

ISSN: 0067-2904

Z-Essential Submodules

Muntaha khudhair Abbas ${ }^{1}$, Yahya Talebi ${ }^{\mathbf{2}}$, Inaam M. Ali Hadi ${ }^{\mathbf{3}}$
${ }^{1}$ University of Mazandaran, Faculty of Mathematical Sciences, Department of Mathematics, Bobolsar , Iran. Technical College of Management/Baghdad,Middle Technical University, Baghdad, Iraq .
${ }^{2}$ University of Mazandaran, Faculty of Mathematical Sciences, Department of Mathematics, Bobolsar , Iran ,
${ }^{3}$ University of Baghdad, College of Education for Pure Science Ibn Al-Haitham, Department of Mathematic,

Received: 15/1/2023 Accepted: 25/3/2023 Published: 30/3/2024

Abstract

: We define and investigate Z- essential submodules as a generalization of essential submodules. Various characterizations and properties of Z-essential submodules are given. Moreover we introduce the concepts of Z-singular submodule and Z-closed submodules.

Keywords : Z- small submodule, Z-essential submodule, Z-singular submodule, Zclosed submodules, Z - nonsingular submodule.

$$
\begin{aligned}
& \text { Z - المقاسات الجزئية الواسعة من النوع } \\
& \text { منتهى خضير عباس1 , يحيى طالبي2 , انعام محمد علي هادي } 3 \\
& \text { 1 جامعة مازندران , كلية العلوم , قسم الرياضيات , ايران } \\
& \text { الكلية التتنية الادارية - بغداد , الجامعة التتنية الوسطى - بغداد , العراق . } \\
& \text { 2 يحيى طالبي , جامعة مازندران , كلية العلوم - قس الرياضيات , بوبرص , ايران . } \\
& \text { 3انعام محمد علي هادي , كلية التربية - ابن الهيثم , قسم الرياضيات , جامعة بغداد , بغداد , العراق . } \\
& \text { الخلاصة : } \\
& \text { عرفنا ودرسنا مفهوم المقاسات الجزئية الواسعة النمط Z- Z- كتعيم لمفهوم المقاسات الجزئية } \\
& \text { الواسعة } \\
& \text { اض Z - اضافة الى هذا قدمنا } \\
& \text { Z- المقاسات الجزئية المغلقة من النمط }
\end{aligned}
$$

1- Introduction:

Throughout this paper all modules are unitary right R -modules, where R is commutative ring with unity. It is known that a submodule N of an R - module M is said to be small (superfluous), (nationally " $N \ll M$ "), if whenever $W \leq M, N+W=M$, then $W=M$. A submodule N of an R-module M is called essential (large) (notationally $\mathrm{N}_{\mathrm{e}}^{\leq} \mathrm{M}$) if whenever N $\cap \mathrm{W}=(0), \mathrm{W} \leq \mathrm{M}$ then $\mathrm{W}=(0)$ [1], [2]. Some authors used the notation $\mathrm{N}_{4}^{0} \mathrm{M}$ for small submodule and $\quad N{ }_{\breve{*}}^{*} \mathrm{M}$ or $\mathrm{N} \unlhd \mathrm{M}$ for essential submodule. We shall use $\mathrm{N} \ll \mathrm{M}$ for (N is small submodule of M) and $\mathrm{N}_{\text {ess }}^{\leq} \mathrm{M}$ for (N is essential submodule of M).

Many generalizations of small submodules and essential submodules were introduced by researchers. Some of these generalizations are δ-small submodules [3], semismall submodules [4], p-small submodules [5], e-small submodules [6], J-small submodules [7], e*-essential submodules [8], t-essential submodules [9], [10], small essential submodules[10] , P-essential submodulles [11].
K.R.Goodearl in [1] introduce the concept $\mathrm{Z}_{2}(\mathrm{M})$ (the second singular submodule of M) by $\frac{\mathrm{Z}_{2}(\mathrm{M})}{\mathrm{Z}(\mathrm{M})}=\mathrm{Z}\left(\frac{M}{Z(M)}\right)$, where $\mathrm{Z}(\mathrm{M})$ is the singular submodule of M and $\mathrm{Z}(\mathrm{M})=\{\mathrm{m} \in \mathrm{M}: \mathrm{mI}=0$ for some I ess $\left.{ }^{\leq} R\right\}=\{m \in M: \operatorname{ann}(m)$ ess $R\}$, where $\operatorname{ann}(m)=\{r \in R: m r=0\}$.

If $Z(M)=M(Z(M)=(0)) M$ is called singular . Asgari and Haghany in [12] used the notion of $Z_{2}(M)$ and presented the concept " t-essential submodules", where a submodule A of M is called t-essential (briefly, $\mathrm{A}_{\text {tes }} \leq \mathrm{M}$), if whenever $\mathrm{B} \leq \mathrm{M}, \mathrm{A} \cap \mathrm{B} \subseteq \mathrm{Z}_{2}(\mathrm{M})$ implies $\quad \mathrm{B} \subseteq \mathrm{Z}_{2}(\mathrm{M})$. Equivalently $\mathrm{A}_{\text {tes }} \leq \mathrm{M}$ if $\mathrm{A}+\mathrm{Z}_{2}(\mathrm{M})$ ess M . Hence it is clear that every essential submodule is t essential, but not conversely, see [12]. However the two concepts are equivalent in class of nonsingular modules. Also Asgari in [12] proved that $Z_{2}(M)=\{m \in M: \operatorname{ann}(m)$ tes $R\}=\{m$ $\in M: m I=0$ for some $\left.I_{\text {tes }}^{\leq} R\right\}$. For more information about $Z_{2}(M)$, you can see [12], [13] , [14].

At 2021, A mina in [15] introduced and studied Z -small submodules, where a submodule N of M is called Z -small (denoted by $\mathrm{N}_{Z}^{\ll} \mathrm{M}$) if whenever' $\mathrm{N}+\mathrm{W}=\mathrm{M}^{\prime}$, $\mathrm{W} \leq \mathrm{M}$, $\mathrm{W} \supseteq \mathrm{Z}_{2}(\mathrm{M})$, then" $\mathrm{W}=\mathrm{M}$ ". Note that $\mathrm{W} \supseteq \mathrm{Z}_{2}(\mathrm{M})$ implies $\mathrm{Z}_{2}(\mathrm{~W})=\mathrm{Z}_{2}(\mathrm{M})$.

In this paper, we present and study the concept Z- essential submodule (as a dual of notion of Z-small submodule), where a submodule N of M is called Z - essential (briefly $N_{z e s} \leq M$) if whenever $\mathrm{N} \cap \mathrm{W}=0, \mathrm{~W} \leq \mathrm{M}, \mathrm{W} \subseteq \mathrm{Z}_{2}(\mathrm{M})$ then $\mathrm{W}=(0)$.
In S. 2, we study Z-essential submodules and present many properties related with this concept

In S. 3, we introduce the concept of Z-singular submodules, where for any R - module M , the set $\left\{\mathrm{m} \in \mathrm{M}: \operatorname{ann}(m)_{\text {zes }} \leq \mathrm{R}\right\}$ is denoted by $\mathrm{ZS}(\mathrm{M})$. It is clear that $\mathrm{ZS}(\mathrm{M})$ is submodule of M . M is called Z-singular (Z-nonsingular) if $Z S(M)=M(Z S(M)=0)$. Many properties related with this concept are given.

In S. 4, we define Z-closed submodule, where a submodule N of an R -module M is called Z-closed (brifely $\mathrm{N}_{\mathrm{ZC}}^{\leq} \mathrm{M}$) if N has no proper Z-essential extension in M , that is if $\mathrm{N}_{\text {zes }}^{\leq} \mathrm{W} \leq \mathrm{M}$, then $\mathrm{N}=\mathrm{W}$. It is clear that every Z -closed submodule is closed but the converse is not true, see Remark 4.3(1). Several other results are introduced.

2-Z- essential submodules:

2.1 Definition: A submodule N of an R - module M is called Z-essential (briefly $N_{\text {zes }}^{\leq} M$) if whenever $\mathrm{W} \leq \mathrm{Z}_{2}(\mathrm{M}), \mathrm{N} \cap \mathrm{W}=(0)$, then $\mathrm{W}=(0)$. Note that $\mathrm{W} \leq \mathrm{Z}_{2}(\mathrm{M})$ is equivalent to $\mathrm{Z}_{2}(\mathrm{~W})$ $=\mathrm{W}$, that is $\mathrm{N}_{\text {zes }}^{\leq} \mathrm{M}$ if whenever $\mathrm{N} \cap \mathrm{W}=(0), \mathrm{Z}_{2}(\mathrm{~W})=\mathrm{W}$ (W is Z_{2}-torsion submodule), then W $=(0)$.

It clear that every essential submodule is Z-essential, but the converse may be not true, (see Rem. 2.2.(2)).

2.2 Remarks and Examples:

1- If $Z_{2}(M)=M, N \leq M$, then $N \leq{ }_{\text {ess }} M$ if and only $N{ }_{\text {zes }}^{\leq} M$; that is essential and Z-essential submodules are coincident .

2- If $Z_{2}(M)=(0)$, then it is clear that every submodule of M is Z - essential.
In particular, if $M=Z_{6}$ as Z_{6} - module; every submodule of Z_{6} is Z-essential, but ($\overline{2}$) ($\overline{3}$), ($\overline{0}$) are not essential in Z_{6}.
3- If $(0)_{\text {zes }}^{\leq} M$, then $Z_{2}(M)=0$, and the converse hold by part (2)
Proof: Since $(0) \cap Z_{2}(M)=(0)$, so $Z_{2}(M)=(0)$ since $(0) \underset{\text { zes }}{\leq} M$.
4- Consider Z_{4} as Z_{4}-module, $\mathrm{Z}_{2}\left(\mathrm{Z}_{4}\right)=(\overline{2}), \mathrm{Z}_{4}$ and $(\overline{2})$ are essential in Z_{4}, so they are $Z-$ essential. But (o) is not Z-essential, since $(0) \cap Z_{2}\left(Z_{4}\right)=(\overline{0}) \cap(\overline{2})=(\overline{0})$ and $\quad(\overline{2}) \neq(\overline{0})$

5- Z-essential submodules and t-essential submodules are independent concepts.
For examples: in the Z -module Z_{12}. The submodule $\mathrm{A}=(\overline{4})$ tes Z_{12}, see [14, Ex.1.1.16)].
However by (1) essential and Z-essential are coincide in Z_{12}, hence $(\overline{4}) \underset{\text { tes }}{ \pm} Z_{12}$. In Z_{6} as Z_{6} - module, every submodule of Z_{6} is Z-essential by part (2). But $(\overline{2}) \leq Z_{6}$ is not t-essential in Z_{6} since $(\overline{2}) \cap(\overline{3})=(\overline{0}) \subseteq \mathrm{Z}_{2}\left(\mathrm{Z}_{6}\right)$, but $(\overline{3}) \not \subset(\overline{0})=\mathrm{Z}_{2}\left(\mathrm{Z}_{6}\right)$.

6- For every module $\mathrm{M}, \mathrm{M}_{\text {zes }}^{\leq} \mathrm{M}, \mathrm{Z}_{2}(\mathrm{M}) \underset{\text { zes }}{\leq} \mathrm{M}$
2.3 Proposition: Let M be an R-module .Then

1- If $\mathrm{N} \leq \mathrm{W} \leq \mathrm{M}$ and $\mathrm{N}_{\text {zes }}^{\leq} \mathrm{M}$, then $\mathrm{W} \stackrel{\leq}{\leq} \mathrm{M}$.
proof: Let $B \subseteq Z_{2},(M)$ and $W \cap B=(0)$. Since $N \subseteq W$, $N \cap B=(0)$. But N zes M, so $B=0$. Thus W \leq zes M .
2- If N_{1} and N_{2} are Z-essential of an R-module M, then $N_{1} \cap N_{2}$ is Z-essential in M.
Proof: Let $B \subseteq Z_{2}(M)$ and $\left(N_{1} \cap N_{2}\right) \cap B=(0)$. Then $N_{1} \cap\left(N_{2} \cap B\right)=(0)$. But $N_{2} \cap B \subseteq N_{2} \cap$ $Z_{2}(M) \subseteq Z_{2}(M)$, so that $N_{2} \cap B=(0)$, since $N_{1} \frac{\leq}{\text { zes }} M$. Also $N_{2} \underset{\text { zes }}{\leq} M$, $B \subseteq Z_{2}(M)$, hence $B=$ (0)

3- Let $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ be an R-homomorphism, $\mathrm{N} \underset{\text { zes }}{\leq} \mathrm{M}^{\prime}$. Then $\mathrm{f}^{-1}(\mathrm{~N}) \underset{\text { zes }}{\leq} \mathrm{M}$.
Proof: let $f^{-1}(N) \cap B=(0), B \subseteq Z_{2}$, (M). Then $f\left(f^{-1}(N) \cap B\right)=(0)$ and so $N \cap f(B)=(0)$. As $B \subseteq Z_{2}(M), f(B) \subseteq f\left(Z_{2}(M)\right) \subseteq Z_{2}(f(M)) \subseteq Z_{2}\left(M^{\prime}\right)$.Thus $f(B)=(0)$, since $\quad N \underset{\text { zes }}{\leq} M$ '. This implies $B \subseteq \operatorname{Ker} f=f^{-1}(0) \subseteq f^{-1}(N)$ and so $B \cap f^{-1}(N)=B$, that is $(0)=B$.
4- Let $\mathrm{f}: \mathrm{M}_{1} \rightarrow \mathrm{M}_{2}$ be a monomorphism, $\mathrm{N} \underset{\text { zes }}{\leq} \mathrm{M}$. Then $\mathrm{f}(\mathrm{N}) \underset{\text { zes }}{\leq} f\left(\mathrm{M}_{1}\right)$.
Proof: Assume $f(N) \cap B=(0), B \subseteq Z_{2}\left(f\left(M_{1}\right) \subseteq Z_{2}\left(M_{2}\right)\right.$. Then $f^{-1}(f(N) \cap B)=f^{-1}(0=(0)$. This implies $f^{-1} f(N) \cap f^{-1}(B)=(0)$. But $f^{-1} f(N)=N$, since f is monomorphism, Hence $N \cap f^{-1}$ $(B)=(0)$, but we can show that $f^{-1}(B) \subseteq Z_{2}\left(M_{1}\right)$ as follows :-
Let $x \in f^{-1}(B)$, then $f(x) \in B \subseteq Z_{2}\left(M_{2}\right)$. Hence $\operatorname{ann}_{R} f(x) \leftrightarrows$ tes R. But ann $f(x) \subseteq a n n_{R}(x)$ since f is 1-1 and hence $\operatorname{ann}(x) \underset{\text { tes }}{〔} R$ which implies that $x \in Z_{2}\left(M_{1}\right)$. Therefore $f^{-1}(B) \subseteq Z_{2}\left(M_{1}\right)$.This implies $f^{-1}(B)=(0)$ since $N \underset{\text { zes }}{\leq} M_{1}$. Then (0$)=f^{-1}(B)=B \cap f\left(M_{1}\right)=B$. Thus $f(N) \underset{\text { zes }}{\leq} f$ $\left(\mathrm{M}_{1}\right)$.

5-1f " $\mathrm{A} \leq \mathrm{B} \leq \mathrm{M}$ ', then $\mathrm{A} \underset{\text { zes }}{\leq} \mathrm{B}$ and $\mathrm{B} \underset{\text { zes }}{\leq} \mathrm{M}$ if and only if $\mathrm{A} \leq$ zes M .
Proof : \Rightarrow Assume $A \cap K=(0)$ and $K \subseteq Z_{2}(M)$. Then $A \cap(K \cap B)=(0)$. $A s K \subseteq Z_{2}(M), K \cap B$ $\subseteq Z_{2}(M) \cap B=Z_{2}(B)$. But $A \frac{\subseteq}{z e s} B$. So that $K \cap B=(0)$. Also $B \underset{\text { zes }}{\leq} M$, and $K \subseteq Z_{2}(M)$, so that K $=(0)$.
\Longleftarrow To prove $\mathrm{A} \underset{\text { zes }}{\leq} \mathrm{B}$ and $\mathrm{B} \underset{\text { zes }}{\leq} \mathrm{M}$. Assume $\mathrm{A} \cap \mathrm{K}=(0), \mathrm{K} \subseteq \mathrm{Z}_{2}(\mathrm{~B})$. But $\mathrm{Z}_{2}(\mathrm{~B}) \subseteq \mathrm{Z}_{2}(\mathrm{M})$. So that $A \cap K=(0), K \subseteq Z_{2}(M)$, hence $K=0$, since $A \leq \begin{aligned} & \leq \\ & \text { zes }\end{aligned}$. Now let $B \cap W=(0)$ and $W \subseteq Z_{2}$ (M). Then $\mathrm{A} \cap \mathrm{W}=(0)$ since $\mathrm{A} \subseteq \mathrm{B} . \mathrm{But} \mathrm{A} \underset{\text { zes }}{\leq} \mathrm{B}$, so $\mathrm{W}=(0)$.

The following is a characterization of Z-essential submodules.
2.4 Proposition: Let N be a submodule of an R - module M . Then $\mathrm{N} \underset{\text { zes }}{\leq} \mathrm{M}$ if and only if for each $U \leq Z_{2}(M), U \neq 0, N \cap U \neq 0$.
Proof: \Rightarrow It is clear.
\Leftarrow Let $\mathrm{U} \subseteq \mathrm{Z}_{2}(\mathrm{M})$ and $\mathrm{N} \cap \mathrm{U}=0$. Suppose $\mathrm{U} \neq 0$ then $\mathrm{N} \cap \mathrm{U} \neq 0$ which is a contradiction. Thus $\mathrm{U}=0$ and $\mathrm{N} \stackrel{\leq}{\text { zes }} \mathrm{M}$.
2.5 Corollary: Let $N \leq M, N \leq$ zes M if and only if for each $x \in Z_{2}(M), x \neq 0, \exists r \in R-\{0\}$ such that $0 \neq \mathrm{xr} \in \mathrm{N}$.
Proof: \Rightarrow By Proposition 2.4, $N \cap(x) \neq(0)$, Hence there exists $0 \neq r \in R$ such that $\neq \mathrm{xr} \in \mathrm{N}$.
\Leftarrow Let $0 \neq \mathrm{U} \subseteq \mathrm{Z}_{2}(M)$. Then for each $0 \neq \mathrm{x} \in \mathrm{U}, \exists \mathrm{r} \in \mathrm{R}-\{0\}$ such that $0 \neq \mathrm{x} r \in \mathrm{~N}$, so that xr $\in \mathrm{N} \cap \mathrm{U}$. Therefore $\mathrm{N} \cap \mathrm{U} \neq 0$ for each $0 \neq \mathrm{U} \subseteq \mathrm{Z}_{2}(\mathrm{M})$. Therefore $\mathrm{N} \underset{\text { zes }}{\leq} \mathrm{M}$ by Proposition 2.4.
2.6 Definition: A monomorphism f: $\mathrm{M} \rightarrow \mathrm{M}^{\prime}$ is called Z-essential monomorphism if Imf zes M.
2.7 Proposition : An R- module monomorphism " $\mathrm{f}: \mathrm{L} \rightarrow \mathrm{M}$ " is Z-essential if and only if for each homomorphism $h: M \rightarrow N$ such that Ker $h \subseteq Z_{2}(M)$, hof is monomorphism implies h is monomorphism.
proof: \Rightarrow Since $\mathrm{f}: \mathrm{L} \rightarrow \mathrm{M}$ is Z-essential, $\operatorname{Im} \mathrm{f} \underset{\text { zes }}{\leq}$. As hof is monomorphism, $\quad 0$ $=\operatorname{Ker}(\mathrm{h} \circ \mathrm{f})=\mathrm{f}^{-1}$ (Ker h). So Ker $\mathrm{h} \cap \operatorname{Im} \mathrm{f}=0$ (because if $\mathrm{x} \in \operatorname{ker} \mathrm{h} \cap \operatorname{Im} \mathrm{f}$, then $\mathrm{h}(\mathrm{x})=0$, $\mathrm{x}=\mathrm{f}$ $(\ell) \mathrm{f}$ or some $\ell \in \mathrm{L}$. So $(\mathrm{h} \circ \mathrm{f})(\ell)=0$, and hence $\ell=0$ and $\mathrm{x}=0$). But $\operatorname{Im} \mathrm{f} \underset{\text { zes }}{\leq} \mathrm{M}$ and Ker $\mathrm{h} \subseteq$ $\mathrm{Z}_{2}(\mathrm{M})$, so that Ker $\mathrm{h}=0$. Thus h is monomorphism.
\Leftarrow Assume K is monomorphism. To prove $\operatorname{Imf} \underset{\text { zes }}{\leq} M$. Let $\operatorname{Im} f \cap K=0, K \subseteq Z_{2}(M)$. Consider $\mathrm{L} \xrightarrow{\mathrm{f}} \mathrm{M} \xrightarrow{\pi} \mathrm{M} / \mathrm{K}$, where π is the natural epimorphism. Hence $\pi \circ f$ is monomorphism. To see this Let $x \in \operatorname{ker}(\pi \circ f),(\pi \circ f)(x)=0_{M / K}$, hence $f(x) \in K$; that is $f(x) \in \operatorname{Im} f \cap K=0$. Thus $f(x)$ $=0$ and $x \in \operatorname{Ker} f=\{0\}$. Then" $\operatorname{Ker}(\pi \circ f)=0$ "; that is $\pi \circ f$ is monomorphism. Hence by assumption, π is monomorphism and as $\operatorname{Ker} \pi=K$, so that $K=0$.
2.8 Proposition: Let $f: K \rightarrow L$ be a monomorphism $g: L \rightarrow M$ be a mononomorphism. Then f, g are Z-essential monomorphism if and only if $\mathrm{g} \circ \mathrm{f}$ is Z -essential monomorphism.
Proof: \Rightarrow Let $(\mathrm{g}$ of $)(\mathrm{K}) \cap \mathrm{U}=0, \mathrm{U} \subseteq \mathrm{Z}_{2}(\mathrm{M})$. To prove
$\left.\mathrm{U}=(0), \mathrm{g}^{-1}((\mathrm{~g} \circ \mathrm{f})(\mathrm{K})) \cap \mathrm{U}\right)=\mathrm{g}^{-1}(0)=\operatorname{Ker} \mathrm{g}=\{0\}$.
This implies $f(K) \cap g^{-1}(U)=(0)$.
We claim that $g^{-1}(U) \subseteq Z_{2}(L)$. Assume $x \in g^{-1}(U)$, hence $x \in L$ and $g(x) \in U \subseteq Z_{2}(M)$, so that ann $\mathrm{g}(\mathrm{x}) \leq_{\text {tes }}$ R. But ann $(\mathrm{x}) \supseteq$ ann $\mathrm{g}(\mathrm{x})$, since g is $1-1$. Hence ann $(\mathrm{x}) \stackrel{\leq}{\text { zes }} \mathrm{R}$; that is $\mathrm{x} \in \mathrm{Z}_{2}(\mathrm{~L})$. Thus $\mathrm{g}^{-1}(\mathrm{U}) \subseteq \mathrm{Z}_{2}(\mathrm{~L})$, and so $\mathrm{f}(\mathrm{K}) \cap \mathrm{g}^{-1}(\mathrm{U})=0, \mathrm{~g}^{-1}(\mathrm{U}) \subseteq \mathrm{Z}_{2}(\mathrm{~L})$ which implies $\mathrm{g}^{-1}(\mathrm{U})=0$, since $f(K) \frac{\leq}{\text { zes }} L$.
It follows that $\mathrm{gg}^{-1}(\mathrm{U})=\mathrm{g}(0)=0$. But $\mathrm{gg}^{-1}(\mathrm{U})=\mathrm{U} \cap \mathrm{Im}$ g. Hence $\mathrm{U}=0$, since $\operatorname{Im} \mathrm{g}$ zes M .
\Rightarrow Let $f(K) \cap B=(0), B \subseteq Z_{2}(L)$. To prove $B=(0)$. Then $(g \circ f)(K) \cap g(B)=(0)$, But $g(B) \subseteq$ $g\left(Z_{2}(L)\right) \subseteq Z_{2}\left(g(L) \subseteq Z_{2}(M)\right.$. Hence $g(B)=(0)$. Since $(g \circ f)(K) \underset{\text { zes }}{\leq} M$.
It follows that $B=(0)$ since g is 1-1. Thus $f(K) \stackrel{\text { zes }}{\leq} L$.
Now since $(\mathrm{g} \circ \mathrm{f})(\mathrm{K}) \underset{\text { zes }}{\leq} \mathrm{M}$ and $(\mathrm{g} \circ \mathrm{f})(\mathrm{K})=\mathrm{g}(\mathrm{f}(\mathrm{K})) \subseteq \mathrm{g}(\mathrm{L}) \subseteq \mathrm{M}$. Hence $\mathrm{g}(\mathrm{L}) \underset{\text { zes }}{\leq} M$.

Recall that an R - module M is called a multiplication R -module if for any $\mathrm{N} \leq \mathrm{M}$, there exists an ideal I of R such that $\mathrm{N}=\mathrm{MI}$. Equivalently M is a generation R -module if for each N $\leq \mathrm{M}, \mathrm{N}=\mathrm{M}\left(\mathrm{N}{ }_{\mathrm{R}}^{:}: \mathrm{M}\right)$, where $\left(\mathrm{N}_{\mathrm{R}}^{:} \mathrm{M}\right)=\{\mathrm{r} \in \mathrm{R}: \mathrm{Mr} \subseteq \mathrm{N}\}[16]$.
2.9 Proposition: Let M be a faithful finitely generated multiplication R -module, let

N $\leq \mathrm{M}$. Then $\mathrm{N} \underset{\text { zes }}{\leq} \mathrm{M}$ if and only if $\left(\mathrm{N}_{\mathrm{R}} \mathrm{M}\right) \underset{\text { zes }}{\leq} R$.
proof: \Rightarrow Assume ($\mathrm{N}: \mathrm{M}) \cap \mathrm{I}=(0), \mathrm{I} \subseteq \mathrm{Z}_{2}(\mathrm{R})$. Then $\mathrm{M}[(\mathrm{N}: \mathrm{M}) \cap \mathrm{I}]=\mathrm{M}(0)=(0)$ Hence by $[2, \mathrm{Th} .1 .6], \mathrm{M}[(\mathrm{N}: \mathrm{M}) \cap \mathrm{I}]=\mathrm{M}(\mathrm{N}: \mathrm{M}) \cap \mathrm{MI}=(0)$, that is $\mathrm{N} \cap \mathrm{MI}=(0)$. But $\mathrm{MI} \subseteq \mathrm{MZ}_{2}(\mathrm{R})=$ $Z_{2}(M)$. Hence $M I=(0)$, since $N \underset{\text { zes }}{\leq} M$. So that $I \subseteq$ ann $M=(0)$, thus $I=(0)$ and $(N: M) \leq R$.
\Longleftarrow Assume $\mathrm{N} \cap \mathrm{W}=(0), \mathrm{W} \subseteq \mathrm{Z}_{2},(\mathrm{M})$. Then $(\mathrm{N} \cap \mathrm{W}: \mathrm{M})=(0: \mathrm{M})=$ ann $\mathrm{M}=(0)$, so $(\mathrm{N}: \mathrm{M}) \cap$ $(W: M)=(0)$. But $W \subseteq Z_{2}(M)$, hence $M(W: M)=W \subseteq Z_{2}(M)=M Z_{2}(R)$.
As M is a faithful finitely generated multiplication R-module, then by [2, Th 3.1],
(W:M) $\subseteq \mathrm{Z}_{2}(\mathrm{R})$. Hence $(\mathrm{N}: \mathrm{M}) \cap(\mathrm{W}: M)=(0),(\mathrm{W}: M) \subseteq \mathrm{Z}_{2}(\mathrm{R})$ and $(\mathrm{N}: M) \underset{\text { zes }}{\stackrel{\leq}{2}} \mathrm{R}$, so that $(\mathrm{W}: M)=(0)$. It follows that $\mathrm{W}=\mathrm{M}(\mathrm{W}: \mathrm{M})=\mathrm{M} .(0)=(0)$.
2.10 Proposition: Let M be a finitely generated faithful multiplication R - module, let $\leq \mathrm{R}$. Then $\mathrm{I} \underset{\text { zes }}{\leq} \mathrm{R}$ if and only if MI $\underset{\text { zes }}{\leq} \mathrm{M}$.
proof: \Rightarrow Let $\mathrm{MI} \cap \mathrm{W}=(0)$ and $\mathrm{W} \subseteq \mathrm{Z}_{2}(\mathrm{M})$.Since M is a multiplication R module, $\mathrm{W}=\mathrm{MJ}$ for some $J \leq R$. But $W=M J \subseteq Z_{2}(M)=M Z_{2}(R)$, So that $J \subseteq Z_{2}(R)$.
Now $\mathrm{M} \operatorname{I} \cap \mathrm{W}=\mathrm{MI} \cap \mathrm{MJ}=(0)$ and so " $\mathrm{M}(\mathrm{I} \cap \mathrm{J})=0$ " ; that is $\mathrm{I} \cap \mathrm{J} \subseteq$ ann $\mathrm{M}=(0)$. Thus $\quad \mathrm{J}$ $=(0)$ and $\mathrm{W}=\mathrm{MJ}=(0)$.
\Longleftarrow The proof is similarly.
2.11 Corollary: Let M be a finitely generated faithful multiplication R-module, $\mathrm{N}=\mathrm{MI} \leq \mathrm{M}$. Then $\mathrm{N}_{\text {zes }}^{\leq} \mathrm{M}$ if and only if $\mathrm{I}_{\text {zes }}^{\leq} \mathrm{R}$.
2.12 Proposition: Let M be a finitely generated faithful multiplication R-module. and I, J ideals of R. Then $I \frac{\vdots}{\text { zes }} \mathrm{J}$ if and only if MI $\underset{\text { zes }}{\leq}$ MJ.

Measure: \Rightarrow Assume $\mathrm{MI} \cap W=0, \mathrm{~W} \subseteq \mathrm{MJ}$ and $\mathrm{W} \subseteq \mathrm{Z}_{2}$ (MJ). Since $\mathrm{W} \leq \mathrm{M}, \mathrm{W}=\mathrm{MK}$ for some $K \leq R$. Hence $M K \subseteq M J$ and so $K \subseteq J$ by [2,Th.3.1].
Also $Z_{2}(M J)=Z_{2}(M) \cap M J$. But $Z_{2}(M)=M Z_{2}(R)$, since M is a finitely generated faithful multiplication R-module. Hence $\mathrm{Z}_{2}(\mathrm{MJ})=\mathrm{MJ} \cap \mathrm{MZ}_{2}(\mathrm{R})$. Also by [2; Th.2.1] $\quad \mathrm{Z}_{2}(\mathrm{MJ})=$ $\mathrm{M}\left(\mathrm{J} \cap \mathrm{Z}_{2}(\mathrm{R})\right)=\mathrm{MZ}_{2}(\mathrm{~J})$.
Now $\mathrm{MI} \cap \mathrm{MK}=0$ implies $\mathrm{M}(\mathrm{I} \cap \mathrm{K})=0$ and so $\mathrm{I} \cap \mathrm{K} \subseteq$ ann $\mathrm{M}=(0)$, that is $\mathrm{I} \cap \mathrm{K}=(0)$. As $\mathrm{W} \subseteq$ $\mathrm{Z}_{2}(\mathrm{MJ}), \mathrm{MK} \subseteq \mathrm{MZ}_{2}(\mathrm{~J})$ and since M is a finitely generated faithful multiplication R-module, K $\subseteq \mathrm{Z}_{2}(\mathrm{~J})$. Thus $\mathrm{I} \cap \mathrm{K}=(0)$ and $\mathrm{K} \subseteq \mathrm{Z}_{2}(\mathrm{~J})$, so $\mathrm{K}=(0)$. It follow that $\mathrm{W}=\mathrm{MK}=(0)$.
\Leftarrow Assume $\mathrm{I} \cap \mathrm{K}=(0), \mathrm{K} \subseteq \mathrm{Z}_{2}(\mathrm{~J})$. To prove $\mathrm{K}=(0)$, since $\mathrm{I} \cap \mathrm{K}=0$, then $\mathrm{M}(\mathrm{I} \cap \mathrm{K})=0$ and so $\mathrm{MI} \cap \mathrm{MK}=(0)$ and $\mathrm{MK} \subseteq \mathrm{MZ}_{2}(\mathrm{~J})$. But $\mathrm{Z}_{2}(\mathrm{MJ})=\mathrm{MJ} \cap \mathrm{Z}_{2}(\mathrm{M})=\mathrm{MJ} \cap \mathrm{M} \mathrm{Z}(\mathrm{R})=\mathrm{M}(\mathrm{J}$ $\left.\cap \mathrm{Z}_{2}(\mathrm{R})\right)=\mathrm{M}_{2}(\mathrm{~J})$. Thus $\mathrm{MI} \cap \mathrm{MK}=0$ and $\mathrm{MK} \subseteq \mathrm{Z}_{2}(\mathrm{MJ})$, so that $\mathrm{MK}=(0)$, since $\mathrm{MI} \leq$ MJ. It follows that $K \subseteq$ ann $M=(0)$. That is $K=0$.
2.13 Theorem: If $\left\{\mathrm{K}_{\lambda}: \lambda \in \Lambda\right\}$ and $\left\{\mathrm{L}_{\lambda} \subseteq \mathrm{Z}_{2}(\mathrm{M}): \lambda \in \Lambda\right\}$ be families of submodules of an R module M.If $\left\{K_{\lambda}: \lambda \in \Lambda\right\}$ is an independent family of submodules of M and $K_{\lambda}{ }_{z e s} L_{\lambda}$ for all $\lambda \in \mathrm{A}$, then $\left\{\mathrm{L}_{\lambda}: \lambda \in \Lambda\right\}$ also independent family and $\underset{\lambda \in \Lambda}{\oplus} \mathrm{K}_{\lambda}$ zes $\oplus \mathrm{L} \lambda$
Proof: If $K_{1} \stackrel{\leq}{\text { zes }} L_{1}$ and $K_{2} \frac{\leq}{\text { zes }} L_{2}$ are submodules of M with $K_{1} \cap K_{2}=(0)$, then $K_{1} \cap K_{2}=(0) \stackrel{\text { zes }}{\leq}$ $\mathrm{L}_{1} \cap \mathrm{~L}_{2}$, since $\mathrm{Z}_{2}\left(\mathrm{~L}_{1} \cap \mathrm{~L}_{2}\right)=(0)$ by Remarks 2.2(3). But $\mathrm{Z}_{2}\left(\mathrm{~L}_{1} \cap \mathrm{~L}_{2}\right)=\mathrm{Z}_{2}(\mathrm{M}) \cap\left(\mathrm{L}_{1} \cap \mathrm{~L}_{2}\right)$ and $\mathrm{Z}_{2}(\mathrm{M}) \leq$ zes M (Remarks 2.2 (6)), so $\mathrm{L}_{1} \cap \mathrm{~L}_{2}=0$

Let $\rho_{1}: \mathrm{L}_{1} \oplus \mathrm{~L}_{2} \rightarrow \mathrm{~L}_{1}$ and $\rho_{2}: \mathrm{L}_{1} \oplus \mathrm{~L}_{2} \rightarrow \mathrm{~L}_{2}$, where ρ_{1}, ρ_{2} are natural projections. obtain $\rho_{1}^{-1}\left(\mathrm{~K}_{1}\right)=\mathrm{K}_{1} \oplus \mathrm{~L}_{2} \stackrel{\leq}{\text { zes }} \mathrm{L}_{1} \oplus \mathrm{~L}_{2}, \rho_{2}^{-1}\left(\mathrm{~K}_{2}\right)=\mathrm{L}_{1} \oplus \mathrm{~K}_{2} \leq_{\text {zes }}^{\leq} \mathrm{L}_{2} \oplus \mathrm{~L}_{1}$ and then $\mathrm{K}_{1} \oplus \mathrm{~K}_{2}$ $=\left(\mathrm{K}_{1} \oplus \mathrm{~L}_{2}\right) \cap\left(\mathrm{L}_{1} \oplus \mathrm{~K}_{2}\right)$ zes $\left(\mathrm{L}_{1} \oplus \mathrm{~L}_{2}\right)$ by Proposition 2.3(2).
Thus the assertion of the theorem for families with two elements is shown, and by induction, we get it for families with finitely many elements for arbitrary index set Λ, a family $\left\{L_{\lambda}\right.$ $\left.\subseteq \mathrm{Z}_{2}(\mathrm{M}): \lambda \in \Lambda\right\}$ is independent if every finite subfamily is independent and thus what we have just proved.
For any $m \in \underset{\lambda \in E}{\oplus} L_{\lambda}$ for some finite subset, $E \subseteq \Lambda$ and since $\underset{\lambda \in E}{\oplus} k_{\lambda} \underset{\text { zes }}{\leq} \underset{\lambda}{\oplus} \underset{\sim}{\oplus} L_{\lambda}$, then by

Hence the intersection of a nonzero submodule of $\underset{\lambda \in \Lambda}{\oplus} \mathrm{L}_{\lambda}$ with $\underset{\lambda \in \Lambda}{\oplus} \mathrm{K}_{\lambda}$ is again nonzero. Thus $\stackrel{\oplus}{\lambda \in \Lambda} \mathrm{k}_{\lambda} \stackrel{\leq}{\text { zes }} \stackrel{\oplus}{\lambda \in \Lambda} \mathrm{L}_{\lambda}$.
2.14 Remark: If $\left\{k_{\lambda}: \lambda \in \Lambda\right\}$ and $\left\{L_{\lambda}: \lambda \in \Lambda\right\}$ are families of R-modules with $k_{\lambda}{ }_{\text {zes }} L_{\lambda}$ for all $\lambda \in \Lambda$, then we have the external direct sum $\underset{\lambda \in \Lambda}{\oplus} k_{\lambda} \underset{\text { zes }}{\leq} \underset{\lambda \in \Lambda}{\oplus} L_{\lambda}$.

3-Z-singular submodules:

3.1 Definition: Let M be an R-module. The set $\{m \in M: a n n(m) \underset{\text { zes }}{\leq} R\}$ is denoted by $Z S(M)$.

It is easy to check $\mathrm{ZS}(\mathrm{M})$ is a submoduel of M . This submodule is called singular submodule of M. It is clear that $Z(M) \subseteq Z S(M)$.
3.2 Proposition: For any R-module M. Then $\mathrm{ZS}(\mathrm{M})=\{\mathrm{m} \in \mathrm{M}: \mathrm{mI}=(0)$ for any $\mathrm{I} \underset{\text { zes }}{\leq} R\}$. Proof: Let $K=\{m \in M$: $m I=(0)$ for some $I \leq$ zes $R\}$. Assume $m \in Z S(M)$, so that ann (m) \leq zes R and so m ann $(m)=0$; that is $m I=(0)$, where $I=\operatorname{ann}(m) \underset{\text { zes }}{\leq} R$. Thus $m \in K$. Conversely, if $m \in K$, then $m I=0$ for some $I \underset{\text { zes }}{\leq} R$, hence $I \leq \operatorname{ann}(m)$ and so ann $(m) \underset{\text { zes }}{\leq} R$. Thus $m \in Z S(K)$.
3.2 Proposition: Let $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ be any R - homomorphism then $\mathrm{f}(\mathrm{ZS}(\mathrm{M})) \subseteq \mathrm{ZS}(\mathrm{N})$.

Proof: Let $y \in f(Z S(M))$ Then $y=f(x)$ for some, $x \in Z S(M)$
Hence ann (x) $\underset{\text { zes }}{\leq}$ R. But ann $f(x) \supseteq$ ann (x), so ann $f(x) \underset{\text { zes }}{\leq} R$ and this implies $y=f(x) \in Z S(N)$.
3.3 Proposition: For $\mathrm{N} \leq \mathrm{M}, \mathrm{ZS}(\mathrm{N})=\mathrm{ZS}(\mathrm{M}) \cap \mathrm{N}$.

Proof: It is clear that $\mathrm{ZS}(\mathrm{N}) \supseteq \mathrm{ZS}(\mathrm{M}) \cap \mathrm{N}$. For any $\mathrm{m} \in \mathrm{ZS}(\mathrm{N}), \mathrm{m} \in \mathrm{N}$ and ann $(\mathrm{m}) \underset{\text { zes }}{〔} R$, so that $m \in Z S(M) \cap N$.
3.4 Definition: An R- module M is called to be Z-singular (respectively Z- nonsingular) module if $\mathrm{ZS}(\mathrm{M})=\mathrm{M}$ (resp. $\mathrm{ZS}(\mathrm{M})=(0)$).
In particular, $\forall \mathrm{n} \in \mathrm{Z}_{+}, \mathrm{M}=\mathrm{Z}_{\mathrm{n}}$ as Z -module. $\mathrm{Z}_{\mathrm{n}}=\mathrm{Z}(\mathrm{M})=\mathrm{ZS}(\mathrm{M})$.
For the Z -module $\mathrm{Z}, \mathrm{Z}(\mathrm{Z})=(0)$, but for each $\mathrm{N} \leq \mathrm{Z}$, ann $(\mathrm{N})=(0) \leq$ zes Z ; ie $\mathrm{ZS}(\mathrm{Z})=\mathrm{Z}$.
3.5 Remarks: Let N be a submodule of an R -module M . Then

1. M is Z -singular, implies N is Z -singular.
2. M is Z -nonsingular, implies N is Z -nonsingular.
3. Any simple faithful module is Z -singular.

Proof: (1) and (2) are easy.
(3) Since any simple module M is either nonsingular or singular. If M is singular, then $Z(M)=$ M, and since $Z(M) \subseteq Z S(M)$ we get $Z S(M)=M$, Thus M is Z-singular. If $Z(M)=0$, then $Z_{2}(M)$ $=0$. $A s M Z_{2}(R) \subseteq Z_{2}(M)$, so $M Z_{2}(R)=(0)$. This implies $Z_{2}(R)=0$, since M is faithful. Thus every ideal of R is Z-essential by Rem. and Exs. 2.2(2), hence for each $m \in M$, ann (m) zes R. It is follows that $\mathrm{ZS}(\mathrm{M})=\mathrm{M}$.
3.6 Proposition: An R-module M is Z-nonsingular of and only if $\operatorname{Hom}(A, M)=0$ for all Zsingular module.
Proof: \Rightarrow If M is Z-nonsingular, then $\mathrm{ZS}(\mathrm{M})=(0)$. Let A be Z -singular module, that is $\mathrm{ZS}(\mathrm{A})$ $=A$. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{M}$ be an R - homomorphism. Then $\mathrm{f}(\mathrm{ZS}(\mathrm{A})) \subseteq \mathrm{ZS}(\mathrm{M})$ and hence $\mathrm{f}(\mathrm{A}) \subseteq 0$. Thus $\mathrm{f}=0$.
\Longleftarrow To Prove M is Z-nonsingular. Since $\mathrm{ZS}(\mathrm{ZS}(\mathrm{M}))=\mathrm{ZS}(\mathrm{M}) \cap \mathrm{M}=\mathrm{ZS}(\mathrm{M})$, Thus $\mathrm{ZS}(\mathrm{ZS}(\mathrm{M}))$ $=\mathrm{ZS}(\mathrm{M})$, that is $\mathrm{ZS}(\mathrm{M})$ is a Z -singular module. Hence $\operatorname{Hom}(\mathrm{ZS}(\mathrm{M}), \mathrm{M})=0$. But $\mathrm{ZS}(\mathrm{M}) \leq \mathrm{M}$, so the inclusion mapping $\mathrm{i} \in \operatorname{Hom}(\mathrm{ZS}(\mathrm{M}), \mathrm{M})=0$. This implies $\mathrm{i}=0$ and $\mathrm{ZS}(\mathrm{M})=0$ and so M is Z-nonsingular.
3.7 Proposition: A module M is Z-singular if and only if there exists a short exact sequence $(0) \rightarrow \mathrm{A} \xrightarrow{\mathrm{f}} \mathrm{B} \xrightarrow{\mathrm{g}} \mathrm{M} \rightarrow 0$ such that f is an essential monomorphism.
Proof :
\Rightarrow Assume M is Z -singular. Choose an exact sequence $0 \rightarrow \mathrm{~A} \xrightarrow{\text { inc }} \mathrm{B} \xrightarrow{g} \mathrm{M} \rightarrow 0$ with $\mathrm{A} \subseteq \mathrm{B}$ and B is a free module. Let $\left\{b_{\alpha}\right\}$ be a basis of B, then for each $\alpha \in \wedge, g\left(b_{\alpha}\right) I \alpha=0$ for some Zessential ideal, since M is Z-singular. Hence $g\left(b_{\alpha} I_{\alpha}\right)=0$, that is $b_{\alpha} I_{\alpha} \subseteq \operatorname{ker} g, \forall \alpha \in \wedge$. But Ker $g=\operatorname{Im}(i)=A$, so $b_{\alpha} I_{\alpha} \leq A, \forall \alpha \in \wedge$. Since $I_{\alpha} \leq \frac{s}{\text { zes }} R$, we get $b_{\alpha} I_{\alpha} \leq \frac{s}{\text { zes }} b_{\alpha} R, \forall \alpha \in \wedge$. Hence $\underset{\alpha \in \Lambda}{\oplus}\left(\mathrm{b}_{\alpha} \mathrm{I}_{\alpha}\right) \underset{\text { zes }}{\leq} \underset{\alpha \in \Lambda}{\oplus} \mathrm{b}_{\alpha} \mathrm{R}=\mathrm{B}$ by Theorem 2.13. But $\underset{\alpha \in \Lambda}{\oplus}\left(\mathrm{b}_{\alpha} \mathrm{I}_{\alpha}\right) \subseteq \mathrm{A} \subseteq \mathrm{B}$, so that $\mathrm{A} \underset{\text { zes }}{\leq} \mathrm{B}$ (by tansitivity of Z-essential submodules). Thus the inclusion mapping i : A $\rightarrow \mathrm{B}$ is Z-essential monomorphism .
\Longleftarrow Suppose we have exact sequence $0 \rightarrow \mathrm{~A} \xrightarrow{\mathrm{f}} \mathrm{B} \xrightarrow{\mathrm{g}} \mathrm{M} \rightarrow 0$ such that f is mononomorphism. Given $b \in B$, define $k: R \rightarrow B$ by $k(r)=b r, \forall r \in R$. Since $f(A) \leq B$, we get $k^{-1} f(A) \leq$ zes R by Proposition 2.2 (3). But $k^{-1} f(A)=\{r \in R: k(r) \in f(A)\}=\{r \in R: b r \in f(A)\}$. Put $I=k^{-1}(f(A))$ so I zes R and $\mathrm{bI} \leq \mathrm{f}(\mathrm{A})=$ ker g . Hence $\mathrm{g}(\mathrm{bI})=\mathrm{g}(\mathrm{b}) \mathrm{I}=0$. It follows that $\mathrm{g}(\mathrm{b}) \in \mathrm{ZS}(\mathrm{M})$. But g is an epimorphism, so for each $m \in M, \exists b \in R$ with $g(b)=m$, so that $Z S(M)=M$; that is M is Z singular.
3.8 Corollary: If $A \leq \frac{\leq}{\text { zes }} M$, where M is an R-module. Then $\frac{M}{A}$ is Z-singular.

Proof: Consider the sequence $0 \rightarrow A \xrightarrow{i} B \xrightarrow{\pi} \frac{M}{A} \rightarrow 0$ where I is the inclusion mapping and π is the natural epimorphism. Since i is monomorphism and $i(A)=A \quad \underset{z}{\leq} M, i$ is \quad Z-essential monomorphism. Hence by Proposition 3.7, $\frac{\mathrm{M}}{\mathrm{A}}$ is Z -singular.

3.9 Remarks:

(1) The following example shows that the converse of corollary 3.8 is not true in general . The Z-module Z_{2}, if $A=(0)$, then $A_{\text {zes }} Z_{2}$ but $\frac{Z_{2}}{A} \simeq Z_{2}$ (as Z-module) is singular, so $\frac{Z_{2}}{A}$ is Z singular.
(2) Let I be an ideal of a commutative ring with identity R. Then $I \underset{\text { zes }}{\leq} R$ if and only if $\frac{R}{I}$ is Zsingular.
Proof: \Rightarrow It follows by corollary 3.8.
\Longleftarrow Since R / I is Z -singular, $\mathrm{ZS}(\mathrm{R} / \mathrm{I})=\mathrm{R} / \mathrm{I}$. Hence $1+\mathrm{I} \in \mathrm{ZS}(\mathrm{R} / \mathrm{I})$ and so ann $(1+\mathrm{I}) \underset{\text { zes }}{\leq} \mathrm{R}$. But ann $(1+I)=\{r \in R:(1+I) r=I\}=\{r \in R: r \in I\}=I \frac{1}{\text { zes }} R$.
3.10 Proposition: Let $0 \rightarrow \mathrm{~A} \xrightarrow{\mathrm{f}} \mathrm{B} \xrightarrow{\mathrm{g}} \mathrm{C} \rightarrow 0$ be a short exact sequence. If A and C are Znonsingular. Then B is Z -nonsingular.
Proof: Let $m \in \operatorname{ZS}(B)$. Then ann (m) zes z. Since the sequence exact, $\operatorname{Imf}=$ kerg, also g is an epimorphism which implies $\frac{B}{\text { kerg }} \cong C$ which is Z-nonsingular .Hence $\frac{B}{f(A)}$ is $\quad Z$-nonsingular.

But ann $(m) \subseteq \operatorname{ann}(m+f(A))$, so ann $(m+f(A)) \underset{\text { zes }}{ }$ R; that is $m+f(A) \in Z S\left(\frac{M}{f(A)}\right)=0$, It is clear that $m \in f(A)$. Thus $m \in Z S(B) \cap f(A)=Z S(f(A))$. But $f(A)$ is Z-nonsingular since $f(A)$ $\cong \mathrm{A}$ which is Z -nonsingular, it follows that $\mathrm{m}=0$ and $\mathrm{ZS}(\mathrm{B})=0$.
3.11 Corollary: If N and $\frac{\mathrm{M}}{\mathrm{N}}$ are Z-nonsingular, then M is Z -nonsingular.

Proof: The sequence $0 \rightarrow \mathrm{~N} \xrightarrow{\mathrm{i}} \mathrm{M} \xrightarrow{\pi} \frac{\mathrm{M}}{\mathrm{N}} \rightarrow 0$, where i is the inclusion mapping and π is the natural projection, is a short exact sequence. Hence by Proposition 3.10, M is Z-nonsingular. 3.12 Proposition: Let $\left\{\mathrm{M}_{\alpha}\right\}_{\alpha \in \wedge}$ be a family of R-modules and $\mathrm{M}=\underset{\alpha \in \wedge}{\oplus} \mathrm{M}_{\alpha}$. Then $\mathrm{ZS}(\mathrm{M})=\underset{\alpha \in \lambda}{\oplus}(\mathrm{ZS}(\mathrm{M} \alpha))$.
Proof: $\forall \alpha \in \wedge, \mathrm{M}_{\alpha} \subseteq \mathrm{M}$, so $\mathrm{ZS}\left(\mathrm{M}_{\alpha}\right) \subseteq \mathrm{ZS}(\mathrm{M})$; that is $\mathrm{ZS}\left(\mathrm{M}_{\alpha}\right) \subseteq \mathrm{ZS}\left(\underset{\alpha \in \wedge}{\oplus} \mathrm{M}_{\alpha}\right)$. Thus $\quad \underset{\alpha \in \wedge}{\oplus}$ $\mathrm{ZS}\left(\mathrm{M}_{\alpha}\right) \subseteq \mathrm{ZS}\left({ }_{\alpha \in \Lambda}^{\oplus} \mathrm{M}_{\alpha}\right) \quad \ldots(1)$
Let $\sum_{\alpha \in \Lambda} \mathrm{x}_{\alpha} \in \mathrm{ZS}\left({ }_{\alpha \in \wedge}^{\oplus} \mathrm{M}_{\alpha}\right)$, where $\mathrm{x}_{\alpha} \in \mathrm{M}_{\alpha}, \forall \alpha \in \wedge$ and $\mathrm{x}_{\alpha}=0$ for all except a finite number of $\alpha \in \Lambda$. Hence ann $\left(\sum_{\alpha \in \Lambda} \mathrm{x}_{\alpha}\right) \underset{\text { zes }}{\leq} \mathrm{R}$ and ann ($\left.\mathrm{x}_{\alpha}\right)_{\text {zes }}^{\leq} \mathrm{R}$; that is $\mathrm{x}_{\alpha} \in \mathrm{ZS}\left(\mathrm{M}_{\alpha}\right)$ and $\sum_{\alpha \in \Lambda} \mathrm{x}_{\alpha} \in \underset{\alpha \in \Lambda}{\oplus}$ $\mathrm{ZS}\left(\mathrm{M}_{\alpha}\right)$. Thus $\mathrm{ZS}\left(\underset{\alpha \in \wedge}{\oplus} \mathrm{M}_{\alpha}\right) \subseteq \underset{\alpha \in \wedge}{\oplus} \mathrm{ZS}\left(\mathrm{M}_{\alpha}\right)$
Then by (1) and (2), ZS $\left(\underset{\alpha \in \wedge}{\oplus} \mathrm{M}_{\alpha}\right)=\underset{\alpha \in \wedge}{\oplus}\left(\mathrm{ZS}\left(\mathrm{M}_{\alpha}\right)\right)$.
3.13 Theorem: The class of Z-singular R-modules is closed under (1) submodules (2) factor modules (3) direct sum.
Proof: M is Z-singular, so $\mathrm{ZS}(\mathrm{M})=\mathrm{M}$
1- For any $\mathrm{A} \leq \mathrm{M}$. Since $\mathrm{ZS}(\mathrm{A})=\mathrm{ZS}(\mathrm{M}) \cap \mathrm{A}=\mathrm{M} \cap \mathrm{A}=\mathrm{A}$.
2- Let $A \leq M$, Let $: M \rightarrow M / A$ be the natural epimorphism $\pi(Z S(M)) \subseteq Z S\left(\frac{M}{A}\right)$, hence $\pi(M)$ $=\frac{\mathrm{M}}{\mathrm{A}} \subseteq \mathrm{ZS}\left(\frac{\mathrm{M}}{\mathrm{A}}\right)$. Thus $\frac{\mathrm{M}}{\mathrm{A}}=\mathrm{ZS}\left(\frac{\mathrm{M}}{\mathrm{A}}\right)$.
3- If $\left\{\mathrm{M}_{\alpha}\right\}_{\alpha \in \wedge}$ be a family of Z -singular modules By Proposition 3.12, ${ }_{\alpha \in \wedge}^{\oplus}\left(\mathrm{ZS}\left(\mathrm{M}_{\alpha}\right)\right)=$ ZS $\left(\underset{\alpha \in \Lambda}{\oplus} \mathrm{M}_{\alpha}\right)$. Hence $\underset{\alpha \in \Lambda}{\oplus}\left(\mathrm{M}_{\alpha}\right)=\mathrm{ZS}\left(\underset{\alpha \in \Lambda}{\oplus} \mathrm{M}_{\alpha}\right)$; ie $\underset{\alpha \in \Lambda}{\oplus} \mathrm{M}_{\alpha}$ is Z-singular.
3.14 Theorem: The class of Z-nonsingular R-modules is closed under (1) submodules, (2) essential extension (3) direct product (4) module extension.
Proof: (1) and (2) are easy
3- Let $\left\{\mathrm{C}_{\alpha}\right\}_{\alpha \in \wedge}$ be a collection of Z-nonsingular R-modules. Let A be Z-singular R-module , hence $\operatorname{Hom}\left(\mathrm{A}, \mathrm{C}_{\alpha}\right)=0, \forall \alpha \in \wedge$. It follows that $\operatorname{Hom}\left(\mathrm{A}, \pi_{\alpha \in \wedge} \mathrm{C}_{\alpha}\right)=0$, and so $\pi_{\alpha \in \wedge}^{\pi} \mathrm{C}_{\alpha}$ is Z nonsingular.
4- Suppose that $0 \rightarrow \mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow 0$ is an exact sequence with A and C are
nonsingular. Then by Proposition 3.10, B is Z - nonsingular.

4- Z - Closed submodule:

Recall that a submodue A of an R -module M is called closed $\left(\mathrm{A}{ }_{\mathrm{c}}^{\leq} \mathrm{M}\right)$ if whenever $\mathrm{B} \leq$ M such that $\mathrm{A} \stackrel{\leq}{\text { ess }} \mathrm{B}$, then $\mathrm{A}=\mathrm{B}$; ie A has no proper essential extension in M [3]. In this section, we introduce (Z-closed submodule) as a generalization of closed submodule.
4.1 Definition: A submodule C of an R-module M is called Z -closed (briefly $\mathrm{C}{ }_{\mathrm{zc}}^{\leq} \mathrm{M}$) if whenever $\mathrm{C} \underset{\text { zes }}{\leq} \mathrm{W}$ and where $\mathrm{C} \leq \mathrm{M}$ implies $\mathrm{C}=\mathrm{W}$; ie $\mathrm{C} \underset{\mathrm{zc}}{\leq} \mathrm{M}$ if C has no proper Z -essential extension in M .
4.2 Proposition: For each $\mathrm{A} \leq \mathrm{M}$, there exists $\mathrm{B} \supseteq \mathrm{A}$ such that $\mathrm{A} \underset{\text { zes }}{\leq} \mathrm{B}$ and B is Z -closed. Proof: Let $T=\left\{K \leq M: A_{z e s}^{\leq} K\right\} . T \neq 0$ since $A \in T$. By Zorn's Lemma, T has a maximal element expressed K_{0}, We claim that K_{0} is Z-closed. Suppose $\exists K^{\prime} \leq M$ such that $K_{0} \leq \frac{\leq}{\text { zes }} K^{\prime}$. As A $\leq K_{0}$; so $A \underset{\text { zes }}{\leq} K^{\prime}$ and this implies $K^{\prime} \in T$ which is a contradiction, since K_{0} is a maximal element of T. Thus K_{0} is Z -closed .

4.3 Remarks:

1- It is clear that every Z -closed submodule of an R -module M is closed.
2- A closed submodule need not be Z -closed submodule, as for example: In Z_{6} as Z_{6}-module since $Z_{2}\left(Z_{6}\right)=0$, every submodule of Z_{6} is Z-essential, hence $N=(\overline{3})$ is not $\quad Z$-closed submodule of Z_{6}. But N is closed. Also by the same example: a direct summand of a module may not be Z-closed.
3- If $\mathrm{Z}_{2}(\mathrm{M})=\mathrm{M}$, then a submodule A of M is closed if and only if it is Z -closed.
4.4 Proposition: Let $\mathrm{A} \leq \mathrm{M}, \mathrm{K} \leq \mathrm{M}$. if $\mathrm{A} \leq \mathrm{Zc} \mathrm{M}$, then $\frac{\mathrm{A}}{\mathrm{K}} \leq \frac{\mathrm{M}}{\mathrm{zc}} \frac{\mathrm{K}}{\mathrm{K}}$.

Proof: Suppose $\frac{A}{K} \leq \frac{W}{\text { zes }} \frac{\mathrm{K}}{\mathrm{K}}$ for some $\frac{\mathrm{W}}{\mathrm{K}} \leq \frac{\mathrm{M}}{\mathrm{K}}$. Then by Proposition 2.3 (3). A \leq zes W. Hence $\quad \mathrm{A}=$ W , since A $\underset{\mathrm{zc}}{\leq} \mathrm{M}$. Thus $\frac{\mathrm{A}}{\mathrm{K}}=\frac{\mathrm{w}}{\mathrm{K}}$.
4.5 Proposition: Let $B \leq K \leq M$, if $B \leq \frac{Z c}{\leq} M, K \leq \frac{\text { zes }}{\leq} M$ then $\frac{K}{B} \leq \frac{M}{z e s} \frac{M}{B}$.

Proof: Assume $\frac{C}{B} \leq \frac{M}{B}, \frac{C}{B} \leq Z_{2}\left(\frac{M}{B}\right)$ and $\frac{K}{B} \cap \frac{C}{B}=0$. Hence $K \cap C=B$. Since $K \underset{\text { zes }}{\leq} M$ and C $\underset{\text { zes }}{\leq} \mathrm{C}$, so $\mathrm{B}=(\mathrm{K} \cap \mathrm{C}) \underset{\text { zes }}{\leq}(\mathrm{M} \cap C)=\mathrm{C}$. But $\mathrm{B} \leq \mathrm{ZC}$, so $\mathrm{B}=\mathrm{C}$. Thus $\frac{\mathrm{C}}{\mathrm{B}}=0$ and $\frac{K}{\mathrm{~B}} \leq \frac{M}{\operatorname{zes}} \frac{\mathrm{M}}{\mathrm{B}}$.
4.6 Proposition: If $\mathrm{A}_{\mathrm{zc}}^{\leq} \mathrm{M}$ and $\mathrm{A} \leq \mathrm{B} \leq \mathrm{M}$, then $\mathrm{A} \underset{\mathrm{zc}}{\leq} \mathrm{B}$.

Proof: It is easy, so is omitted.
The converse of Proposition 4.6 may not be true in general for example:
Let M be the Z -module $\mathrm{Z}_{12}, \mathrm{~A}=\{\overline{0}, \overline{6}\}, \mathrm{B}=\{\overline{0}, \overline{2}, \overline{4}, \ldots, \overline{10}\}$. Then $\mathrm{A}_{\mathrm{zc}}^{\leq} \mathrm{B}$, but $\mathrm{A}_{\mathrm{Zc}}{ }_{\mathrm{Zc}} \mathrm{M}$. However we have the following:
4.7 Proposition : Let A and B be submodules of a module M. Then the following assertions are equivalent .
(1) $\mathrm{B} \leq \mathrm{zc} \mathrm{M}$,
(2) for each submodule C of M such that $\mathrm{B} \leq \mathrm{C}$, then $\mathrm{B} \leq \mathrm{Cc}$.

Proof: $(2) \Rightarrow(1)$ It is clear.
(1) $\quad \Rightarrow$ (2) Follows by Prop.4.6.
4.8 Proposition : Let $N \underset{z c}{\leq} M$ and $K \underset{\text { zes }}{\leq} M$. Then $N \cap K \underset{z c}{\leq} K$. Provided $Z_{2}(A+B)=Z_{2}(A)+$ Z_{2} (B) for each A B $\leq \mathrm{M}$.
Proof: To Prove $N \cap K \leq{ }_{z c}^{\leq} K$. Suppose $N \cap K \underset{\text { zes }}{\leq} L \leq K$. So we must prove $N \cap K=L$. First we shall prove $N \underset{\text { zes }}{\leq} N+$ L. Let $x \in Z_{2}(N+L)$ and $x \neq 0$, so $x \in Z_{2}(N)+Z_{2}(L)$ and hence $x=$ $n+1$ for some $n \in Z_{2}(N), 1 \in Z_{2}(L)$.
As $Z_{2}(N+L) \subseteq Z_{2}(M)$, hence $x \in Z_{2}(M)$. But $K \underset{\text { zes }}{\leq} M$, so there exists $r_{1} \in R-\{0\}$ such that 0 $\neq \mathrm{xr} \in \mathrm{K}$. Thus $0 \neq(\mathrm{n}+\mathrm{l}) \mathrm{r} \in \mathrm{K}$, so it follows that $\mathrm{nr}=-\mathrm{R}+\mathrm{k}$ for some $\mathrm{k} \in \mathrm{K}$, and then $\mathrm{nr} \in$ $N \cap K$. Since $1 \in Z_{2}(L)$ and $0 \neq l r \in Z_{2}(L)$, there exists $r_{1} \in R-\{0\}$ such that $0 \neq \mid r r_{1} \in N \cap K$.
This implies $0 \neq \mathrm{nrr}_{1}+\mathrm{I}_{\mathrm{r}} \mathrm{r}_{1} \in \mathrm{~N} \cap \mathrm{~K} \subseteq \mathrm{~K}$, thus $\mathrm{N} \stackrel{\leq}{\leq} \mathrm{N}+\mathrm{L}$ by corollary 2.5 and hence $\mathrm{N}=\mathrm{N}+\mathrm{L}$ since $\mathrm{N} \underset{\mathrm{Zc}}{\leq} \mathrm{M}$.
Now $N \cap K=(N+L) \cap K=L+(N \cap K)$, so that $L \subseteq N \cap K$. But $N \cap K \subseteq L$, hence $N \cap K$ $=\mathrm{L}$ and $\mathrm{N} \cap \mathrm{K} \underset{\mathrm{zc}}{\leq} \mathrm{K}$.

5.Conclusions :

1. Many properties of Z-essential submodule anologous to that of essential submodules However we have :
i) (0) \leq zes M if and only if $Z_{2}(M)=0$.
ii) $Z_{2}(M) \leq$ zes M.
lii) For a submodule N of a module $M, N \underset{\text { zes }}{\leq} M$ if and only if for each $U \subseteq Z_{2}(M), U \neq 0$, $\mathrm{N} \cap \mathrm{U} \neq 0$
Iv) For a submodule N of a module $M, N \underset{\text { zes }}{\leq} M$ if and only if for each $x \in Z_{2}(M), x \neq 0$, $\exists \mathrm{r} \in \mathrm{R}-\{0\}$ such that $0 \neq \mathrm{xr} \in \mathrm{N}$.
2. Many properties of Z - singular (Z - non singular) of submodules are anologous to that of Z- singular (Z - non singular) of submodules. However we have : Any simple faithful module is Z - singular .
3. The class of Z - closed submodules which contained the class of closed submodule . Many properties of closed submodules transfer to Z - closed submodules (may be with certain condition), for example :
If $N \leq \underset{z c}{\leq} M, K \underset{z e s}{\leq} M, N \cap K \underset{z c}{\leq} N$, provided $Z_{2}(A+B)=Z_{2}(A)+Z_{2}(B)$, for each submodules A, B of M.

References:

[1] K.R. Goodear , "Ring Theory, Nonsingular Rings and Modules". Marcel Dekker, Inc. New York, 1976.
[2] F. Kasch, "Modules and Rings". Acad. press, London, 1982.
[3] Y.A. Zhou, "Generalization of perfect and semiperfect and semiregular rings". Algebra Collog., vol.7, pp.305-318, 2000.
[4] I. M. A. Hadi \& L. S. Mahmood," Semi small Submodules and Semi - Lifting Modules", Proceeding of 3rd Scientific Conference of the College of Science, University of Baghdad, pp. 385 - 393, 2009.
[5] I. M. A. Hadi \& T. A. Ibrahiem," P-small Submodules and PS- Hollow modules", Journal of pure and applied science, Salahedin University, Special Issue, vol.22, pp.24-31, 2010.
[6] I. M. A. Hadi \& S. H. Aidi, "On e-small Sbmodules". Ibn AL_Haitham J. for Pure and Applied Science, vol.27, no.2, pp.214-222, 2015.
[7] A. Kabban and W. Khalid, "On Jacobson small submodules" . Iraqi j. of science, vol. 60, no.7, pp.1584-1891, 2019.
[8] H. Baanoon and W. Khalid, "e*-essential submodules", European J.of pure and applied math., vol.15, no.1, pp.224-228, 2022.
[9] Sh., H, A. Asgari, "t-extending Modules and st-Baer Modules", Comm. Algebra, vol.39, pp.16051623, 2011.
[10] Dx. Zhou \& X. R. Zhang, "Small essential submodules and Martin Duality", Southeast Asi of Math., vol.35, pp.1091-1062, 2011 .
[11] H. A. Shahad and N. S. Al-Mothafar, "On P-essential submodules". Iraqi journal of science, vol.62, no.12, pp.4916-4922, 202,
[12] Sh., H, A. Asgari, "Densely Co-Hopfian Modules". Journal of algebra and its applications, vol.9, pp.989-1000, 2011.
[13] F. D. Shyaa, "A study of Modules related with T-semisimple Modules," Ph.D. thesis, University of Baghdad, 2018.
[14] I. M. A. Hadi, "Module Theory, Book store for printing", publishing and translation, Ministry of Higher Education and Scientific Research, Baghdad, Iraq, 2021.
[15] A. T. Hamad and A. A. Elewi, "Z-small submodule and Z-Hollow Modules", Iraqi J. of science, vol.62, no.8, pp.2708-2713, 2021.
[16] Z.A. EL-Bast P.F Smith," Multiplication Modules", Comm. Algebra, vol.16, pp.755-779, 1988.

