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Abstract:  

     We define and investigate Z- essential submodules as a generalization of essential 

submodules. Various characterizations and properties of Z-essential submodules are 

given. Moreover we introduce the concepts of Z-singular submodule and Z-closed 

submodules.  

 

Keywords : Z- small submodule , Z-essential submodule, Z-singular submodule, Z-

closed submodules ,   Z - nonsingular  submodule .     
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 الخلاصة :  
  الجزئية  المقاسات  لمفهوم كتعميم النمط              الواسعة   الجزئية المقاسات  مفهوم ودرسنا عرفنا     

   النمط      -  Z الواسعة  الجزئية المقاسات  عن ة  عديد  وخواص تميزات عطيت ا وقد      الواسعة
  قدمنا  هذا الى  اضافة   Z -  النمط  من  ة  المنفرد الجزئية  المقاسات مفهوم  قدمنا هذا الى  اضافة .   Z  - و

      النمط من  المغلقة  الجزئية المقاسات 
   

1- Introduction: 

     Throughout this paper all modules are unitary right R-modules, where R is commutative 

ring with unity. It is known that  a submodule N of an R- module M is said to be small 

(superfluous), ( nationally  “N << M” ), if  whenever W ≤ M, N + W = M, then   W = M . A 

submodule N of an R-module M is called essential (large) (notationally N  Me
≤ ) if whenever N 

∩ W = (0), W ≤ M then W = ( 0 ) [1], [2]. Some authors used the notation N ↪
0 M for small 

submodule and     𝑁  ↪
∗ M or N ⊴ M for essential submodule. We shall use N << M  for (N is 

small submodule of M) and N  Mess
≤  for (N is essential submodule of M). 
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     Many generalizations of small submodules and essential submodules were introduced by 

researchers. Some of these generalizations are δ-small submodules [3], semismall submodules 

[4], p-small submodules [5], e-small submodules [6], J-small submodules [7], e*-essential 

submodules [8], t-essential submodules [9], [10], small essential submodules[10] , P-essential 

submodulles [11]. 

 

     K.R.Goodearl in [1] introduce the concept Z2(M) (the second singular submodule of M) by 
Z2(M)

Z(M)
=Z( 

𝑀

𝑍(𝑀)
 ), where Z(M) is  the singular submodule of M and  Z(M) ={m ∈ M : mI = 0 for 

some I  ess
≤ R} = {m∈ M ∶ ann(m)  ess

≤  R}, where ann(m) = {r ∈ R:mr = 0}. 

 

      If Z(M) = M (Z(M) = (0)) M is called singular . Asgari and Haghany in [12] used the notion 

of Z2(M) and presented the concept “t-essential submodules”, where a submodule A of M is 

called t-essential (briefly, A Mtes
≤ ), if whenever B ≤ M, A ∩ B  Z2(M) implies     B  Z2(M). 

Equivalently A Mtes
≤  if A + Z2(M)  ess

≤  M. Hence it is clear that every essential submodule is t-

essential, but not conversely, see [12]. However the two concepts are equivalent in class of 

nonsingular modules. Also Asgari in [12] proved that    Z2(M) ={m ∈ M : ann(m)  tes
≤  R} = {m 

∈ M : mI = 0 for some I  tes
≤ R}. For more information about Z2(M), you can see    [12], [13]   , 

[14] . 

 

     At 2021, A mina in [15] introduced and studied Z-small submodules, where a submodule N 

of M is called Z-small (denoted by N  𝑍
≪ M ) if whenever’  N + W = M’,                   W ≤ M, 

W ⊇ Z2(M), then” W = M “. Note that W ⊇ Z2(M) implies Z2(W) = Z2(M). 

 

     In this paper, we present and study the concept Z- essential submodule ( as a dual of notion 

of Z-small submodule), where a submodule N of M is called Z - essential (briefly N  Mzes
≤ ) if 

whenever  N ∩ W = 0, W ≤ M, W  ⊆ Z2(M) then W = (0). 

In S. 2, we study Z-essential submodules and present many properties related with this concept 

.  

 

     In S. 3, we introduce the concept of Z-singular submodules, where for any R - module M, 

the set { m∈M : 𝑎𝑛𝑛(𝑚)  zes
≤  R } is denoted by ZS(M). It is clear that ZS(M) is submodule of 

M . M is called Z-singular (Z-nonsingular) if ZS ( M ) = M(ZS (M) = 0). Many properties 

related with this concept are given. 

 

     In S. 4, we define Z-closed submodule, where a submodule N of an R-module M is called 

Z-closed (brifely NZC
≤ M ) if N has no proper Z-essential extension in M, that is if  N zes

≤   W ≤ M 

, then N = W. It is clear that every Z-closed submodule is closed but the converse is not true, 

see Remark 4.3(1). Several other results are introduced. 

 

2-Z- essential submodules: 

2.1 Definition: A submodule N of an R- module M  is called Z-essential (briefly N zes
≤ M ) if  

whenever  W≤ Z₂(M), N ∩ W=(0) , then W = (0)  .Note that W ≤ Z₂(M) is equivalent to Z₂(W) 

= W, that is N zes
≤ M  if whenever N ∩ W=(0), Z₂(W) = W (W is Z2-torsion submodule) ,then W 

= (0) . 

        It clear that  every essential  submodule is Z-essential, but the converse may be not true, 

(see Rem. 2.2.(2)). 
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2.2 Remarks and Examples: 

1- If Z₂ (M)=M, N≤ M , then  N ≤ess M  if and only  N zes
≤ M; that is essential and Z-essential 

submodules are coincident  . 

 

2- If Z₂ (M)=(0), then it is clear that every submodule of M is Z- essential. 

In particular, if  M = Z6 as Z6 – module; every submodule of Z6 is Z -essential, but (2̅) (3̅), (0̅)  

are not essential in Z6. 

3- If (0)zes
≤ M, then Z₂ (M) = 0, and the converse hold by part (2)   

Proof: Since (0) ∩ Z₂ (M) = (0), so Z₂ (M) =(0) since (0) zes
≤  M. 

 

4- Consider Z4 as Z4-module , Z₂ (Z4) = (2̅) , Z4 and (2̅) are essential in Z4 , so they are  

Z− essential. But (o) is not Z−essential, since (0) ∩ Z2 (Z4) = (0̅) ∩ (2̅) = (0̅) and     (2̅) ≠ (0̅)  

 

5- Z-essential submodules and t-essential submodules are independent concepts. 

For examples: in the Z-module Z12 .The submodule A=(4̅) tes
≤  Z12, see [14, Ex.1.1.16 )]. 

However by (1) essential and Z-essential are coincide in Z12, hence (4̅) tes
≰  Z12 .  In   Z6 as  Z6 

– module, every submodule of Z6 is Z−essential by part (2). But (2̅) ≤ Z6 is not  t−essential in 

Z6 since (2̅) ∩ (3̅)=( 0̅) ⊆ Z2 (Z6) , but ( 3̅) ⊄ ( 0̅) = Z2 (Z6). 

 

6-  For every module M  , M 𝑧𝑒𝑠
≤  M , Z2 (M)  𝑧𝑒𝑠

≤  M 

 

2.3 Proposition: Let M be an R-module .Then 

1- If  N ≤ W ≤ M and N zes
≤  M, then W  zes

≤  M . 

proof: Let  B ⊆ Z2 ,(M) and W ∩ B = (0). Since N⊆W, N∩B = (0) .But N zes
≤  M, so B=0. Thus 

W zes
≤  M. 

2- If   N1 and N₂ are  Z-essential of an R-module M , then  N1∩ N₂ is Z-essential in M. 

Proof: Let   B ⊆ Z2 (M) and (N1∩N2) ∩ B = (0). Then N1 ∩ (N₂∩B) = (0). But N₂ ∩ B ⊆  N₂ ∩ 

Z₂ (M) ⊆ Z₂ (M), so that N₂ ∩ B = (0), since N1 zes
≤  M. Also N2 zes

≤  M , B ⊆ Z2 (M), hence B= 

(0)  

3- Let f :M →M ' be an R-homomorphism, N  zes
≤  M´. Then f -1 (N)  zes

≤  M.  

Proof: let  f -1 (N) ∩ B=(0), B ⊆ Z2, (M). Then f (f -1(N) ∩ B) = (0) and so N ∩ f (B)=(0) . As  

B ⊆ Z2 (M)  , f(B) ⊆  f (Z2 (M)) ⊆ Z2 (f (M) ) ⊆ Z2(M').Thus f (B) = (o), since          N  zes
≤  M 

'. This implies B⊆ Ker f = f -1 (0) ⊆ f -1 (N) and so B ∩ f -1(N) = B, that is (0) = B. 

4- Let f : M1→ M2 be a monomorphism , N  zes
≤  M.  Then f (N)  zes

≤  f (M1).  

Proof:  Assume f(N) ∩ B=(0), B ⊆Z2 (f (M1)) ⊆Z2 (M₂). Then f -1(f (N) ∩B) = f -1 (0 = (0). This 

implies  f -1 f (N) ∩ f -1 (B) = (0). But f -1 f (N) = N, since f is monomorphism  , Hence  N∩ f -1 

(B) = (0), but we can show  that  f -1 (B) ⊆ Z2 (M1) as follows :- 

Let  x ∈ f -1 (B), then f (x) ∈ B ⊆ Z₂ (M2). Hence annR f (x)  tes
≤  R. But annR f(x) ⊆ annR(x) since 

f is 1-1 and hence ann(x)  tes
≤ R which implies that x ∈Z₂(M1). Therefore f-1(B) ⊆ Z₂(M1).This  

implies  f -1  (B) = (0) since N zes
≤  M1. Then (0) = f f -1 (B) = B ∩ f (M1) = B. Thus f (N)  zes

≤  f 

(M1). 

 

5- 1f “ A ≤ B ≤  M ‘, then A  zes
≤  B and  B  zes

≤  M if and only if A  zes
≤  M. 

Proof :  ⟹  Assume A∩K = (0) and K ⊆ Z2 (M). Then A∩ (K∩B) =(0). As  K⊆ Z2  (M), K∩B 

⊆ Z2 (M)∩ B=Z2(B). But A  zes
⊆  B. So that K∩B =(0). Also B  zes

≤  M, and  K⊆Z2(M), so that  K 

=(0). 

⟸  To prove A  zes
≤  B and B  zes

≤  M. Assume A∩K = (0), K ⊆ Z2 (B). But Z2 (B) ⊆ Z2(M). So 

that A∩K=(0), K ⊆ Z2 (M), hence K=0, since A  zes
≤  M. Now let B∩W = (0) and       W ⊆ Z2 

(M). Then A∩W =(0)  since A⊆  B .But A  zes
≤  B, so W = (0). 
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The following is a characterization of Z-essential submodules. 

2.4 Proposition: Let N be a submodule of an R- module M. Then N  zes
≤ M if and only if for 

each   U ≤ Z₂(M), U ≠ 0, N∩ U ≠ 0.  

Proof: ⇒  It is clear. 

⇐  Let U ⊆  Z₂ (M) and N∩U = 0. Suppose U≠0 then N∩U ≠0 which is a contradiction. Thus 

U = 0 and N  zes
≤  M. 

2.5 Corollary: Let N ≤ M, N  zes
≤  M if and only if for each x ∈ Z2(M), x ≠ 0, ∃ r ∈ R-{0} such 

that 0 ≠ x r ∈ N. 

Proof: ⇒  By Proposition 2.4, N ∩ (x) ≠ (0), Hence there exists 0 ≠ r ∈ R such that            0 

≠ x r ∈ N. 

⇐  Let 0 ≠ U⊆Z₂ (M). Then for each 0 ≠ x ∈ U,  r ∈ R-{0} such that 0 ≠ x r ∈ N, so that xr 

∈ N∩ U. Therefore N∩ U ≠0 for each 0 ≠ U⊆Z₂ (M). Therefore N  zes
≤  M by Proposition 2.4 . 

 

2.6 Definition: A monomorphism f: M → M' is called Z-essential monomorphism if       Imf 

 zes
≤  M.  

 

2.7 Proposition : An R- module monomorphism  “f: L → M “  is Z-essential if and only if for 

each homomorphism h:M→N such that Ker h ⊆ Z₂(M), hof is monomorphism implies h is 

monomorphism.  

proof∶ ⇒ Since f: L → M is Z-essential, Im f  zes
≤  M. As hof is monomorphism,                        0 

=Ker (h∘f) = f -1 (Ker h). So Ker h ∩ Im  f = 0 (because if x ∈ker h ∩ Im  f, then h(x)= 0, x =f 

(ℓ) f or some ℓ ∈L. So (h∘f) (ℓ) =0, and hence ℓ = 0 and x=0). But Im f  zes
≤  M and Ker h⊆

 Z2(M), so that Ker h = 0.Thus h is monomorphism. 

⇐ Assume K is monomorphism. To prove Imf  zes
≤  M. Let Im f∩ K = 0, K⊆ Z2 (M). Consider 

L
   f   
→ M

   π   
→  M/K, where π is the natural epimorphism. Hence π∘f is  monomorphism. To see this 

Let x ∈ ker (π ∘f), (π ∘f) (x ) = 0M/K, hence f (x) ∈ K ; that is f (x) ∈ Im f ∩ K=0. Thus     f(x) 

= 0 and x ∈ Ker f = {0}. Then” Ker (π ∘f) = 0 “ ; that is π∘f is monomorphism. Hence by 

assumption, π is monomorphism and as Ker π = K, so that K = 0. 

2.8 Proposition: Let f : K→ L be a monomorphism  g:L →M  be a  mononomorphism. Then  

f , g are Z-essential monomorphism  if and only if g∘f is Z-essential monomorphism. 

Proof: ⟹ Let (g of) (K)⋂ U =0, U⊆ Z2 (M). To prove  

U= (0), g -1 ( (g∘f) (K)) ⋂  U) = g -1(0) = Ker g = {0}. 

This implies f(K) ⋂ g -1 (U) = (0).   

We claim that g -1(U) ⊆ Z2 (L). Assume x ∈ g -1 (U), hence x∈ L and g(x) ∈ U⊆ Z2 (M), so that 

ann g(x) ≤𝑡𝑒𝑠 R. But ann (x) ⊇ ann g(x), since g is 1-1. Hence ann (x)  zes
≤  R; that is x ∈  Z2 (L). 

Thus g -1 (U) ⊆ Z2 (L), and so f (K)⋂g-1 (U) = 0, g -1(U) ⊆ Z2 (L) which implies g-1 (U)=0, 

since f(K)  zes
≤  L.  

It follows that gg -1 (U) = g(0) = 0. But gg -1(U) = U⋂Im g. Hence  U=0 , since Im g  zes
≤ M.  

⟹ Let f (K) ⋂ B = (0), B ⊆Z2 (L). To prove B = (0). Then (g∘f)(K) ⋂ g(B) = (0), But g(B) ⊆ 

g (Z2 (L)) ⊆ Z2 (g(L) ⊆ Z2 (M). Hence g(B)=(0). Since (g∘f) (K)  zes
≤  M. 

It follows that B = (0) since g is 1-1. Thus f (K)  zes
≤  L. 

Now since (g∘f) (K)  zes
≤  M and (g∘f) (K)=g (f (K))  g (L) ⊆ M .Hence g (L)  zes

≤  M.  
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     Recall that an R - module  M is called a multiplication R-module if for any N ≤ M, there 

exists an ideal I of R such that N = MI . Equivalently M is a generation R-module if for each N 

≤ M, N = M (N  R
: : M), where (N  R

:   M) = { r∈R : Mr ⊆ N } [16] . 

 

2.9 Proposition: Let M be a faithful finitely generated multiplication R-module, let                 N 

≤ M. Then N  zes
≤  M if and only if (N R

:  M)  zes
≤  R. 

proof: ⟹ Assume (N:M) ⋂ I = (0)  , I ⊆ Z2 (R). Then M [(N:M) ⋂ I] = M (0) =(0) Hence by 

[2, Th.1.6], M [(N:M) ⋂I]  =M (N:M) ⋂ MI = (0) , that is N⋂MI = (0). But     MI ⊆ MZ2(R) = 

Z2(M). Hence MI = (0), since N  zes
≤  M. So that I ⊆ ann M =(0), thus I =(0) and (N:M) ≤ R. 

⟸  Assume N⋂W = (0), W⊆ Z2, (M). Then (N⋂W:M) = (0:M) = ann M = (0), so (N:M) ⋂ 

(W:M) = (0). But W⊆ Z2 (M), hence M (W: M) = W ⊆ Z2 (M) = M Z₂ (R).  

As M is a faithful finitely generated multiplication R-module, then by [2, Th 3.1],             (W:M) 

⊆ Z2 (R). Hence (N:M) ⋂ (W:M) = (0), (W:M) ⊆Z2 (R) and (N:M)  zes
≤  R, so that (W:M) =(0).  

It follows that W = M (W:M) = M.(0) = (0). 

 

2.10 Proposition:  Let M be a finitely generated faithful multiplication R - module, let                  I 

≤ R. Then I  zes
≤   R if and only if MI  zes

≤  M.  

proof: ⟹ Let MI⋂W=(0) and W ⊆ Z2 (M).Since M is a multiplication R module, W=MJ for 

some J≤ R. But W=MJ ⊆ Z2(M) = M Z2(R), So that J ⊆ Z2 (R).  

Now M I ⋂W=MI ⋂ MJ = (0) and so “ M (I ⋂ J) = 0 “ ; that is I ⋂ J ⊆ ann M = (0). Thus     J 

= (0) and W = MJ = (0).  

⟸ The proof is similarly. 

 

2.11 Corollary: Let M be a finitely generated faithful multiplication R-module,                               

N=MI ≤ M. Then N zes
 ≤   M if and only if  I zes

≤  R. 

 

2.12 Proposition: Let M be a finitely generated faithful multiplication R-module. and I, J ideals 

of R. Then I  zes
≤  J if and only if MI  zes

≤  MJ.  

 

Measure: ⟹  Assume MI ⋂W=0, W ⊆ MJ and W ⊆ Z2 (MJ). Since W≤ M, W=MK for some 

K ≤ R. Hence MK ⊆ M J and so K ⊆ J by [2,Th.3.1]. 

Also Z2 (MJ) = Z2 (M) ⋂ MJ. But Z2(M)=MZ2 (R), since M is a finitely generated            faithful 

multiplication R-module. Hence Z2 (MJ) = MJ ⋂ MZ2(R). Also by [2;  Th.2.1]           Z2 (MJ) = 

M (J ⋂ Z2 (R)) = MZ2 (J). 

Now MI⋂MK =0 implies M(I⋂K) =0 and so I⋂K ⊆ ann M=(0), that is I⋂K=(0). As   W ⊆ 

Z2(MJ), MK ⊆ MZ2(J) and since M is a finitely generated faithful multiplication R-module, K 

⊆ Z2 (J). Thus I⋂K = (0) and K ⊆ Z2(J), so K = (0). It follow that W=MK=(0). 

⟸ Assume I⋂K= (0), K ⊆ Z2 (J). To prove K = (0), since I⋂K = 0, then M(I ⋂ K) = 0 and so 

MI ⋂ MK = (0) and MK ⊆ MZ2 (J). But Z2(MJ) = MJ ⋂  Z2 (M) = MJ ⋂ M  Z(R) =        M (J 

⋂ Z2 (R)) = M Z2 (J). Thus MI ⋂ MK = 0 and MK ⊆ Z2 (MJ), so that MK = (0), since MI ≤ 

MJ. It follows that K ⊆ ann M = (0). That is K=0. 

 

2.13 Theorem: If {K⋋: 𝜆 ∈ ⋀} and {L⋋Z2(M):𝜆 ∈ ⋀} be families of submodules of an R-

module M.If {K⋋: 𝜆 ∈ ⋀} is an independent family of submodules of M and K⋋ zes
≤  L⋋  for all 

𝜆 ∈A, then {L⋋: 𝜆 ∈ ⋀} also independent family and   ⋋∈∧
⨁  K⋋ zes

≤  ⨁L ⋋ 

Proof: If K1 zes
≤ L1 and K2 zes

≤  L2 are submodules of M with K1⋂K2 = (0), then K1⋂K2= (0)  zes
≤  

L1 ⋂ L2, since Z2(L1 ⋂ L2 ) = (0) by Remarks 2.2(3). But Z2(L1⋂ L2) =Z2(M) ⋂(L1⋂L2) and 

Z2(M) zes
≤ M ( Remarks 2.2 (6)), so  L1 ⋂ L2= 0 
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Let 1:L1 ⨁ L2 → L1 and 2: L1 ⨁ L2  → L2, where 1, 2 are natural projections.                We 

obtain  𝜌1
−1 (K1) = K1⨁ L2  zes

≤   L1⨁ L2, 𝜌2
−1(K2) = L1 ⨁ K2 ≤ zes

≤  L2 ⨁ L1 and then   K1 ⨁K2 

= (K1 ⨁L2) ⋂ (L1 ⨁K2)  zes
≤  (L1 ⨁L2) by Proposition 2.3(2). 

Thus the assertion of the theorem for families with two elements is shown, and by induction, 

we get it for families with finitely many elements for arbitrary index set ⋀, a family { L⋋ 

Z2(M) :𝜆 ∈ ⋀} is independent if every finite subfamily is independent and thus what we have 

just proved.  

For any m ∈  ⋋∈E
⨁  L⋋ for some finite subset, E ⋀    and since  ⋋∈E

⨁  k⋋  zes
≤  ⋋∈E

⨁  L⋋, then by 

Proposition 2.4 mR ⋂  ⋋∈E
⨁  k⋋ ≠ 0. But mR ⋂ ⋋∈E

⨁  k⋋ ⊆ mR ⋂ ⋋∈∧
⨁ K⋋. So mR ⋂  ⋋∈∧

⨁  k⋋≠ 0.  

Hence the intersection of a nonzero submodule of  ⋋∈∧
⨁ L⋋ with  ⋋∈∧

⨁ K⋋ is again nonzero. Thus 

 ⋋∈∧
⨁ k⋋  zes

≤   ⋋∈∧
⨁ L⋋. 

2.14 Remark: If {k⋋ ∶⋋∈ ⋀   } and {L⋋:⋋∈ ⋀   } are families of  R-modules with k⋋ zes
≤ L⋋ for 

all ⋋∈ ⋀  , then we have the external direct sum   ⋋∈∧
⨁  k⋋  zes

≤   ⋋∈∧
⨁  L⋋. 

 

3-Z–singular submodules: 

3.1 Definition: Let M be an R-module. The set  }m∈ M:ann (m) zes
≤ R} is denoted by ZS(M).  

     It is easy  to check  ZS (M) is a submoduel of M. This submodule is called                       Z- 

singular submodule of M. It is clear that Z (M) ⊆ ZS (M). 

 

3.2 Proposition: For any R- module M. Then ZS (M) = {m ∈ M:mI=(0) for any I  zes
≤ R}. 

Proof: Let K = {m ∈ M: mI=(0) for some  I  zes
≤  R}. Assume m ∈ ZS(M), so that ann (m)  zes

≤  

R and so m ann (m) = 0; that is mI = (0), where I = ann(m)  zes
≤  R. Thus m ∈ K. Conversely, if 

m ∈ K, then mI=0 for some I  zes
≤  R, hence I ≤ ann(m) and so ann(m) zes

≤ R. Thus m ∈ ZS (K). 

 

3.2 Proposition: Let f : M → N be any R- homomorphism then f (ZS(M)) ⊆ ZS(N). 

Proof: Let y∈ f (ZS(M)) Then y = f(x) for some, x ∈ ZS(M)  

Hence ann (x)  zes
≤  R. But ann f (x) ⊇ ann (x), so ann f (x)  zes

≤  R and this implies 

 y = f(x) ∈ ZS (N). 

 

3.3 Proposition: For N ≤ M, ZS(N) = ZS(M) ∩ N. 

Proof: It is clear that ZS(N) ⊇ ZS(M) ∩ N. For any m ∈  ZS(N) , m ∈N and ann (m) zes
≤ R, so 

that m ∈ ZS(M) ∩ N. 

 

3.4 Definition: An R- module  M   is called to be  Z-singular (respectively  Z- nonsingular) 

module if ZS(M) = M (resp. ZS(M) =(0)). 

In particular, ∀n ∈ Z+, M = Zn as Z-module. Zn = Z(M) = ZS(M). 

For the Z-module Z, Z(Z) = (0), but for each N ≤ Z, ann (N) = (0)  zes
≤  Z; ie ZS(Z) = Z. 

 

3.5 Remarks: Let N be a submodule of an R-module M. Then 

1. M is Z-singular, implies N is Z-singular. 

2. M is Z-nonsingular, implies N is Z-nonsingular. 

3. Any simple faithful module is Z-singular. 

Proof: (1) and (2) are easy. 

(3) Since any simple module M is either nonsingular or singular. If M is singular, then Z(M) = 

M, and since Z(M) ⊆ ZS(M) we get ZS(M) = M, Thus M is Z-singular. If Z(M) = 0, then Z2(M) 

= 0. As MZ2(R)  Z2(M), so M Z2(R) = (0). This implies Z2(R) = 0, since M is faithful. Thus 

every ideal of R is Z-essential by Rem. and Exs. 2.2(2), hence for each m  M, ann (m)  zes
≤  R. 

It is follows that ZS(M) = M. 
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3.6 Proposition: An R-module M is Z-nonsingular of and only if Hom (A,M) = 0 for all Z-

singular module. 

Proof: ⟹ If M is Z-nonsingular, then ZS(M) = (0). Let A be Z-singular module, that is    ZS(A) 

= A. Let f :A → M be an R- homomorphism . Then f (ZS(A)) ⊆ ZS(M) and hence f(A) ⊆ 0 . 

Thus f = 0 . 

⟸ To Prove M is Z-nonsingular. Since ZS(ZS(M)) = ZS(M) ∩ M = ZS(M), Thus ZS(ZS(M)) 

= ZS(M), that is ZS(M) is a Z-singular module. Hence Hom(ZS(M),M) = 0. But ZS(M) ≤ M, 

so the inclusion mapping i ∈ Hom (ZS(M), M) = 0. This implies i = 0 and ZS(M) = 0 and so M 

is Z-nonsingular. 

 

3.7 Proposition:  A module M is Z-singular if and only if there exists a short exact sequence  

(0) ⟶ A 
f
→ B 

g
→ M ⟶ 0 such that f is an essential monomorphism. 

Proof :  

⟹ Assume M is Z-singular. Choose an exact sequence 0 ⟶ A 
𝑖𝑛𝑐
→  B 

𝑔
→ M  ⟶ 0 with A⊆B and 

B is a free module. Let {b} be a basis of B, then for each   ∈ ∧, g(b)I = 0 for some Z-

essential ideal, since M is Z-singular. Hence g (b I) = 0, that is b I ⊆ ker g, ∀  ∈ ∧. But 

Ker g = Im (i) = A, so b I ≤ A , ∀ ∈∧ . Since I  zes
≤  R, we get b I  zes

≤  bR, ∀ ∈ ∧. Hence 

 ∈∧
⨁  (b I)  zes

≤   ∈∧
⨁  b R = B by Theorem 2.13. But  ∈∧

⨁  (bI) ⊆ A ⊆ B, so that        A  zes
≤  B 

(by tansitivity of Z-essential submodules). Thus the inclusion mapping i : A ⟶ B is Z-essential 

monomorphism . 

⟸ Suppose we have exact sequence 0 → A 
f
→ B 

g
→ M → 0 such that f is mononomorphism. 

Given b ∈ B, define k :R → B by k(r) = br, ∀r ∈ R. Since f(A) ≤ B, we get k-1 f(A)  zes
≤  R by 

Proposition 2.2 (3). But k-1f(A)={r∈R: k(r) ∈ f (A)}={r∈ R:br∈f(A)}. Put I=k-1 (f(A)) so I  zes
≤  

R and bI ≤ f(A) = ker g.  Hence  g(bI) = g(b) I = 0 . It follows that g(b) ∈ ZS(M) . But g is an 

epimorphism, so for each m ∈ M, ∃ b ∈ R with g(b)=m, so that ZS(M) = M; that is M is Z-

singular. 

 

3.8 Corollary: If A  zes
≤  M, where M is an R-module. Then 

M

A
 is Z-singular. 

Proof: Consider the sequence 0 → A 
i
→ B 

π
→ 
M

A
 → 0 where I is the inclusion mapping and 𝜋 is 

the natural epimorphism. Since i is monomorphism and i (A) = A   zes
≤  M, i is      Z-essential 

monomorphism. Hence by Proposition 3.7, 
M

A
 is Z-singular. 

 

3.9 Remarks:  

(1) The following example shows that the converse of corollary 3.8  is not true in general . 

The Z-module Z2, if A = (0), then A Z2zes
≰    but 

Z2

A
 ≃ Z2 (as Z-module) is singular, so 

Z2

A
 is Z-

singular. 

(2) Let I be an ideal of a commutative ring with identity R. Then I  zes
≤  R if and only if 

R

I
 is Z-

singular . 

Proof: ⟹ It follows by corollary 3.8.  

⟸  Since R/I is Z-singular, ZS(R/I) = R/I. Hence 1+I ∈ ZS(R/I) and so ann (1+I)  zes
≤  R. But 

ann (1+I) = {r ∈ R : (1+I) r = I} = {r ∈ R : r ∈ I} = I  zes
≤  R. 

3.10 Proposition: Let 0 → A 
f
→ B 

g
→ C → 0 be a short exact sequence. If A and C are              Z-

nonsingular. Then B is Z-nonsingular. 

Proof: Let m ∈ ZS(B). Then ann (m)  zes
≤  R. Since the sequence exact , Imf = kerg, also g is an 

epimorphism which implies 
B

kerg
 ≅ C which is Z-nonsingular .Hence 

B

f(A)
 is      Z-nonsingular. 
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But ann (m) ⊆ ann (m + f(A)), so ann (m + f(A))  zes
≤  R; that is m + f(A) ∈ ZS(

M

f(A)
) = 0,It is 

clear that m ∈ f(A). Thus m ∈ ZS(B) ∩ f(A) = ZS (f(A)). But f(A) is  Z-nonsingular since f(A) 

≅ A which is Z-nonsingular, it follows that m = 0 and ZS(B) = 0. 

3.11 Corollary: If N and 
M

N
 are Z-nonsingular, then M is Z-nonsingular. 

Proof: The sequence 0 → N 
i
→ M 

π
→ 
M

N
 → 0, where i is the inclusion mapping and π is the natural 

projection, is a short exact sequence. Hence by Proposition 3.10, M is                     Z-nonsingular. 

3.12 Proposition: Let {M} be a family of R-modules and M =  ∈∧
⨁  M. Then                  

ZS(M) =  ∈∧
⨁ (ZS(M)). 

Proof: ∀ ∈∧, M ⊆ M, so ZS(M) ⊆ ZS(M); that is ZS(M) ⊆ ZS( ∈∧
⨁ M). Thus                ∈∧

⨁  

ZS(M) ⊆ ZS( ∈∧
⨁ M)                        …( 1 ) 

Let ∑ x∈∧ ∈ ZS ( ∈∧
⨁ M), where x ∈ M, ∀ ∈∧ and x = 0 for all except a finite number of 

 ∈∧. Hence ann (∑ x∈∧ )  zes
≤  R and ann (x)  zes

≤  R; that is x ∈ ZS(M) and ∑ x ∈  ∈∧
⨁

∈∧  

ZS(M). Thus ZS ( ∈∧
⨁ M) ⊆  ∈∧

⨁  ZS(M)                … ( 2) 

Then by (1) and (2), ZS( ∈∧
⨁ M) =  ∈∧

⨁  (ZS(M)). 

3.13 Theorem: The class of Z-singular R-modules is closed under (1) submodules (2) factor 

modules (3) direct sum. 

Proof: M is Z-singular, so ZS(M) = M  

1- For any A ≤ M. Since ZS(A) = ZS(M) ∩ A = M∩A = A. 

2- Let A ≤ M, Let  : M → M/A be the natural epimorphism 𝜋(ZS(M)) ⊆ ZS (
M

A
), hence 𝜋 (M) 

= 
M

A
 ⊆ ZS (

M

A
) . Thus 

M

A
 = ZS (

M

A
). 

3- If {M} be a family of Z-singular modules By Proposition 3.12,  ∈∧
⨁  (ZS(M)) = 

ZS( ∈∧
⨁ M). Hence  ∈∧

⨁ (M) = ZS ( ∈∧
⨁ M); ie  ∈∧

⨁ M is Z-singular. 

3.14 Theorem: The class of Z-nonsingular R-modules is closed under (1) submodules, (2) 

essential extension (3) direct product ( 4) module extension. 

Proof: (1) and (2) are easy  

3- Let {C} be a collection of Z-nonsingular R-modules. Let A be Z-singular R-module , 

hence Hom (A,C) = 0  , ∀ ∈∧ . It follows that  Hom (A, ∈∧
π C) = 0, and so  ∈∧

π C   is     Z-

nonsingular.  

4- Suppose that 0 → C → B → A → 0 is an exact sequence with A and C are                         Z-

nonsingular. Then by Proposition 3.10, B is Z- nonsingular. 

 

4- Z - Closed submodule: 

        Recall that a submodue A of an R-module M is called closed (A  c
≤ M) if whenever    B ≤ 

M such that A  ess
≤  B, then A = B; ie A has no proper essential extension in M [3]. In this section, 

we introduce (Z-closed submodule) as a generalization of closed submodule. 

 

4.1 Definition: A submodule C of an R-module M is called Z-closed (briefly C  zc
≤ M) if 

whenever C  zes
≤  W and where C≤M implies C = W; ie C  zc

≤  M if C has no proper     Z-essential 

extension in M. 

 

4.2 Proposition: For each A ≤ M, there exists B ⊇ A such that A  zes
≤  B and B is Z-closed.  

Proof: Let T = {K≤M : A zes
≤ K}. T ≠ 0 since A ∈ T. By Zorn's Lemma, T has a maximal 

element expressed K0, We claim that K0 is Z-closed. Suppose ∃K/ ≤ M such that K0  zes
≤  K/. 

As A ≤ K0; so A  zes
≤  K/ and this implies K/ ∈ T which is a contradiction , since K0 is a maximal 

element of T. Thus K0 is Z-closed . 
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4.3 Remarks:   

1-  It is clear that  every Z-closed submodule of an R-module M is closed. 

2- A closed submodule need not be Z-closed submodule, as for example: In Z6 as Z6-module 

since Z2(Z6) = 0, every submodule of Z6 is Z-essential, hence N = (3̅) is not      Z-closed 

submodule of Z6. But N is closed. Also by the same example: a direct summand of a module 

may not be Z-closed. 

3- If Z2 (M) = M, then a submodule A of M is closed if and only if it is Z-closed. 

 

4.4 Proposition: Let A ≤ M, K ≤ M. if A  zc
≤  M , then 

A

K
  zc
≤  

M

K
. 

Proof: Suppose 
A

K
 zes
 ≤  

W

K
 for some 

W

K
≤
M

K
. Then by Proposition 2.3 (3). A  zes

 ≤  W. Hence    A = 

W, since A   zc
≤  M. Thus 

A

K
=
w

K
. 

 

4.5 Proposition: Let B ≤ K ≤ M, if B   zc
≤  M, K  zes

 ≤  M then 
K

B
 zes
 ≤ M

B
 . 

Proof: Assume 
C

B
≤
M

B
 , 
C

B
 ≤ Z2 (

M

B
) and 

K

B
∩
C

B
 = 0. Hence K ∩ C = B. Since K  zes

 ≤  M and        C 

 zes
 ≤  C, so B= (K∩C)  zes

 ≤  (M∩C) = C. But B  zc
 ≤  M, so B = C . Thus 

C

B
 = 0 and 

K

B
 zes
 ≤ M

B
. 

 

4.6 Proposition: If A zc
 ≤   M and A ≤ B ≤ M, then A  zc

 ≤  B . 

Proof: It is easy, so is omitted. 

        The converse of Proposition 4.6 may not be true in general for example: 

        Let M be the Z-module Z12, A = {0̅, 6̅}, B = {0̅, 2̅, 4̅,…,10̅̅̅̅ }. Then A zc
 ≤B, but A zc

 ≰M. 

However we have the following: 

 

4.7 Proposition : Let A and B be submodules of a module M. Then the following assertions 

are equivalent .  

(1) B  zc
 ≤  M, 

(2) for each  submodule C of M such that B ≤ C, then B  zc
 ≤  C. 

Proof: (2) ⟹ (1)  It is clear. 

(1) ⟹ (2)  Follows by Prop.4.6. 

 

4.8 Proposition : Let N  zc
 ≤  M and K  zes

 ≤  M. Then N∩K  zc
 ≤  K. Provided Z2(A+B) = Z2(A) + 

Z2(B) for each A B ≤ M. 

Proof: To Prove N ∩ K  zc
 ≤  K. Suppose N ∩ K  zes

 ≤  L ≤ K. So we must prove N ∩ K = L. First 

we shall prove N  zes
 ≤  N + L. Let x ∈ Z2 (N+L) and x ≠ 0, so x∈ 𝑍2(N) +Z2(L) and hence   x = 

n + l for some n ∈ Z2(N), l ∈ Z2(L). 
As Z2(N+L) ⊆ Z2(M), hence x ∈ Z2(M). But K  zes

 ≤  M, so there exists r1 ∈ R – {0} such that 0 

≠ xr ∈ K. Thus 0 ≠ (n+l) r ∈ K, so it follows that nr = – R + k for some k∈K, and then      nr ∈ 

N∩K. Since l ∈ Z2(L) and 0≠lr∈Z2(L), there exists r1∈R–{0} such that 0 ≠lr r1 ∈N∩K. 

This implies 0≠nrr1 + lr r1 ∈ N ∩ K ⊆ K, thus N  zes
 ≤  N+L by corollary 2.5 and hence N=N+L 

since N  zc
 ≤  M. 

Now N ∩ K = (N+L) ∩ K = L + (N ∩ K), so that L ⊆ N ∩ K. But N ∩ K ⊆ L , hence   N ∩ K 

= L and N ∩ K  zc
 ≤  K .  
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5.Conclusions : 

1. Many properties of Z-essential submodule anologous to that of essential submodules  . 

However we have : 

i) (0)  zes
 ≤  M if and only if Z2(M) = 0  . 

ii) Z2(M)  zes
 ≤  M .  

Iii) For a submodule N of a module  M , N  zes
 ≤  M if and only if  for each U ⊆  Z2(M) , U  ≠ 0 ,    

N ∩ U ≠ 0     .  
Iv)   For a submodule N of a module  M , N  zes

 ≤  M if and only if  for each x ∈ Z2 (M) ,  x ≠ 0,   

∃ r∈R–{0} such that 0 ≠ xr ∈N. 
2.  Many properties of  Z - singular ( Z - non singular)  of submodules  are anologous to that of  

Z - singular ( Z - non singular)  of submodules  . However we have : Any simple faithful module 

is Z - singular .  

3. The class of Z - closed  submodules which contained the class of closed submodule  .   Many 

properties  of closed  submodules transfer to Z - closed  submodules ( may be with certain 

condition ) , for example :  

If    N  zc
 ≤  M ,   K  zes

 ≤  M ,  N ∩ K  zc
 ≤  N    , provided  Z2(A+B) = Z2(A)+Z2(B) , for each submodules 

A , B   of M .  
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