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Abstract

In this paper, we introduce an approximate method for solving fractional order
delay variational problems using fractional Euler polynomials operational matrices.
For this purpose, the operational matrices of fractional integrals and derivatives are
designed for Euler polynomials. Furthermore, the delay term in the considered
functional is also decomposed in terms of the operational matrix of the fractional Euler
polynomials. It is applied and substituted together with the other matrices of the
fractional integral and derivative into the suggested functional. The main equations
are then reduced to a system of algebraic equations. Therefore, the desired solution to
the original variational problem is obtained by solving the resulting system. Error
analysis has been discussed. An illustrative example is given in order to illustrate that
the proposed method is very accurate and efficient for solving such kinds of problems.

Keywords: Calculus of variation, fractional order derivatives, operational matrix,
Euler polynomials, fractional order Euler functions.
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Fractional calculus is one of the most interdisciplinary fields of applied mathematics which
deals with the derivative and integrals of any order. Nowadays, it is used to advance
mathematical models of real-world phenomena in various areas of science and engineering [1-
3]. Fractional order derivatives are naturally related to the systems with memory that dominate
most of the scientific system models. Models and applications containing fractional derivatives
can be found in chemical physics, probability physics, astrophysics, and various fields of
engineering [4-6]. There are many definitions of a fractional derivative, The commonly known
fractional derivatives are the classical Riemann-Liouville and Caputo derivative. Fractional
derivatives and integrals of these Riemann-Liouville and Caputo types have a huge number of
applications in many fields of science and engineering [7-11].

The calculus of variation has a long history of communications with other fields of
mathematics such as differential equations, geometry and with physics. However, the calculus
of variation has found applications in economics and some branches of engineering [12-14]. A
fractional calculus of variations problem is a problem in which either the objective functional
or the constraint equations or both consist of at least one fractional derivative term. In recent
years, many numerical and approximate methods have been used to solve fractional
order problems such as the homotopy analysis method, variational iteration method,
homotopy perturbation method, wavelet method, collocation method, spectral tau
method, finite element method and other methods, see [15-21]. Recently, many
researchers used different functions and polynomials. For some orthogonal
polynomials, the operational matrices of fractional integrals and derivatives have been
derived such as Bernstein polynomials, the Legendre polynomials, Jacobi
polynomials, Chebyshev polynomials and Laguerre polynomials [22-26]. Inclusion of
delay in the fractional order variational problems seems to be opening new vistas, especially
in the field of bioengineering [27].

In this paper, the fractional order Euler functions based on Euler polynomials are used for
solving fractional order delay variational problems. The operational matrix is derived for the
fractional integration. By using the operational matrix of fractional integration and the
fractional order Euler functions, we convert the varational problem into a system of linear
algebraic equations. Numerical solutions are obtained by solving this linear system. By
comparing the exact solution with the numerical solution using the proposed method,
we exhibit the precision and efficiency of the proposed technique for various values of
.

2. Preliminaries and notations

In this section, we introduce some basic definitions of fractional calculus, namely the
definition of Riemann-Liouville fractional order integral and Caputo fractional order derivative
[28].

Definition 1: The Riemann-Liouville fractional integral operator I* of order a of a function
f € C,and u = —1 is defined as follows:

1 t —
1 F () = mfo(t -0 f()dr, a>01>0
f@©, a=0
where I'(a) is the Gamma function.
For the Riemann-Liouville fractional integral, we have:
- 1A f(8) + A,9() = LI%F(t) + A,1%g(t) , A, andA, are constants.

1)
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2. IallaZf(t) — 1a1+a2f(t).
3- IallaZf(t) — 1a2 Ialf(t)

_jaB = LBHD a4p .
4o 1P = st B>-1.

Definition 2: The Caputo fractional derivative of order « of a function f € Cj* and u = —1,
is defined as follows:

(m)
1 ft (@ dti, m—1<a<m1>0meEN

§DE f(0) = r(m_“)di (t-pyatim o
an /@ a=m.
For the Caputo fractional derivative and a > 0, we have:
1- §DF (1°f (1) = f (), t>0
k
2- 1% (§DEF (D) = F(©) = Zp2d f0(0,) =
3'8Dta(c):0; CER

r(f—a+1)

3. Fractional order Euler functions
In this section, we give some definitions and basic properties of the Euler polynomials
that are used in this paper [29].

3.1 Euler polynomials
The Euler polynomials basis of degree n which is denoted by E,, (t) are introduced by
using the following relation:

Sr-o()Er(®) + En () = 26, 3)
where (}7) is a binomial coefficient, and the Euler vector E(t) is defined as follows:
Then, using Eq. (3), we can write E(t) as follows:
E(t) =AT(b) (5)

where T(t) = [1,¢,t?,...,t"] and A is an upper triangular matrix with non-zero diagonal
elements, thus it is a non-singular matrix and then A~1 exists.

3.2 Euler polynomials Properties
The Euler polynomials have the following interesting properties for all n = 1,2, ...
1- En(t) = nE,_4(¢) .
2- B, (t+ 1) + E () = 2t™
3- [ E,(dt = — 20,

n+1

1 _
4- En(t) = mzz:%(z _ 2k+1)(n;1)3k(0) tn+1 k,

where B (t) are the Bernoulli polynomials of order k for , k = 0,1, ..., which are
defined as follows:
Z:o("Zl)Bk(t) =+ Dt". (6)

Using the last property, the Euler polynomials can be expressed in the following matrix
form:

E(t) =AT(t)
where
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_22
2 12 )(1)31(0) 0 0

4e E20)B,) ez (2)31(0) 0

_(2 on+2 )(”+1)Bn+1(0) (2—-2" )(n+1)B o) . (2 22 )(n+1)Bl(0)

n+1 n+i1
We can write the following relatlon by means of property (1)

E't)T = ME(®)T,

where
0 0 0 .. 0 0 0
1 0 0 .. 0 0 0
m=[02 0 000

000" no1 0 0
o oo~ o = o

Such that M is the operational matrix of differentiation. Hence, the k" derivative of
E (t) can be constructed as [30]:
E®@®T = (MTXE()T (7)
Also, the Euler polynomials satisfy the following formula:
Jy Em@En(@®dt = (~D)" g, 0 (0),  mn=1 (8)

(m+n+1)!
Hence, they are complete basis over the interval [0,1].

3.3 Formulation of fractional order Euler functions

The fractional order Euler functions are constructed by replacing the variable t by
x%, (a > 0) in the Euler polynomials. Let the fractional order Euler functions E,,, (x%) be the
basis of degree m and denoted by E (x), then by using Eq. (3) we get:

ieo(R)ER () + Efi(x) = 2x™ (9)
and,
E%(x) = A, T*(x) (10)
where E%*(x) = [E§ (x), Ef(x), ..., E5(x)], T*(x) = [1,x%, ..., x™4],
- _22
(2—12)(1)31(0) 0 0
(2-2%) (2-2%)
A= T@)BZ(O) . (3)B1(0) 0
(2-2m*2) . (2—2mt1 . .(2 2)
E2D (i () EED (MR, (0) ("‘“)Bl(m
And the first fractional order Euler functions are given by:
Eg(x) =1,
Ef(x) = x* -3

E%(x) = x2* — x%,
E%(x) = x3% — ;xz"‘ + %,
and so on.
Moreover, the fractional order Euler functions satisfy the following formula:
1 _ _1 m!(n+1)!
fO E%(X) Eg(X) x17%dx = (-1)“ 1mEm+n+1(0), mn = 1. (11)
Therefore, the fractional order Euler functions are complete basis over the interval [0,1].

3.4 Fractional order Euler functions approximation
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A function y(x) which is square integrable in [0,1] can be expanded as :
Y (@) = 52 GE(x) = XM S (x) = CTE(x) (12)

where

E%(x) = [E§ (%), Ef (x), ., ER. ()], € = [co,¢qy s Cm]”
Now, to evaluate c;, we take

fol Ef () y(x)x'~%dx = X%, ¢ fol Ef(x) Ef(t) x'%dx, i=j=012,..,m

then a; =X, cibjj,
where a; = fol Ef(x) y(x)x'~*dx and bf; = fol Ef(x) Ef(t) x'%dx
Therefore,

AT =C"B (13)
with AT = [ay, ay, ..., am]", B = [bf%] is (m + 1) X (m + 1) matrix,
suchthat B = f01 E%*(x) E®(x)T x* 1dx. Then we can compute the matrix B by using Eq.
(112).

4. The operational matrix of the fractional integration

The fractional Riemann-Liouville integration of order a of the vector E*(x) that is
defined in (12) can be expressed by the following [31]:

IBE“(x) = P, E%(x) (14)
where P, is the Riemann-Liouville fractional operational matrix of integration. We
apply the properties of the operator I”? and by Eq. (10), we have:

IBE®(x) = IPA,T*(x) = A IP T*(x) (15)
then IPT%(x) = IP[1,x%,x%%, ... ,x™]T
_ [ r() B I'(a+1) a+pB r(ma+1) ma+B]T
r(g+1) "r'(a+p+1) P r(ma+B+1)
Now, we expand %xi‘”ﬁ for = 0,1, ..., m . By using FEFs,
r@a+l) _ia+p _ym ., ipa — (INT
ra+f+n ™ = 2=y B (1) = (U)TE ()

where Ut = [ub,ul, .., ul,]", for i = 0,1, ..., m. Also, we can obtain U' in the same way of
Eq.(12). Therefore,

IBT*(x) = WE%(x) (16)
where ¥ = [UJUL, ..., Ul1T.
Clearly,

P, =A,Y. (17)

5. The operational matrix of fractional order Euler functions including delay.
Let y(x) € L?[0,1], we can use the fractional order Euler functions to expand y(x) as
follows:

y(x) = X720y Ef (x) = XLoviEf(x) =YTE*(x).
Letd : [0,1] — [0,1] be a delay function. Hence, we expand y(d(x)) in the same way
y(dx) =YTA4, T*(d(x)),
where T%(d(x)) = [1,(d(x))%, ..., (d(x))™*]T. Furthermore, we can use the fractional
order Euler functions to expand (d(x))* as follows:

dO)™ = Y2 diEF (x) = Lo diEF (x) = (DHTEY(x)
where D = [di, di, ..., d%]". So,
y(d(x)) =YT4, QE*(x) =Y"D, E*(x) (18)
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(D"
(O>HT

where Q = and D, = A, Q.

L(o™yT]

6. The approximate solution of fractional order delay variational problems
In this section, we shall consider the problem of the extermination of a functional J of the
form:

Jly()] = ff Flx,y(x), D2y (x), 1Py (x),z(x), y(d(x)),y'(d(x))]dx (19)
where z(x) is defined by:
z(x) = [ L(t,y(), SDFy (1), 1Py (t))dt (20)

and the admissible functions are y(b) = y, € R and y(x) = ¢(x) forany x € [a — 7,a] . The
function ¢ is given.

Now, we use the operational matrix of the fractional order Euler functions to approximate
¢Dg . This is done as follows:

aDZy(x) = CTE*(x) (21)
where = [cg, ¢1,C2, oo, Cn)T L E¥(x) = [ES, ES, ES, ..., EZ]T.
We apply 1% on Eq. (21), hence y(x) will be:

y(x) = CTP,E%(x) + y(0) that means

y(x) = CTPE*(x) + yo. (22)

Then Eq. (19) can be expanded into fractional order Euler functions as follows:
][)’(x)] = f: F[x! (CTPaEa(x) + }’o), (CTEa(x))’ (CTP(XEa(x))ﬂ (f:L(tl (CTPaEa(t) +
J’O)

,(CTE®(1)), (CTP,E*(2)))dt), (CTDy E*(x)), (CT Dy ME(x))]dx
Now, we define:

L(x, ) =][y(x)] = 1g(x) (23)
where A is the Lagrange multiplier and g(x) is the constraint, Finally we have:
L = L(cy,Cq,Cp, s CpA)

Taking % and setting them equal to zero. Solving for c;and A and substituting the
ir

resulting values of ¢;,i = 0,1,2,...,n into Eqg. (22), we can attain the coveted approximate
solution for problem (19)-(20).

7. Error analysis
Consider y(x) € L?[0,1] which is expanded as:
y(x) = Mo cEE(x) = CTE4(x) = Y (%)
Then the following theorem gives the error bound of the fractional order Euler functions
approximation [29].

Theorem: Let $DZy(x) € C(0,1], and E* = {E§ (x), E{f (x), ..., Ef (x)} form a vector space.
If y,,,(x) is the approximation solution to y(x), then the error bound is given as follows:

Mgy
Iy =ymll, < e fammer
where My = sup.e(o,1] szaEmH)ay (x)|'
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8. lllustrative example
Consider the fractional order delay variational problems

Jly(0)] = foz[(SD?y(X) —T'(a+2)x)%+2z(x) + (' (x — 1) — ya(x — 1))?]dx,
where
2(x) = [ y(®) — t**h)2dt
is defined on the set C1[—1,2] under the constraints,
{y(z) = 20%1,
y(x) =0, forall x € [-1,0].
First, we approximate §DZy(x) in terms of the fractional order Euler functions as,
D2y (x) = CTE*(x) .
Now, we operate 1% on both sides of Eq. (27), this yields,
y(x) = CTPE*(x) + y(0)
= CTP,E*(x) .
Here, we shall consider n=3. So that from the conditions in Eq. (26) we have,
91(x) = CTP,E*(0) = 0
g.(x) = CTP,E*(2) —2%t1 =0

(24)

(25)

(26)

(27)

(28)

(29)
(30)

The terms I'(a + 2)x, y,(x — 1) that appeared in Eqg. (24) can be decomposed using the

fractional order Euler functions as
I'(a+2)x = RTE*(x)
Ya(x —1) = WTE*(x)

and the term t**1 in Eq. (25) is decomposed as
ta+1 — STEa(x)

where,
1 -1 0.5
_ 2 _ 2 _ 1
R= 0 » W=|_3197x10-14| 2 S= 1
—7.105 x 10715 1.421 x 10714 —2.132 x 10714

Define L(x, 44, 1,) as follows:
L(x,21,23) = f1(x) + fo(x) + f3(x) + 2191 (x) + 1, 9,(x)
where,

fi(x) = fOZ[CTE“(x)E“(x)TC — 2CTE*(x)RTE*(x) + RTE*(x)E%(x)TR]dx

(31)

f(x) = [JITICTPEC(DE* (TP, C — 2CTP,E*(0)STE*(t) + STEX()E* ()" S]dt]dx

and,
f5(0) = [EICTDaME®()E“(x)"MTD,"C — 2CT DuME® (X)W E“(x)
+WTE*(x)E*(x)TW]dx

such that f; and f, are the first term and the second term of Eq. (24), respectively. f; is the

last term that includes delay in Eq. (24), and A1,, A, are Lagrange multipliers.

Now, by taking the partial derivative of £ with respect to ¢;,i = 0,1,2,3, we set 1; and A,
equal to zero and solve for c;, 4, and A,, then we substitute them into Eq. (28), we obtain the

vector values of C.

Table 1 shows the comparison between the approximate solution to Eq. (24) for different values

of a and the exact solution when a = 1 as in [32]:
()_{ 0, x € [—1,0]
YalX) = g+, x € [0,2]
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Table 1: Comparison between the approximate solution of Eq. (22) for different values of «
and the exact solution

X Exact solution when a=1 a=0.9 a=0.85
a=1

0.1 0.01 0.016 0.017 0.017
0.2 0.04 0.048 0.046 0.046
0.4 0.16 0.159 0.147 0.142
0.5 0.25 0.239 0.22 0.211
0.7 0.49 0.455 0.415 0.397
0.8 0.64 0.592 0.539 0.514
1 1 0.926 0.844 0.806
1.1 1.21 1.124 1.027 0.98
1.3 1.69 1.589 1.457 1.394
14 1.96 1.857 1.706 1.634
1.6 2.56 2.466 2.277 2.187
1.7 2.89 2.809 2.6 2.501
1.9 3.61 3.575 3.327 3.209
2 4 4 3.732 3.605

Exact solution when a=1

""" Appr. solution when a=1

0.06 -
0.04 -
0.02 -

ot

-0.02

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2 0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2

Figure 1: Represent the Error curve between the Figure 2: Represent the approximate solution
for App. solution and the exact solution. a = 1 and the exact solution at same a.
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= Exact solution when a=0.85

Exact solution when a=0.9 - 351
""" Appr. solution when a=0.85

""" Appr. solution when a=0.9

0 0.2 0.4 0.6 0i8 1 1.2 1j4 1.6 1‘.8 2 0 0.2 O,‘4 0.‘6 0j8 1 12 14 1‘,6 1‘8 2
Figure 3: Represent the approximate solution for Figure 4: Represent the approximate
solution for @ = 0.9 and the exact solution at same a« a = 0.85 and the exact solution at same
a

9. Conclusion

This paper introduces an efficient technique for approximating the solution to
fractional order delay variational problems using the operational matrices of the fractional
Euler polynomials. The fractional derivative in the present paper is defined in the Caputo
sense. The unknown function was decomposed in terms of the fractional Euler polynomials
operational matrices which contain the unknown vector of coefficients. The proposed
technique converted the original variational problem into a system of algebraic equations.
Solving the resulting system gives us the unknown coefficients vector and then the desired
solution. The numerical results approve that the proposed method is accurate and relatively
simple to implement and has good accuracy.
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