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Abstract  

     Due to the potential security problem of the key management and distribution for 

the symmetric image encryption schemes, this paper proposes a new asymmetric 

image encryption method based on a singular cubic curve and chaos theory. The 

Diffie-Hellman algorithm is used to generate the initial values of a chaotic map by 

exchanging public keys. The image encryption process is carried out using a chaotic 

map, in which a random sequence of the same length as the image to be encrypted is 

generated using the standard map, and then bitwise XOR is used to create confusion 

in the image's pixels. Also, an Arnold cat map is used to change the location of 

pixels and  diffusion in them is obtained. Gray images with size 256×256 are used in 

this algorithm. The simulation results and security analysis indicate that the scheme 

can withstand common attacks such as statistical attacks, differential attacks, and 

other attacks. 

 

Keywords: Image Encryption, Asymmetric Image Encryption, Singular Cubic 

Curve, Chaotic Map. 

 

منحنى مكعب انفرادي النقط ودالة فوضوية ىبالاعتماد علتشفير الصور باستخدام المفتاح المعلن   
 

 نجلاء فلاح حميد الصفار*, ديمحمد جبار عب

 قسم الرياضيات، كلية علوم الحاسوب والرياضيات، جامعة الكوفة، النجف، العراق 
 

  الخلاصة 
نظرًا لمشكلة الأمان الخاصة بإدارة المفاتيح وتوزيعها لأنظمة تشفير الصور المتماثلة، تقترح هذه الورقة      

مكعب مفرد النقط ونظرية الفوضى. تُستخدم  باستخدام منحنىطريقة جديدة لتشفير الصور غير المتماثلة 
ادل المفاتيح المعلنة. يتم تنفيذ عملية خوارزمية ديفي هلمان لتوليد القيم الأولية لدالة فوضوية عن طريق تب

عشوائي بنفس حجم الصورة المراد تشفيرها  تسلسلحيث يتم إنشاء  فوضوية،تشفير الصور باستخدام دالة 
، في الصورة بكسلاتال قيماجل تغيير  الثنائية منثم يتم استخدام عملية الجمع  القياسية،باستخدام الدالة 

في هذه  652×  652 الرمادية بحجم. تستخدم الصور بكسلاتال موقعدالة ارلوند لتغيير  وتستخدم
الخوارزمية. تشير نتائج المحاكاة والتحليل الأمني إلى أن النظام يمكنه الصمود أمام الهجمات الشائعة مثل 

 الهجمات الإحصائية والهجمات التفاضلية والهجمات الأخرى.
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1. Introduction 

     The transmission of multimedia information over various networks has been greatly 

facilitated by the rapid expansion of network evolution. Most of these transmissions contents 

have occurred over an unsecured network which increases the likelihood of data loss, 

interception (i.e., illegal copying and distribution), and malicious tampering. As a result, there 

is a growing that concerns about the safety of multimedia data, particularly in the context of 

big data and cloud computing. As a result, there has been growing scholarly interest in the 

problem of image protection [1]. 

 

     Cryptography is a mathematical method that is used to keep images and text safe from 

attackers and makes communication more secure. The encryption is performed by the sender, 

who converts the plain image into an encrypted image before sending it to the receiver via the 

Internet. Decryption is performed at the receiver's end, where the encrypted image is 

converted back to its plain image. There are two types of encryption methods that are used, 

namely symmetric encryption and asymmetric encryption. In symmetric encryption, both 

encrypting and decrypting use the same key. These algorithms work well and quickly, 

especially when a lot of information needs to be processed. However, symmetric encryption 

suffers from the difficulties of key management and distribution. The key must be sent 

securely over the network, but attackers can steal it while it is being sent. In fact, as the 

number of users grows, the number of keys will grow quickly which is hard on the network. 

Asymmetric (public-key encryption, PKE) encryption solves these problems by using two 

different keys public and private to encrypt and decrypt messages. It is difficult to obtain the 

private key from the public key. So, in this encryption, the private key does not need to be 

shared because the receiver already has one. So, the problem with how the key is shared does 

not matter for the encryption. It can also offer a digital signature that symmetric encryption 

cannot do. The two most complex mathematical problems in public-key encryption are the 

discrete logarithm problem and the factorization problem [2]. 

 

     Miller [3] and Koblitz [4] developed elliptic curve cryptography (ECC) in 1985, a modern 

PKE that improves the efficiency of many techniques. Encryption experts have also found 

that ECC offers superior security with significantly smaller key sizes. Selecting the elliptic 

curve without a subexponentially technique has made the ECC more interesting because it 

allows us to solve the discrete logarithm problem. Compared to other algorithms, ECC's small 

parameters do not compromise its security. Reducing the need for memory, CPU time and 

network throughput make elliptic curve cryptography a more viable option. The Diffie-

Hellman algorithm for elliptic curves [5] is widely used as a key exchange scheme in a variety 

of contexts. A singular cubic curve is a curve given by the Weierstrass equation         
           

          that contains a singular point       and discriminant △ = 0 

[6]. To propose new encryption systems, Koyama [7] replaced the elliptic curve with a 

singular cubic curve. 

     Numerous image encryption methods including DES, AES, RSA, etc. are based on number 

theory that was developed to address this security concern. Although these methods of 

encryption exist, they are not particularly effective when it comes to protecting visual content. 

This is because the images contain large amounts of data and have a high correlation between 

adjacent pixels and  a high degree of redundancy, etc. [8]. 

     In the past two decades, continuous and discrete chaotic dynamical systems were 

employed to construct cryptosystems [9] [10]. Chaos theory is used in cryptography for a 

variety of reasons that are inherent to the theory. These chaotic qualities include things like 

ergodicity, random-like behaviour, mixing properties, and sensitivity to the initial state and 

control settings. Chaos-based image encryption was implemented using a general confusion 
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and diffusion architecture [11]. The pixels in an image are shuffled about in the confusion 

stage, but their values remain the same. The pixel values are changed in the diffusion stage to 

make it possible for a little change in one pixel to affect as many pixels as possible. 

 

     In this paper, the asymmetric image encryption algorithm is proposed based on singular 

cubic curves and chaotic maps such that singular cubic curve asymmetric cryptosystem and 

chaotic map are combined to get a new asymmetric cryptosystem. The proposed algorithm 

uses a singular cubic curve to generate the key which is then used as input for the chaotic 

maps through which the images are encrypted. 

 

     The rest of this work is organized as follows: In Section 2, the preliminary aspects of this 

paper are described. Section 3 gives details on the specifics of the proposed technique. 

Section 4 provides a comprehensive analysis of the proposed method. The conclusion of the 

research is provided in Section 5. 

   

2. Preliminaries 
     This section gives context for and a precise explanation of the two research pillars: the 

singular cubic curve and the chaotic map. 

 

2.1 Singular Cubic Curve (SCC) 

   A singular cubic curve over prime field    is defined by 

                                                                                                                    (1) 

 where     is a prime number and       . A nonsingular part of a singular cubic curve is 

denoted by         which is defined as a set of all solutions             in curve 

equation         that excludes the singular point       and includes the point at infinity    

[12]. 

Theorem 2.1 ([6]). Let         be a singular cubic curve. Then for each      there exists 

the map               is defined by           ,        (           

   –     ). 

 

2.1.1 Addition Laws on Singular Cubic Curve  

   The addition law ⊕ on         is defined by the chord-and-tangent method in the case of 

elliptic curves nonetheless preserve in the case of singular cubic curves. For each point 

                 ,  ⊕     , and                 the additive inverse of  , 

so  ⊕        . For             and            .    ⊕                 is 

calculated as follows: 

   

{
 
 

 
                                     

     

     

                  

                                   
   

          

       

                  

                     

 

        is a finite Abelian group since this addition law exists. The scalar multiplication                                 

   ,        is defined as       ⊕  ⊕  ⊕  ⊕   ⏟              
       

 [6] [12]. 

 

2.1.1 Singular Cubic Curve Discrete Logarithm Problem  

    Curves can be used to define the discrete logarithms problem for a finite group of the curve 

  that is generated by a point  . Finding an integer   such that       is the discrete 

logarithm problem. The discrete logarithm of a point Q to P, where q is a different point on E, 
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is the integer   [13]. In this section, the discrete logarithm problem is particularly proven on 

singular cubic curve           
              . 

 

Definition 2.2 ([6]). Order of elements in a group        . The order of a point           

is the smallest positive integer   such that         , it is denoted by   . The order of a 

        is the number of its points, it is denoted by         . 

 

Definition 2.3 ([14]). A finite group   is called cyclic if there exists an element     such 

that each element in   can be written as   ,     .     will be a generator of  , denoted by  

   . 

 

Definition 2.4 A finite group         is called a cyclic group if there exists a point   

        generates each point in        . The generator set will be denoted by       such 

that                   {               }       
Remark 2.5 If   is a generator of        , then            . 

Example 2.6 Consider the singular cubic curve             
                 which has 

the corresponding group: 

{                                                                      }  
Order of point         is equal to   , such that          ,           ,     
      ,         ,          ,          ,          ,           , 
          ,            ,        . In the same way, the order of all the 

points can be calculated. Note that point   is a generator of group         . 
 

Proposition 2.7 A group         is a cyclic group of order  ,        if only if it has a point 

  of order  . 

Proof. Forward part. Suppose         is a cyclic group of order  . This means         is 

generated by a point            , i.e.,                  {                 }  

Since            , therefore       . Then   is a point of order  . 

   Backward part. Suppose            ,             for some           . The subset 

of         generated by   is given as follows: 

       {                 } 
This contains   points. Thus               . This result comes from Definition 2.4.  

 

Definition 2.8 Let         be a finite cyclic group of order  . Let point   be a generator of 

       , and           . The Discrete Logarithm is the problem of finding an integer   

such that       . The number   is called the Singular Cubic Curve Discrete Logarithm 

Problem of   to point  . 

 

Remarks 2.9: 

1- A singular cubic curve           
               with a quadratic nonresidue  . For 

any integer  ,             will be used to get the best security in image encryption where 

the groups         and    are not isomorphic [15]. 

2- If         and    are isomorphic, then the difficulty level of solving the singular cubic 

curve discrete logarithm problem has the same level as solving the discrete logarithm problem 

of   . On the other hand, if          and    are not isomorphic, then the difficulty level of 

solving the singular cubic curve discrete logarithm problem has the same level as solving the 

elliptic curve discrete logarithm problem. That means, if a singular cubic curve is used as a 

tool, then a different approach to a public key cryptosystem will be involved. 
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2.1.2 Singular Cubic Curve Diffie–Hellman (SCCDH) Key Exchange 

   Two users on a network can exchange a shared session key in a secure manner using the 

SCCDH key exchange. The following describes how the key exchange is done: 

 User A and user B agree on a singular cubic curve         and an element      such 

that it can be converted to a large-order point   using Theorem 2.1. 

 User A chooses a secret integer   and calculates the point                    . 

 User B chooses a secret integer   and calculates the point                    . 

  Exchanged values of   and   between user A and user B. 

 User B calculates       while user A calculates      . 

 They have now shared the                value. 

    The SCCDH security is based on the difficulty of solving the singular cubic curve discrete 

logarithm problem that was defined in 2.8. 

 

2.2 Chaotic Map 

     Chaotic maps are extremely sensitive to initial values and control factors. Any minimal 

alteration to the basic circumstances results in a remarkable deviation. This sensitivity 

severely restricts the ability to forecast. Initial conditions are used as a cryptographic key in 

chaos-based encryption techniques [16]. 

2.2.1 Standard Map  

   The standard map can be defined by the mathematical formula [17]: 

                                                      {
                       
                              

                                      (2) 

where          [       [     , and the constant      . The level of chaos on the map 

increases proportionally with each successive increase in α value. Figure 1 shows different 

orbits on the standard map for different values of  . The dotted orbit is chaotic and develops 

in a large region of phase space as a random set of points, but the rest are periodic or quasi 

periodic. 

Remark 2.10 The modulo    (       ) is the remainder after dividing any real number by 

  . For example, 51.4        equals 1.1345 because 51.4/2π=8 with a remainder of 1.1345. 

 

   
(a)        (b)       (c)       

   
(d)     (e)     (f)     

 

Figure 1: Orbits of the standard map of   values. 
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2.2.2 Arnold Cat Map  

     The Arnold cat map (ACM) is a discrete system with paths that move around in phase 

space and stretch and fold. Vladimir Arnold made the ACM in the 1960s. He used a picture of 

a cat , the size of the original grayscale image is     [18]. So the ACM will be as follows: 

                                                  [
  

  ]   [
 
 ]  [

  
     

] [
 
 ]        .                            (3) 

     It is an area-preserving map where   and   are positive integers and          . In the 

aftermath of a single execution of the Arnold cat map, the starting pixel location       will be 

located at        . 

Remark 2.11 The original image will resurface if the process is repeated enough times. 

 

3. The Proposed Algorithm 

     In the proposed encryption algorithm, a SCC is used to give the sender and receiver a 

shared secret key with this key the control parameters of the chaotic map are set. Using the 

standard map, a random sequence of the same length as the plain image is made. After that 

applied the integer valued function for each value in this sequence, then bitwise XOR 

operation, denoted by ⊕   , is used to get confused in the pixels of the image. Finally, 

Arnold cat map is used to change pixels and gets diffusion in pixels of the image. So, the 

encrypted image          is obtained. The procedures of this algorithm are described below:  

Key Creation Level: To create keys, the sender and receiver make the following steps: 

 

step 1. Sender and receiver agree on a singular cubic curve         and an element           

such that it can be converted to a large-order point   using Theorem 2.1, they applied 

SCCDH to get        . 

step 2.    and    will used to generate initial values   ,    and the constant α for the standard 

map, as             ,              and               +2. Then a vector   will 

be obtained by repeating the standard map; the number of elements in this vector is equal to 

the size of the image which is       as is shown below: 

                                  
   

 
. 

step 3. Round elements of the vector   to the closest integer    and    will be involved 

together in this step as follows: 

                            , and                               , such 

that                and                is the process of rounding the numbers 

        and         to the closest integer, where   {        
   

 
}. 

step 4. Convert the vector                       to a matrix   of size    . The process 

for converting a vector   is calculated by: 

                               

[
 
 
 
 
           

           

          

          

           

   
           

          

 
    ]

 
 
 
 

   

                               (4) 

step 5. Create the matrix   in terms of ACM;    and    are also involved in this 

construction, as:   [
   

        
]. 

 

Encryption Level: The sender encrypts the plain image   using a bitwise XOR operation 

between elements of matrix   and pixels of the image   where the matrix’s elements and the 
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image’s pixels are both converted to binary numbers. After that, the Arnold cat map is used to 

change the location of pixels as  shown in the following steps: 

 

step 1.          ⊕        , where      pixels of plain image   and      elements of the 

matrix  .  

step 2.  Use ACM to change the location of      as shown below: 

                                 [
  

  
]   [

 
 
]  [

   

        
] [

 
 
]                                                    (5) 

with          , so the pixel location that was previously situated at       will be located 
       , As in Figure 1. Consequently, the cipher image   is acquired. 

Decryption Level: The cipher image   will be decrypted by the receiver as shown in the 

following steps: 

step 1.  Use the Arnold cat map to return the location of pixels from         to       as 

shown below: 

                                [
 
 
]     [

  

  
]  [

         

    
] [

  

  
]        ,                                   (6) 

where     is inverse of the matrix  .  

step 2. Use          ⊕         then receiver gets plain image  .  

3.1 Implementation 

   The implementation was performed using MATLAB Version 9.12.0.1884302 (R2022a) on 

a Lenovo Legion 5 laptop powered by an AMD Ryzen 5 4600H 3.00 GHz processor with 

8GB of RAM. Four grayscale images with a size of          were used to implement the 

proposed algorithm. The plain images, cipher images, and decrypted images are all displayed 

in Figure 2. 

 

(a) (b) (c) 

 

(d) (e)     (f) 

(g) (h) (i) 

 

(j) (k) (l) 

Figure 2: Implement the proposed algorithm: (a) Original image of Baboon, (b) Encrypted 

image of Baboon, (c) Decrypted image of Baboon, (d) Original image of Lena, (e) Encrypted 

image of Lena, (f) Decrypted image of Lena, (g) Original image of Peppers, (h) Encrypted 

image of Peppers, (i) Decrypted image of Peppers, (j) Original image of Barbara, (k) 

Encrypted image of Barbara, and (l) Decrypted image of Barbara. 

 

4. Simulation results and analysis 

     A series of experiments are conducted to assess the effectiveness of the proposed image 

encryption scheme. This section presents the results of tests conducted to determine the 

efficacy of the proposed algorithm. Several tests are conducted on various images to 

determine the level of security and performance of the cryptosystem. 
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4.1 Key Space Analysis 

     A logical encryption scheme’s key space must be large enough to withstand brute-force 

attacks [19]. The proposed algorithm employs the public and private keys of an SCC 

Cryptosystem. The private key is safeguarded and kept secret, whereas the public key is open 

to all. Furthermore, the key size determines the security of any algorithm. If the key is large, a 

brute force attack will be tough. The singular cubic curve discrete logarithm problem’s 

(SCCDLP) difficulty. The SCCDLP is the most difficult mathematical problem. A 256-bit 

SCC prime parameter   (SCCC-256) has a key size of 256 which is large enough to survive 

brute force assaults. 

 

4.2 Key Sensitivity Analysis 

     A secure image encryption technique should be sensitive to even minor changes in the 

decryption key. A good encryption algorithm must be extremely sensitive to the key. For 

testing sensitivity, the image of Lena is encrypted with the         and         keys and 

decrypted with the       and    keys as shown in Figure 3. 

 

 
                 (a)                  (b)                      (c) 

Figure 3: Key sensitivity test: (a) Original image of Lena, (b) Encrypted image of Lena using 

   and   , and (c) Decrypted image of Lena using       and    

 

4.3 Statistical Analysis 

     Statistical analysis can be used to determine whether an encryption system has the capacity 

to withstand an attack based on statistical data [20]. For statistical analysis, two methods of 

measurement are used: histogram analysis, and correlation coefficient analysis.  

 

4.3.1 Histogram Analysis 

     A histogram displays the variance in pixel brightness within an image. To ensure 

successful encryption, the image’s histogram must be uniform and flat. As a result, there is 

nothing to disclose concerning the original photograph [21]. Figure 4 shows that the 

histogram of the encrypted image is uniform and clearly different from the histogram of the 

original image. Thus, it can protect itself from statistical assaults. In addition, the histogram's 

uniformity can be assessed using a chi-squared test [8] which is calculated as follows: 

                                                                           

 ∑
       

 

   

   

                                                                            

 

       where    represents the frequency with which a given pixel value appears in the image, 

and    
   

   
. Assuming a 0.05 significance level,          

  equals         . If the value of 

   is less than         , then the histogram of the encrypted image is regarded as uniform. 

Table 1 demonstrates that the chi-square test for encrypted images yields small values. 

 

 



Obaid and Al Saffar
 
                                 Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2605-2618 

 

2613 

Table 1: Chi-squared test. 

Images Baboon Lena Peppers Barbara 

   234.9609 243.5703 268.2109 228.4062 

 

 

 
(a)          (b)               (c)                (d) 

 
                (e)           (f)              (g)                 (h) 

Figure 4: Histogram: (a) Original image of Baboon, (b) Encrypted image of Baboon, (c) 

Original image of Lena, (d) Encrypted image of Lena, (e) Original image of Peppers, (f) 

Encrypted image of Peppers, (g) Original image of Barbara, and (h) Encrypted image of 

Barbara. 

 

4.3.2 Correlation Coefficient Analysis 

     One pixel in a plain image is typically and significantly associated with neighbouring 

pixels in the horizontal, vertical, and diagonal directions (usually close to 1). Therefore, a 

reliable image encryption technique might lessen this association [22]. In other words, it is 

anticipated that the correlation of the cipher image will be close to 0. 

   The formula for the correlation coefficient is as follows: 

                                              

 

 
 
∑ (       )(       ) 

   

√ 
 
∑ (       )

  
   

√ 
 
∑ (       )

  
   

                                               

 

       where   is the total number of image pixels,   and   are two neighboring pixel values in 

a grayscale image, and      and      are their average values, respectively. Table 2 displays 

the correlation and spatial correlation values of the tested images. The results show that the 

proposed method successfully decouples the plain image from the encrypted image as well as 

the spatial correlation between them. Figure 5 depicts how the spatial correlation of the 

encrypted and plain images differs. 
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                                (a)           (b)                               (c) 

                 
                              (d)                   (e)                   (f) 

Figure 5: Correlation Coefficient:  The horizontal, vertical, and diagonal correlation 

distributions of the original (a)–(c) and encrypted (d)–(f) Lena image, respectively. 

 

Table 2: Correlation between plain and ciphered images 

Images 
Horizontal Vertical Diagonal 

Plain cipher plain cipher plain cipher 

Lena 0.9456 0.0006 0.9727 -0.0035 0.9213 -0.0007 

Baboon 0.8737 -0.0024 0.8261 0.0053 0.7843 0.0017 

Peppers 0.9635 0.0026 0.9705 -0.0004 0.9365 -0.0027 

Barbara 0.9450 0.0005 0.9547 0.0009 0.9043 0.0034 

 

4.4 Information Entropy 

     The entropy of information is a useful metric for assessing the degree of disorder in a data 

set. The closer an encryption technique’s information entropy is to number 8 (indicating 

security), the more difficult is for attackers to break the algorithm. Information entropy is 

defined as follows [23]: 

                                                                   

  ∑                 

    

   

                                                              

where   is the number of digits of the image pixel, and       is the probability of the sign   . 
Information entropy measurements are displayed in Table 3. 

 

Table 3: Tests of information entropy 

Images Baboon Lena Peppers Barbara 

Entropy 7.9974 7.9973 7.9970 7.9975 

 

4.5 Mean Square Error and Peak Signal to Noise Ratio 

     Peak signal to noise ratio (PSNR) and mean square error (MSE) are used to gauge the 

quality of image compression. The PSNR measures the cumulative squared error between the 

encrypted and original image, whereas the MSE measures the peak error. The MSE number 

determines how large the error is, where a large difference between the plain and encrypted 

images is indicated by a high MSE value, whereas a small difference between plain and 

decrypted images is indicated by a low MSE value. The accuracy of an image is instead 
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determined by the PSNR. The difference between the plain and encrypted images grows 

larger as the PSNR decreases. The PSNR value is infinite between the plain and decrypted 

images. The MSE and PSNR equations are defined [24] as follows: 

                   
 

   
∑∑(         )

 
 

   

           

 

   

 
 

   
∑∑(         )

 
 

   

 

 

   

                      

                                     

   

     
                           

        

   

     
                                                                                                   

 

      where   represents the plain image,   represents the encrypted image, and   represents 

the decrypted image, and m and n represent the height and width of the image, respectively. 

The MSE and PSNR data that are shown in Table 4 indicate that there is a considerable 

difference between the plain and encrypted images for the proposed approach but no 

difference between plain and decrypted images. 

 

Table 4:     and PSNR for proposed algorithm 

Images MSEPC PSNRPC MSEPD PSNRPD 

Baboon 6960.4 9.7045 0 ∞ 

Lena 7773.3 9.2248 0 ∞ 

Peppers 8433.8 8.8706 0 ∞ 

Barbara 7698.6 9.2667 0 ∞ 

 

4.6 Differential Attack 

     Many attackers try to determine the encryption algorithm’s weak point by altering a single 

plain image pixel and then comparing the resulting encrypted image to the original. An image 

encryption technique must react sensitively even if there is only a single bit difference to 

prevent scenarios in which attackers can identify any relevant associations between the cipher 

image and the encrypted modified images [25]. Tests called the Number of Pixels Change 

Rate (NPCR) and the Unified Average Changing Intensity (UACI) can be used to determine 

whether or not the algorithm is able to withstand this assault. The equations of UACI and 

NPCR are as follows: 

                                                               

 
 

   
∑

               

   
   

                                                                                   

                                                                           

 ∑
      

   
   

                                                                                                                   

Where    and    are two different cipher images encrypted using a different key and where 

       is defined as follows: 

                                                                 

 {
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     The UACI and NPCR theoretical values are 33.46% [26] and 99.6094% [27], respectively. 

Table 5 shows that the proposed image encryption algorithm can withstand differential attacks 

because the NPCR and UACI values are close to their theoretical values.  

 

Table 5: shows that the suggested technique is secure against a differential attack. 

Images Baboon Lena Peppers Barbara 

UACI 33.4191 33.4286 33.5052 33.5874 

NPCR 99.6017 99.6323 99.5865 99.6353 

 

4.7 Results and Comparisons 

     Table 6 and Table 7 indicate that the proposed algorithm is good at resisting a variety of 

attacks as shown by comparison with other encryption techniques. 

 

Table 6: Comparison between the proposed algorithm and the other algorithms in terms of 

spatial correlation 

Methods 
 Lena   Peppers   Baboon  

Horizontal Vertical Diagonal Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Proposed 0.0006 -0.0035 -0.0007 0.0026 -0.0004 -0.0027 -0.0024 0.0053 0.0017 

Ref. [28] -0.0003 -0.0037 0.0020 -0.0002 0.0020 0.0048 - - - 

Ref. [29] - - - 0.0045 -0.0042 -0.0018 0.0026 -0.0043 0.0034 

Ref. [30] -0.0003 0.0020 -0.0017 0.0025 -0.0050 0.0018 -0.0015 0.0034 0.0015 

Ref. [1] -0.0023 -0.0017 -0.0022 0.0044 -0.0008 0.0019 -0.0042 0.0010 -0.0010 

Ref. [24] -0.0012 -0.0014 0.0016 -0.0013 -0.0016 -0.0013 0.0010 0.0010 -0.0013 

 

Table 7: Comparison between the proposed algorithm and the other algorithms in terms of 

     ,       , UACI, NPCR and Entropy 

Methods 
MSEPC PSNRPC UACI NPCR Entropy 

Baboon Lena Baboon Lena Baboon Lena Baboon Lena Baboon Lena 

Proposed 6960.4 7773.3 9.7045 9.2248 
33.419

1 

33.428

6 

99.601

7 

99.632

3 
7.9974 7.9973 

Ref. [28] - - - - - 33.27 - 99.59 - 7.9971 

Ref. [24] 6901.7 7835.4 9.7412 9.1902 33.42 33.65 99.61 99.61 7.9976 7.9974 

Ref. [31] 
7254.2

0 
7.9974 9.5248 9.2392 

33.643

0 

33.612

4 

99.643

8 

99.664

1 
7.9993 7.9993 

Ref. [32] - - - - 
33.470

2 

33.499

4 

99.636

8 

99.621

6 
7.9967 7.9972 

 

5. Conclusion 

     In order to protect the information contained in digital images, this work introduces an 

asymmetric image encryption algorithm based on the SCC with chaotic mappings. The 

proposed algorithm allows for the safe handling and transfer of keys. The proposed 

algorithm’s unpredictability is increased by altering both the pixel values and the positions of 

each pixel in the image. Based on actual results and algorithm evaluations, the security 

analysis demonstrates that the proposed method can resist numerous forms of cryptanalysis 

including brute force assaults, statistical attacks, and differential attacks. 
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