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Abstract:

We define and investigate Z- essential submodules as a generalization of essential
submodules. Various characterizations and properties of Z-essential submodules are
given. Moreover we introduce the concepts of Z-singular submodule and Z-closed
submodules.
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1- Introduction:

Throughout this paper all modules are unitary right R-modules, where R is commutative
ring with unity. It is known that a submodule N of an R- module M is said to be small
(superfluous), ( nationally “N << M”), if whenever W <M, N+ W =M, then W=M.A
submodule N of an R-module M is called essential (large) (notationally N M) if whenever N
NW = (0), W<M then W= (0)[1], [2]. Some authors used the notation N °,M for small
submodule and N LM or N 2 M for essential submodule. We shall use N << M for (N is
small submodule of M) and N M for (N is essential submodule of M).
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Many generalizations of small submodules and essential submodules were introduced by
researchers. Some of these generalizations are §-small submodules [3], semismall submodules
[4], p-small submodules [5], e-small submodules [6], J-small submodules [7], e*-essential
submodules [8], t-essential submodules [9], [10], small essential submodules[10] , P-essential
submodulles [11].

K.R.Goodearl in [1] introduce the concept Z>(M) (the second singular submodule of M) by

—ZZZ(%):Z( % ), where Z(M) is the singular submodule of M and Z(M) ={m € M : ml = 0 for

some | oz R} ={me M : ann(m) .; R}, where ann(m) = {r € R:mr = 0}.

If Z(M) =M (Z(M) = (0)) M is called singular . Asgari and Haghany in [12] used the notion
of Z>(M) and presented the concept “t-essential submodules”, where a submodule A of M is
called t-essential (briefly, A M), if whenever B < M, A N B < Z»(M) implies B < Z2(M).
Equivalently A (M if A + Za(M) 5 M. Hence it is clear that every essential submodule is t-
essential, but not conversely, see [12]. However the two concepts are equivalent in class of
nonsingular modules. Also Asgari in [12] proved that Z>(M) ={m € M : ann(m) o5 R} ={m
€ M : ml =0 for some | s R}. For more information about Z>(M), you can see [12], [13] ,
[14].

At 2021, A mina in [15] introduced and studied Z-small submodules, where a submodule N
of M is called Z-small (denoted by N M ) if whenever’ N + W = M, W < M,

W 2 Z,(M), then” W = M “. Note that W 2 Z,(M) implies Z2(W) = Z>(M).

In this paper, we present and study the concept Z- essential submodule ( as a dual of notion
of Z-small submodule), where a submodule N of M is called Z - essential (briefly N, M) if
whenever NNW =0, W < M, W C Z,(M) then W = (0).

In S. 2, we study Z-essential submodules and present many properties related with this concept

In S. 3, we introduce the concept of Z-singular submodules, where for any R - module M,
the set { meM : ann(m),.5 R } is denoted by ZS(M). It is clear that ZS(M) is submodule of
M . M is called Z-singular (Z-nonsingular) if ZS ( M ) = M(ZS (M) = 0). Many properties
related with this concept are given.

In S. 4, we define Z-closed submodule, where a submodule N of an R-module M is called
Z-closed (brifely N5-M ) if N has no proper Z-essential extension in M, that is if N 5., W <M
, then N = W. It is clear that every Z-closed submodule is closed but the converse is not true,
see Remark 4.3(1). Several other results are introduced.

2-Z- essential submodules:
2.1 Definition: A submodule N of an R- module M is called Z-essential (briefly N ;.M ) if
whenever W< Z>(M), N n W=(0) , then W = (0) .Note that W < Z>(M) is equivalent to Z2(W)
=W, that is N 5.sM if whenever N N W=(0), Zo(W) = W (W is Zo-torsion submodule) ,then W
=(0).

It clear that every essential submodule is Z-essential, but the converse may be not true,
(see Rem. 2.2.(2)).
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2.2 Remarks and Examples:
1- If Z> (M)=M, N< M, then N <., M if and only N 3. M; that is essential and Z-essential
submodules are coincident .

2- If Z> (M)=(0), then it is clear that every submodule of M is Z- essential.

In particular, if M = Zs as Zs — module; every submodule of Zs is Z -essential, but (2) (3), (0)
are not essential in Ze.

3- If (0)3.sM, then Z> (M) = 0, and the converse hold by part (2)

Proof: Since (0) N Z> (M) = (0), so Z2 (M) =(0) since (0) 3.s M.

4- Consider Z4 as Zs-module , Z> (Z4) = (2) , Z4 and (2) are essential in Z4, so they are
Z— essential. But (0) is not Z—essential, since (0) N Z2 (Z4) = (0) n (2) =(0) and  (2) # (0)

5- Z-essential submodules and t-essential submodules are independent concepts.

For examples: in the Z-module Z1, .The submodule A=(4) . Z12, see [14, Ex.1.1.16)].
However by (1) essential and Z-essential are coincide in Zi,, hence (4) & Z12. m Zs as Zs
- module, every submodule of Zs is Z—essential by part (2). But (2) < Ze is not t—essential in
Zs since (2) N (3)=(0) € Z> (Zs) , but (3) « (0) = Z2 (Zs).

6- Forevery moduleM , M3, M,Z> (M) 5.. M

2.3 Proposition: Let M be an R-module .Then

1- If N<W<Mand N M, then W 5, M.

proof: Let B € Z, ,(M) and W n B = (0). Since NEW, NNB = (0) .But N 5. M, so B=0. Thus
W Zes M.

2- If Ngand N:are Z-essential of an R-module M, then Nin N2 is Z-essential in M.

Proof: Let B < Z» (M) and (N:NN2) N B = (0). Then N1 n (N2NB) = (0). ButN2.NnB S N2 n
Z> (M) € Z> (M), so that N2 N B = (0), since N1 3.5 M. Also N2 5. M, B € Z» (M), hence B=
(0)

3- Let f:M —>M be an R-homomorphism, N 5. M". Then f 1 (N) 5, M.

Proof: let f1(N) n B=(0), B € Z,, (M). Then f (f1(N) n B) = (0) and so N n f (B)=(0) . As
BcZ,(M) ,f(B) c f(Z2(M)) € Z> (f(M)) € Z>(M").Thus f (B) = (0), since N 5.c M
'. This implies B Ker f=f 1 (0) € f*(N) and so B n f }(N) = B, that is (0) = B.

4- Let f: M1—> Mz be a monomorphism , N 5. M. Then f (N) 3. f (My).

Proof: Assume f(N) n B=(0), B €Z, (f (M1)) €Z2 (M2). Then f1(f (N) NnB) =1 (0 = (0). This
implies f1f(N) nf*(B)=(0). Butf1f(N)=N, since f is monomorphism , Hence Nn f!
(B) = (0), but we can show that f* (B) € Z> (Ma) as follows :-

Let x € f*1(B), then f (x) € B € Z> (M2). Hence anng f (X) ¢ R. But anng f(x) € anng(x) since
fis 1-1 and hence ann(x) <R which implies that x €Z.(M1). Therefore f1(B) € Z»(M21).This
implies f1 (B) = (0) since N 5,s M1. Then (0) =ff1(B)=B Nnf(M1) =B. Thus f (N) 5. f
(My).

5- Iff “A<B< M then A ;s Band B 5., Mifandonly if A 5. M.

Proof : = Assume AnK =(0) and K € Z> (M). Then An (KNB) =(0). As K< Z, (M), KNB
C Z» (M)Nn B=Z2(B). But A 7. B. So that KNB =(0). Also B .. M, and KEZ3(M), so that K
=(0).

< Toprove A . Band B ., M. Assume AnK = (0), K € Z, (B). But Z; (B) € Z>(M). So
that AnK=(0), K < Z, (M), hence K=0, since A ;.; M. Now let BhW = (0) and Wc 2z,
(M). Then AnNW =(0) since AS B .But A 3. B, so W =(0).
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The following is a characterization of Z-essential submodules.

2.4 Proposition: Let N be a submodule of an R- module M. Then N ..M if and only if for
each U<ZM),U=#0,NnU=0.

Proof: = Itis clear.

&< LetUC Z, (M) and NNU = 0. Suppose U0 then NNU 0 which is a contradiction. Thus
U=0andN 5. M.

2.5 Corollary: Let N <M, N ;.. M if and only if for each x € Zy(M), x # 0, 3 r € R-{0} such
that 0 = xr e N.

Proof: = By Proposition 2.4, N n (x) # (0), Hence there exists 0 # r € R such that 0
#xreN.

& Let 0 # USZ, (M). Then for each 0 = x € U, 3 r € R-{0} such that 0 # x r € N, so that xr
€ NN U. Therefore Nn U #0 for each 0 # USZ, (M). Therefore N 5., M by Proposition 2.4 .

2.6 Definition: A monomorphism f: M — M' is called Z-essential monomorphism if Imf
ses M.
Zes

2.7 Proposition : An R- module monomorphism “f: L — M “ is Z-essential if and only if for
each homomorphism h:M—N such that Ker h € Z>(M), hof is monomorphism implies h is
monomorphism.

proof: = Since f: L — M is Z-essential, Im f 5., M. As hof is monomorphism, 0

=Ker (hof) = f 1 (Ker h). So Ker h n Im f = 0 (because if x €ker h N Im f, then h(x)= 0, x =f

(#) f or some ¢ €L. So (hof) (£) =0, and hence £ = 0 and x=0). But Im f 5., M and Ker hc

Z>(M), so that Ker h = 0.Thus h is monomorphism.

< Assume K is monomorphism. To prove Imf 5. M. Let Im fn K = 0, K& Z, (M). Consider
f

L—>M1>M/K, where Tt is the natural epimorphism. Hence mof is monomorphism. To see this

Let x € ker (1 of), (1 of) (x) = Omi, hence f (x) € K ; that is f (x) € Im f n K=0. Thus  f(x)

=0 and x € Ker f = {0}. Then” Ker (m of) =0 “; that is mof is monomorphism. Hence by

assumption, 1 is monomorphism and as Ker t = K, so that K = 0.

2.8 Proposition: Let f : K— L be a monomorphism g:L —-M be a mononomorphism. Then

f, g are Z-essential monomorphism if and only if gof is Z-essential monomorphism.

Proof: = Let (g of) (K)N U =0, US Z, (M). To prove

U=(0), g * ((g°f) (K)) N U) =g *(0) = Ker g = {0}.

This implies f(K) N g ** (U) = (0).

We claim that g 1(U) € Z» (L). Assume x € g * (U), hence x€ L and g(x) € US Z, (M), so that

ann g(x) <;es R. But ann (x) 2 ann g(x), since g is 1-1. Hence ann (x) 3. R; thatisx € Z» (L).

Thus g * (U) € Z2 (L), and so f (K)Ng? (U) =0, g 1(U) € Z, (L) which implies g* (U)=0,

since f(K) Ses L.

It follows that gg * (U) = g(0) = 0. But gg "}(U) = UNIm g. Hence U=0, since Im g S.sM.

= Letf(K) N B =(0), B €Z>(L). To prove B = (0). Then (gof)(K) N g(B) = (0), But g(B) <

g (Z2 (L)) € Z2 (g(L) € Z2 (M). Hence g(B)=(0). Since (gof) (K) 5es M.

It follows that B = (0) since g is 1-1. Thus f (K) . L.

Now since (geof) (K) . M and (gof) (K)=g (f (K)) = g (L) € M .Hence g (L) 3. M.
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Recall that an R - module M is called a multiplication R-module if for any N < M, there
exists an ideal I of R such that N = M1 . Equivalently M is a generation R-module if for each N
<M, N=M (N : M), where(N g M)={reR:Mrc N }[16].

2.9 Proposition: Let M be a faithful finitely generated multiplication R-module, let N
<M. Then N 3. Mifandonly if (Nx M) 3 R.

proof: = Assume (N:M) N1 =(0), |1 € Z, (R). Then M [(N:M) N I] = M (0) =(0) Hence by
[2, Th.1.6], M [(N:M) NIT =M (N:M) N MI = (0) , that is NNMI = (0). But MI € MZx(R) =
Z>(M). Hence MI = (0), since N 3. M. So that | € ann M =(0), thus I =(0) and (N:M) <R.
& Assume NNW = (0), WS Z,, (M). Then (NNW:M) = (0:M) = ann M = (0), so (N:M) N
(W:M) = (0). But WE Z, (M), hence M (W: M) =W S Z» (M) =M Z: (R).

As M is a faithful finitely generated multiplication R-module, then by [2, Th 3.1], (W:M)
C Z, (R). Hence (N:M) N (W:M) = (0), (W:M) €Z> (R) and (N:M) 5. R, so that (W:M) =(0).
It follows that W = M (W:M) = M.(0) = (0).

2.10 Proposition: Let M be a finitely generated faithful multiplication R - module, let I
<R.Thenl . Rifandonlyif Ml 3. M.

proof: = Let MINW=(0) and W < Z, (M).Since M is a multiplication R module, W=MJ for
some J< R. But W=MJ < Z»(M) = M Z»(R), So that J € Z> (R).

Now M I N"W=MINMJ=(0)andso “M (INJ)=0;thatisl NJ<ann M =(0). Thus J
=(0) and W = MJ = (0).

< The proof is similarly.

2.11 Corollary: Let M be a finitely generated faithful multiplication R-module,
N=MI<M. Then N s Mifandonlyif |5, R.

2.12 Proposition: Let M be a finitely generated faithful multiplication R-module. and I, J ideals
of R. Then | 5. Jifand only if Ml 3. MJ.

Measure: = Assume MI NW=0, W € MJ and W <€ Z; (MJ). Since W< M, W=MK for some
K <R. Hence MK € M Jand so K € J by [2,Th.3.1].

Also Z; (MJ) = Z, (M) N MJ. But Z>(M)=MZ> (R), since M is a finitely generated faithful
multiplication R-module. Hence Z> (MJ) = MJ N MZ2(R). Also by [2; Th.2.1] Z> (MJ) =
M (N Zz2 (R)) = MZ: (J).

Now MINMK =0 implies M(INK) =0 and so INK < ann M=(0), that is INK=(0). As W c
Z>(MJ), MK € MZ>(J) and since M is a finitely generated faithful multiplication R-module, K
C Z>(J). Thus INK = (0) and K < Z(J), so K = (0). It follow that W=MK=(0).

< Assume INK=(0), K € Z, (J). To prove K = (0), since INK =0, then M(I N K) =0 and so
MI N MK = (0) and MK € MZ; (J). But Z2(MJ))=MJ N Z2(M)=MINM Z(R) = M (J
N Z2 (R)) =M Z (3). Thus MI N MK = 0 and MK € Z, (MJ), so that MK = (0), since MI <
MJ. It follows that K < ann M = (0). That is K=0.

2.13 Theorem: If {Kx: A € A} and {LxcZ,(M):1 € A} be families of submodules of an R-
module M.If {Kx: A € A} is an independent family of submodules of M and Kx 5. L for all
A €A, then {Lx: 1 € A} also independent family and ., Ky 5, ®L x

Proof: If Ki S.sL1 and Kz 5. L2 are submodules of M with KiNKz = (0), then KiNKz= (0) S.s
L1 N Lo, since Z2(L1 N L2y= (0) by Remarks 2.2(3). But Z2(L1N L2) =Z>(M) N(L1NL2) and
Z>(M) 5.sM ( Remarks 2.2 (6)),s0 L1 N L>=0
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Let p1:L1 @ Lo— Liand pp: L1 @ Lo — Lo, where p1, p2 are natural projections. We
obtain p7t (K1) = Ki® L2 Ses L1 Lo, p31(K2) = L1 ® K2 <5, L2 @ L1 and then Ki ®K:
= (K1 ®L2) N (L1 ®K2) 5es (L1 BL2) by Proposition 2.3(2).

Thus the assertion of the theorem for families with two elements is shown, and by induction,
we get it for families with finitely many elements for arbitrary index set A, a family { L
cZ,(M) :1 € A} is independent if every finite subfamily is independent and thus what we have
just proved.

For any m € ©_ L. for some finite subset, E c A and since & kn es 2p Ls, then by
Proposition 2.4 mR N & kx #0. ButmR N &  k» cmR N &, Kx. SomR N &, kaz 0.
Hence the intersection of a nonzero submodule of &.,Lx with &_,K. is again nonzero. Thus
iBE/\kX %es ?E/\LX-

2.14 Remark: If {ks :xe A }and {L~:x€ A } are families of R-modules with ks >.sLx for
all x€ A , then we have the external direct sum &_, kx S5 &, L.

3-Z-singular submodules:
3.1 Definition: Let M be an R-module. The set {me M:ann (m) ;.sR} is denoted by ZS(M).

It is easy to check ZS (M) is a submoduel of M. This submodule is called Z-
singular submodule of M. It is clear that Z (M) € ZS (M).

3.2 Proposition: For any R- module M. Then ZS (M) = {m € M:mI=(0) for any | ;.;R}.
Proof: Let K = {m € M: mI=(0) for some | 3. R}. Assume m € ZS(M), so that ann (M) 3.
R and so m ann (m) = 0; that is ml = (0), where | =ann(m) ;.s R. Thus m € K. Conversely, if
m € K, then mI=0 for some | 3. R, hence | < ann(m) and so ann(m) 5.sR. Thus m € ZS (K).

3.2 Proposition: Let f: M = N be any R- homomorphism then f (ZS(M)) € ZS(N).
Proof: Let ye f (ZS(M)) Then y = f(x) for some, x € ZS(M)

Hence ann (X) 3. R. Butann f (x) 2 ann (x), so ann f (X) 3.5 R and this implies

y =f(x) € ZS (N).

3.3 Proposition: For N < M, ZS(N) = ZS(M) n N.
Proof: It is clear that ZS(N) 2 ZS(M) N N. For any m € ZS(N), m €N and ann (m) 5.sR, so
thatm € ZS(M) N N.

3.4 Definition: An R- module M is called to be Z-singular (respectively Z- nonsingular)
module if ZS(M) = M (resp. ZS(M) =(0)).

In particular, Vn € Z+, M = Z, as Z-module. Z, = Z(M) = ZS(M).

For the Z-module Z, Z(Z) = (0), but for each N < Z, ann (N) = (0) 5.5 Z; ie ZS(2) = Z.

3.5 Remarks: Let N be a submodule of an R-module M. Then

1. M is Z-singular, implies N is Z-singular.

2. M is Z-nonsingular, implies N is Z-nonsingular.

3. Any simple faithful module is Z-singular.

Proof: (1) and (2) are easy.

(3) Since any simple module M is either nonsingular or singular. If M is singular, then Z(M) =
M, and since Z(M) < ZS(M) we get ZS(M) = M, Thus M is Z-singular. If Z(M) = 0, then Z>(M)
= 0. As MZx(R) < Z2(M), so M Z>(R) = (0). This implies Z>(R) = 0, since M is faithful. Thus
every ideal of R is Z-essential by Rem. and Exs. 2.2(2), hence for each m € M, ann (m) 3.s R.
It is follows that ZS(M) = M.
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3.6 Proposition: An R-module M is Z-nonsingular of and only if Hom (A,M) = 0 for all Z-
singular module.

Proof: = If M is Z-nonsingular, then ZS(M) = (0). Let A be Z-singular module, thatis ZS(A)
= A. Let f:A - M be an R- homomorphism . Then f (ZS(A)) € ZS(M) and hence f(A) € 0.
Thusf=0.

& To Prove M is Z-nonsingular. Since ZS(ZS(M)) = ZS(M) N M = ZS(M), Thus ZS(ZS(M))
= ZS(M), that is ZS(M) is a Z-singular module. Hence Hom(ZS(M),M) = 0. But ZS(M) < M,
so the inclusion mapping i € Hom (ZS(M), M) = 0. This implies i =0 and ZS(M) =0 and so M
is Z-nonsingular.

3.7 Proposition: A module M is Z-singular if and only if there exists a short exact sequence

f
0)—A-B 5 M — 0 such that f is an essential monomorphism.
Proof :

= Assume M is Z-singular. Choose an exact sequence 0 — A KBS M — 0with ACB and
B is a free module. Let {b.} be a basis of B, then for each o € A, g(bo)le = 0 for some Z-
essential ideal, since M is Z-singular. Hence g (bo lo) = 0, that is bo I« € ker g, V o € A. But
Kerg=Im (i)=A,soba le <A, Va €A.Since lo 5. R, we get by la 3.5 boR, V a.€ A. Hence
® (0o lo) s &, bu R=BbyTheorem 2.13. But &, (bule) SACSB,sothat A 5B
(by tansitivity of Z-essential submodules). Thus the inclusion mapping i : A — B is Z-essential
monomorphism .

< Suppose we have exact sequence 0 - A —f> B 2 M - 0 such that f is mononomorphism.
Given b € B, define k :R — B by k(r) = br, vr € R. Since f(A) < B, we get k! f(A) 5. R by
Proposition 2.2 (3). But kf(A)={reR: k(r) € f (A)}={re R:bref(A)}. Put 1=k (f(A)) s0 | 5.
R and bl < f(A) = ker g. Hence g(bl) =g(b) I =0 . It follows that g(b) € ZS(M) . But g is an
epimorphism, so for each m € M, 3 b € R with g(b)=m, so that ZS(M) = M; that is M is Z-
singular.

3.8 Corollary: If A 5.s M, where M is an R-module. Then % is Z-singular.

Proof: Consider the sequence 0 - A SBS % — 0 where I is the inclusion mapping and  is

the natural epimorphism. Since i is monomorphism and i (A) =A 3. M, iis  Z-essential
. .. M. .

monomorphism. Hence by Proposition 3.7, < s Z-singular.

3.9 Remarks:

(1) The following example shows that the converse of corollary 3.8 is not true in general .
The Z-module Z», if A = (0), then A ,%Z, but % =~ Z, (as Z-module) is singular, so % is Z-
singular.

(2) Let I be an ideal of a commutative ring with identity R. Then | ;. R if and only if% is Z-

singular .

Proof: = It follows by corollary 3.8.

< Since R/l is Z-singular, ZS(R/l) = R/l. Hence 1+1 € ZS(R/1) and so ann (1+1) 5. R. But
ann I+ ={reR:(1+Dr=1}={reR:rel}=1 ;R

f
3.10 Proposition: Let0 - A—> B 5 € - 0 be ashort exact sequence. If Aand C are Z-
nonsingular. Then B is Z-nonsingular.
Proof: Let m € ZS(B). Then ann (m) . R. Since the sequence exact , Imf = kerg, also g is an

epimorphism which implies é = C which is Z-nonsingular .Hence f(% iS  Z-nonsingular.
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But ann (m) € ann (m + f(A)), so ann (m + f(A)) 3. R; thatism + f(A) € ZS(ﬁ) =0,ltis

clear that m € f(A). Thus m € ZS(B) n f(A) = ZS (f(A)). But f(A) is Z-nonsingular since f(A)
= A which is Z-nonsingular, it follows that m = 0 and ZS(B) = 0.

3.11 Corollary: If N and % are Z-nonsingular, then M is Z-nonsingular.

Proof: The sequence 0 - N Sm3 % — 0, where i is the inclusion mapping and  is the natural

projection, is a short exact sequence. Hence by Proposition 3.10, M is Z-nonsingular.
3.12 Proposition Let {Ma}aer be a family of R-modules and M = &, M. Then
ZS(M) = Gen(ZS(Mo).
Proof: Vo €A, Ma c |v| 0 ZS(My) € ZS(M); that is ZS(M.) € ZS( &.,M.). Thus AN
ZS(Mo) € ZS( &M (1)
Let ) erX, € ZS (QEA o), where X« € Mq, Yoo €A and X« = 0 for all except a finite number of
o EA. Hence ann (Zae,\ Xy) 3 Zes R and ann (Xo) Ses R; that is X« € ZS(Mo) and Y enx, € &,
ZS(M.). Thus ZS (&M a) c® ZS(Ma) . (2)
Then by (1) and (2), ZS(&.,M.) = &, (ZS(M.)).
3.13 Theorem: The class of Z-singular R-modules is closed under (1) submodules (2) factor
modules (3) direct sum.
Proof: M is Z-singular, so ZS(M) = M
1- Forany A < M. Since ZS(A) =ZS(M) n A=MnA = A.
2- Let A< M, Let : M = M/A be the natural epimorphism (ZS(M)) € ZS (%), hence (M)
=Mezs &) ThusZ=2zs &.

A A A A
3- If {Mu}oer be a family of Z-singular modules By Proposition 3.12, &, (ZS(M.)) =
ZS(®_,M.). Hence &, (M.) = ZS (&, M.); ie & M. is Z-singular.
3.14 Theorem: The class of Z-nonsingular R-modules is closed under (1) submodules, (2)
essential extension (3) direct product ( 4) module extension.
Proof: (1) and (2) are easy
3- Let {Cu}acn be a collection of Z-nonsingular R-modules. Let A be Z-singular R-module ,
hence Hom (A,C.) =0 , Vo €A . It follows that Hom (A, e Co) =0, and so TcpCo IS Z-
nonsingular.
4- Suppose that 0 - C - B - A — 0 is an exact sequence with A and C are Z-
nonsingular. Then by Proposition 3.10, B is Z- nonsingular.

4- Z - Closed submodule:
Recall that a submodue A of an R-module M is called closed (A £ M) if whenever B <

M such that A £, B, then A = B; ie A has no proper essential extension in M [3]. In this section,
we introduce (Z-closed submodule) as a generalization of closed submodule.

4.1 Definition: A submodule C of an R-module M is called Z-closed (briefly C .M) if
whenever C 5. W and where C<M implies C =W; ie C 5. M if C has no proper  Z-essential
extension in M.

4.2 Proposition: For each A < M, there exists B 2 A such that A 3. B and B is Z-closed.
Proof: Let T = {K<M : A3.K}. T # 0 since A € T. By Zorn's Lemma, T has a maximal
element expressed Ko, We claim that Ko is Z-closed. Suppose 3K’ < M such that Ko 5.5 K'.
As A < Ko; 50 A 5. K and this implies K/ € T which is a contradiction , since Ko is a maximal
element of T. Thus Ko is Z-closed .
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4.3 Remarks:

1- Itis clear that every Z-closed submodule of an R-module M is closed.

2- A closed submodule need not be Z-closed submodule, as for example: In Zs as Zs-module
since Z»(Zs) = 0, every submodule of Zs is Z-essential, hence N = (3) is not Z-closed
submodule of Ze. But N is closed. Also by the same example: a direct summand of a module
may not be Z-closed.

3- If Z> (M) = M, then a submodule A of M is closed if and only if it is Z-closed.

4.4 Proposition: Let A<M, K<M.ifA 5. M ,then% > %

Proof: Suppose% . V—}Zfor somev—g < % Then by Proposition 2.3 (3). A s W.Hence A=

w

W, since A . M. Thus A-Y
K K

4.5 Proposition: LetB<K<M,ifB ;. M, K 3 M theng Zses%.

Proof: Assume % < % : g <Z (%) and g N % =0. Hence KN C =B. Since K s M and C
%5 C, 50 B= (KNC) %5 (MNC)=C.ButB % M,s0B=C.Thus=0and 7.
4.6 Proposition: IfA 5 Mand A<B<M,thenA % B.
Proof: It is easy, so is omitted.

The converse of Proposition 4.6 may not be true in general for example:

Let M be the Z-module Z1,, A = {0, 6}, B = {0, 2, 4,...,10}. Then A 5B, but A EZM.
However we have the following:

4.7 Proposition : Let A and B be submodules of a module M. Then the following assertions
are equivalent .

(1B &M,

(2) for each submodule C of M such that B < C, then B ;. C.

Proof: (2) = (1) Itisclear.

(1) = (2) Follows by Prop.4.6.

4.8 Proposition : Let N % M and K 5 M. Then NNK 3 K. Provided Z(A+B) = Z»(A) +
Z»(B) for each AB < M.

Proof: To Prove N N K 2 K. Suppose N N K %, L < K. Sowe must prove N n K = L. First
we shall prove N 5 N + L. Let x € Z» (N+L) and x # 0, so Xx€ Z,(N) +Z»(L) and hence x =
n + | for some n € Z>(N), | € Z»(L).

As Z>(N+L) € Z»(M), hence x € Z2(M). But K Zs M, so there exists r1 € R — {0} such that 0
# Xr € K. Thus 0 # (n+l) r € K, so it follows that nr = — R + k for some keK, andthen nre
NNK. Since | € Z»(L) and 0#1reZ,(L), there exists rieR—{0} such that 0 #Ir r; ENNK.

This implies 0#nrry + I, r1 € N N K € K, thus N ¢ N+L by corollary 2.5 and hence N=N+L
since N = M.
NowNNK=(N+L)nK=L+(NNnK),sothatLSNNK.ButNNnKEL,hence NnK
=LandNNnK K.
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5.Conclusions :

1. Many properties of Z-essential submodule anologous to that of essential submodules
However we have :

i) (0) s MifandonlyifZ(M)=0 .

i) Zo(M) S M.

lii) For a submodule N of a module M, N 5, Mifand onlyif foreachU € Z,(M),U #0,
NnU=+0

lv) For a submodule N of a module M, N 5. M if and only if for each x € Zo (M), x # 0,
3 reR—{0} such that 0 # xr eN.

2. Many properties of Z - singular ( Z - non singular) of submodules are anologous to that of
Z - singular ( Z - non singular) of submodules . However we have : Any simple faithful module
Is Z - singular .

3. The class of Z - closed submodules which contained the class of closed submodule . Many
properties of closed submodules transfer to Z - closed submodules ( may be with certain
condition ) , for example :

If NjiM, KM, NNnK ZN ,provided Z>(A+B) = Z2(A)+Z2(B) , for each submodules
A,B of M.
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