑎 − 𝜏, 𝑎] . The 

function  𝜑 is given. 

 

      Now, we use the operational matrix of the fractional order Euler functions to approximate 

𝐷𝑎
𝑐

𝑥
𝛼 .  This is done as follows: 

     𝐷𝑎
𝑐

𝑥
𝛼𝑦(𝑥) ≃ 𝐶𝑇𝐸𝛼(𝑥)                                                                                                       (21) 

where = [𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑛]𝑇 , 𝐸𝛼(𝑥) = [𝐸0
𝛼 , 𝐸1

𝛼 , 𝐸2
𝛼 , … , 𝐸𝑛

𝛼]𝑇. 

We apply  𝐼𝛼 on Eq. (21), hence  𝑦(𝑥) will be: 

     𝑦(𝑥) ≃ 𝐶𝑇𝑃𝛼𝐸𝛼(𝑥) + 𝑦(0) that means 

     𝑦(𝑥) ≃ 𝐶𝑇𝑃𝛼𝐸𝛼(𝑥) + 𝑦0.                                                                                                 (22) 

 

      Then Eq. (19) can be expanded into fractional order Euler functions as follows: 

𝐽[𝑦(𝑥)] = ∫ 𝐹[𝑥, (𝐶𝑇𝑃𝛼𝐸𝛼(𝑥) + 𝑦0), (𝐶
𝑇𝐸𝛼(𝑥)

𝑏

𝑎
), (𝐶𝑇𝑃𝛼𝐸

𝛼(𝑥)), (∫ 𝐿(𝑡, (𝐶𝑇𝑃𝛼𝐸𝛼(𝑡) +
𝑥

𝑎

𝑦0)   

                  , (𝐶𝑇𝐸𝛼(𝑡)), (𝐶𝑇𝑃𝛼𝐸
𝛼(𝑡)))𝑑𝑡), (𝐶𝑇𝐷𝛼  𝐸

𝛼(𝑥)), (𝐶𝑇𝐷𝛼  𝑀𝐸𝛼(𝑥))]𝑑𝑥      

Now, we define: 

     ℒ(𝑥, 𝜆) = 𝐽[𝑦(𝑥)] − 𝜆𝑔(𝑥)                                                                                              (23) 

where 𝜆 is the Lagrange multiplier and 𝑔(𝑥) is the constraint, Finally we have: 

      ℒ = ℒ(𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑛,𝜆)    

 

       Taking 
𝜕ℒ

𝜕𝑐𝑖,λ
 and setting them equal to zero. Solving for 𝑐𝑖 and λ and substituting the 

resulting values of 𝑐𝑖, 𝑖 = 0,1,2, … , 𝑛  into Eq. (22), we can attain the coveted approximate 

solution for problem (19)-(20). 

 

7. Error analysis 

     Consider 𝑦(𝑥) ∈ 𝐿2[0,1] which is expanded as: 

         𝑦(𝑥) ≃ ∑ 𝑐𝑖𝐸𝑖
𝛼(𝑥)𝑚

𝑖=0 = 𝐶𝑇𝐸𝛼(𝑥) = 𝑦𝑚(𝑥)               

     Then the following theorem gives the error bound of the fractional order Euler functions 

approximation [29]. 

 

Theorem: Let 𝐷𝑎
𝑐

𝑥
𝛼𝑦(𝑥) ∈ 𝐶(0,1], and 𝐸𝛼 = {𝐸0

𝛼(𝑥), 𝐸1
𝛼(𝑥),… , 𝐸𝑚

𝛼 (𝑥)} form a vector space. 

If 𝑦𝑚(𝑥) is the approximation solution to 𝑦(𝑥), then the error bound is given as follows: 

         ‖𝑦 − 𝑦𝑚‖
2

≤
𝑀𝛼

𝛤((𝑚+1)𝛼+1)√(2𝑚+2)𝛼+1
  ,  

where 𝑀𝛼 ≥ 𝑠𝑢𝑝𝑥∈(0,1]| 𝐷𝑎
𝑐

𝑥
(𝑚+1)𝛼𝑦(𝑥)|. 

 



Hussien and Mohammed                         Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4693- 4703 
 
 

4699 

8. Illustrative example 

     Consider the fractional order delay variational problems 

 𝐽[𝑦(𝑥)] = ∫ [( 𝐷0
𝑐

𝑥
𝛼𝑦(𝑥) − 𝛤(𝛼 + 2)𝑥)22

0
+ 𝑧(𝑥) + (𝑦′(𝑥 − 1) − 𝑦𝛼

′ (𝑥 − 1))2]𝑑𝑥,           (24)   

where  

         𝑧(𝑥) = ∫ (𝑦(𝑡) − 𝑡𝛼+1)2𝑑𝑡
𝑥

0
                                                                                         (25) 

is defined on the set 𝐶1[−1,2] under the constraints, 

           {
𝑦(2) = 2𝛼+1,                                

 𝑦(𝑥) = 0,    for all   𝑥 ∈ [−1,0].
                                                                               (26) 

First, we approximate 𝐷0
𝑐

𝑥
𝛼𝑦(𝑥) in terms of the fractional order Euler functions as, 

           𝐷0
𝑐

𝑥
𝛼𝑦(𝑥) = 𝐶𝑇𝐸𝛼(𝑥) .                                                                                                (27) 

Now, we operate 𝐼𝛼 on both sides of Eq. (27), this yields, 

              𝑦(𝑥) = 𝐶𝑇𝑃𝛼𝐸𝛼(𝑥) + 𝑦(0) 

                          = 𝐶𝑇𝑃𝛼𝐸𝛼(𝑥) .                                                                                                (28) 

Here, we shall consider n=3. So that from the conditions in Eq. (26) we have, 

            𝑔1(𝑥) = 𝐶𝑇𝑃𝛼𝐸𝛼(0) = 0                                                                                           (29) 

            𝑔2(𝑥) = 𝐶𝑇𝑃𝛼𝐸𝛼(2) − 2𝛼+1 = 0                                                                              (30) 

The terms 𝛤(𝛼 + 2)𝑥 ,  𝑦𝛼
′ (𝑥 − 1) that appeared in Eq. (24) can be decomposed using the 

fractional order Euler functions as 

             𝛤(𝛼 + 2)𝑥 = 𝑅𝑇𝐸𝛼(𝑥) 

             𝑦𝛼
′ (𝑥 − 1) = 𝑊𝑇𝐸𝛼(𝑥)          

and the term 𝑡𝛼+1 in Eq. (25) is decomposed as  

              𝑡𝛼+1 = 𝑆𝑇𝐸𝛼(𝑥) 

where, 

     𝑅 = [

1
2
0

−7.105 × 10−15

] ,   𝑊 = [

−1
2

−3.197 × 10−14

1.421 × 10−14

]     and   𝑆 = [

0.5
1
1

−2.132 × 10−14

] 

 

Define ℒ(𝑥, 𝜆1, 𝜆2) as follows: 

    ℒ(𝑥, 𝜆1, 𝜆2) = 𝑓1(𝑥) + 𝑓2(𝑥) + 𝑓3(𝑥) + 𝜆1𝑔1(𝑥) + 𝜆2𝑔2(𝑥)                                           (31)   

where, 

𝑓1(𝑥) = ∫ [𝐶𝑇𝐸𝛼(𝑥)𝐸𝛼(𝑥)𝑇𝐶 − 2𝐶𝑇𝐸𝛼(𝑥)𝑅𝑇𝐸𝛼(𝑥) + 𝑅𝑇𝐸𝛼(𝑥)𝐸𝛼(𝑥)𝑇𝑅]𝑑𝑥
2

0
                          

𝑓2(𝑥) = ∫ [∫ [𝐶𝑇𝑃𝛼𝐸𝛼(𝑡)𝐸𝛼(𝑡)𝑇𝑃𝛼
𝑇𝐶 − 2𝐶𝑇𝑃𝛼𝐸𝛼(𝑡)𝑆𝑇𝐸𝛼(𝑡) + 𝑆𝑇𝐸𝛼(𝑡)𝐸𝛼(𝑡)𝑇𝑆

𝑥

0
]𝑑𝑡]𝑑𝑥

2

0
     

and, 

  𝑓3(𝑥) = ∫ [𝐶𝑇𝐷𝛼𝑀𝐸𝛼(𝑥)𝐸𝛼(𝑥)𝑇𝑀𝑇𝐷𝛼
𝑇𝐶 − 2𝐶𝑇𝐷𝛼𝑀𝐸𝛼(𝑥)𝑊𝑇𝐸𝛼(𝑥)

2

0
 

                 +𝑊𝑇𝐸𝛼(𝑥)𝐸𝛼(𝑥)𝑇𝑊]𝑑𝑥               

 

     such that 𝑓1 and 𝑓2  are the first term and  the second term of Eq. (24), respectively. 𝑓3 is the 

last term that includes delay in Eq. (24), and  𝜆1,  𝜆2 are Lagrange multipliers.    

Now, by taking the partial derivative of  ℒ with respect to 𝑐𝑖 , 𝑖 = 0,1,2,3, we set  𝜆1 and  𝜆2 

equal to zero and  solve for 𝑐𝑖, 𝜆1 and  𝜆2, then we substitute them into Eq. (28), we obtain the 

vector values of  𝐶.  

Table 1 shows the comparison between the approximate solution to Eq. (24) for different values 

of 𝛼 and the exact solution when 𝛼 = 1 as in [32]: 

        𝑦𝛼(𝑥) = {
0,                                               𝑥 ∈ [−1,0]  

𝑥𝛼+1,                                           𝑥 ∈ [0,2]        
                                                  (32) 
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Table 1: Comparison between the approximate solution of Eq. (22) for different values of 𝛼 

and the exact solution  

 
         𝒙              Exact solution when            𝜶 = 𝟏                      𝜶 = 𝟎. 𝟗                     𝜶 = 𝟎. 𝟖𝟓           

                               𝜶 = 𝟏       

  

         0.1                   0.01                                0.016                          0.017                           0.017                                                                          

         0.2                   0.04                                0.048                          0.046                           0.046                                                                                                                                                                                                                                         

         0.4                   0.16                                0.159                          0.147                           0.142                                                                                                          

         0.5                   0.25                                0.239                          0.22                             0.211                                                 

         0.7                   0.49                                0.455                          0.415                           0.397                                                                      

         0.8                   0.64                                0.592                          0.539                           0.514 

         1                     1                                      0.926                          0.844                           0.806                                                        

         1.1                   1.21                                1.124                          1.027                           0.98                                           

         1.3                   1.69                                1.589                          1.457                           1.394                                               

         1.4                   1.96                                1.857                          1.706                           1.634                            

         1.6                   2.56                                2.466                          2.277                           2.187                           

         1.7                   2.89                                2.809                          2.6                               2.501                           

         1.9                   3.61                                3.575                          3.327                           3.209                           

         2                      4                                     4                                 3.732                           3.605            

 

                

 
Figure 1: Represent the Error curve between the   Figure 2: Represent the approximate solution 

for App. solution and the exact solution.         𝛼 = 1 and the exact solution at same 𝛼. 
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Figure 3: Represent the approximate solution for         Figure 4: Represent the approximate 

solution for  𝛼 = 0.9 and the exact solution at same 𝛼  𝛼 = 0.85 and the exact solution at same 

𝛼       

 

9. Conclusion 

     This paper introduces an efficient technique for approximating the solution to 

fractional order delay variational problems using the operational matrices of the fractional 

Euler polynomials. The fractional derivative in the present paper is defined in the Caputo 

sense. The unknown function was decomposed in terms of the fractional Euler polynomials 

operational matrices which contain the unknown vector of coefficients. The proposed 

technique converted the original variational problem into a system of algebraic equations. 

Solving the resulting system gives us the unknown coefficients vector and then the desired 

solution. The numerical results approve that the proposed method is accurate and relatively 

simple to implement and has good accuracy. 
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