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Abstract

The Korteweg-de Vries equation plays an important role in fluid physics and
applied mathematics. This equation is a fundamental within study of shallow water
waves. Since these equations arise in many applications and physical phenomena, it
is officially showed that this equation has solitary waves as solutions, The
Korteweg-de Vries equation is utilized to characterize a long waves travelling in
channels. The goal of this paper is to construct the new effective frequent relation to
resolve these problems where the semi analytic iterative technique presents new
enforcement to solve Korteweg-de Vries equations. The distinctive feature of this
method is, it can be utilized to get approximate solutions for travelling waves of
non-linear partial differential equations with small amount of computations does not
require to calculate restrictive assumptions or transformation like other conventional
methods. In addition, several examples clarify the relevant features of this presented
method, so the results of this study are debated to show that this method is a
powerful tool and promising to illustrate the accuracy and efficiency for solving
these problems. To evaluate the results in the iterative process we used the Matlab
symbolic manipulator.

Keywords: Korteweg-de Vries equations, Boussinesq equation, Solitary waves,
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Introduction

In the previous few decades, Non-linear phenomena play an important tool in physics, the solitary
wave theory and applied mathematics. On the other hand, the study of non-linear partial differential
equations in modelling physical phenomena become a significant gadget in a large class and vastly
utilized in assorted fields of the nonlinear natural sciences, As for the behavior and properties of non-
linear partial differential equations can be determined by exact solution ; therefore, non-linear
equations play significant role in specifying such problems. Thus, their exact solution is more
complicated to find as compared to the other solutions of linear equations. The Korteweg-de Vries
equation(KdV) equation has been arisen in the study of shallow water waves, [1]. Particularly, it is
utilized to characterize the diffusion of plasma waves in a dispersive medium and furthermore
describes long waves traveling in canals too. The KdV equation has been widely studied and has
gained a lot of interest. Many analytical and numerical techniques were used to study the solitary
waves which outcome of such equation. Kruskal and Zabusky have researched in the interaction of
repetition of the initial cases and solitary waves . They detected the solitary waves undergo non-
linear interaction subsequent KdV equation. It is worth mentioning, waves emanate of this interaction
retaining its amplitude and shape, also solitary waves maintain its character and identities resembles
such as particle conduct, they stimulated to recall solitary wave solitons, [2]. Many research works
have arisen in various of the scientific realm in worldwide to study the solution concept. It is
renowned now that solutions show as the outcome of an equilibrium among dispersion and weak non-
linearity and it has enticed formidable volume of studies due to its important part within different
scientific fields like magneto-acoustic waves, plasma physics, fluid dynamics , astrophysics and
others. The inquiry of the solutions of travelling wave perform an essential part in non-linear
sciences, like Hirota’s Bilinear Method, [3]. Inverse Scattering Transform, [4]. Bdcklund
Transformation,[5]. Sine-Cosine Method, [6]. Tanh-Function Method, [7]. Homotopy Perturbation
Method, [8]. Homotopy Analysis Method, [9-10]. Variational Iteration Method(VIM), [11-12]. Exp-
Function Method, [13-14]. Differential Transform Method, [15]. Tanh-Coth Method, [16-17]. (G'/G)-
Expansion Method, [18-19]. Laplace Adomian Decomposition Method, [20]. Generalized Tanh-Coth
Method and (G'/G)-Expansion Method, [21]. Recently, considerable attention has been given to some
efficient analytic iterative methods, Temimi and Ansari have suggested a new iterative method, i.e
Semi Analytical Iterative Method(SAIM) to resolve linear and non-linear functional equations, [22].
The SAIM has been successfully applied by many research works to solve some linear and non-linear
partial, ordinary differential equations and higher order integro-differential equations, [23-27]. To the
best of our knowledge, SAIM is not yet implemented to resolve the KdV equations. This method can
be used to solve and get the analytical solutions of these problems. KdV equations were solved by
Adomian Decomposition Method (ADM) and VIM, [ 28]. ADM had be utilized to solve the KdV
equation to get a solitary wave solution, also the Modified Adomian Decomposition Method(MADM)
used to solve non-linear dispersive waves via Boussinesq equation, [29]. The basic concept of this
reasech is as follows. Section 2 An explanation for KdV equations is presented by the fundamental
idea of SAIM. Several analytical outcomes are supplied in section 3 to clarify the method. Section 4
concludes the research.
2. Korteweg - deVries equation problems by the Basic idea of (SAIM):

The simplest form of the KdV equation, [30-31], for two independent variables x and t can be
written as follows:

Zy + QZZy + Zyyy =0 (2.2)

And the Initial Value Problems (I\VVPs)
z(x,0) =fi(x) , 0<x<1 and z(x,0) =f,(x), t>0 (2.2)

such that z = z(x,t) at the some domain, zz, the non-linear idiom and a is a parameter 3 a> 0.
the basic idea of the reliable SAIM to solve Eq. (2.1) with IVPs (2.2) . The general form equation as:

L(Z(x, t)) + N(z(x, t)) +h(x,t)) =0 (2.3)
with conditions C(z,22) = 0 (2.4)
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So, thus z(x,t) the unknown function, x and t indicate to the independent variables, while L, N
represent linear and the non-linear operators, respectively. h(x, t) represents the inhomogeneous term,
which is a known function and C the conditions operator for the problem. Initial approximation is a
primary step in the SAIM, by assuming that the initial guess z,(x,t) is a solution of the problem
z(x, t), the solution of the equation can be solving

L(zo(x, 1)) + h(x,t) = 0,C(zo, 22) = 0 (2.5)
To generate the next iteration of the solution can be resolve the problem as follows

L(z;(x,0) + h(x,t) + N(zo(x,1)) = 0,C(z4, %) =0 (2.6)
After several simple iteration steps of the solution, the general form of this equation as

L(zns1 (6 D) +h( D) + N(za(x, 1)) = 0,C(zn 4y, Z22) = 0 @.7)

Evidently each iteration of the function z, (x, t) represent effectively alone solution for Eq. (2.3).
We will implement the method steps at the Eq.(2.1), so Eq.(2.1) can be express as for:

L(z(x, t)) = —(h(x,t) + azzy + Zyyx) (2.8)

The differential operator L(z(x, t))is the highest order derivative in the Eq.(2.8), by using the given
IVPs in Eq.(2.2) and integrating both sides of Eq.(2.8) from 0 to t, we obtain the following equation:

259 = o — [y (166 V) + 22, + 7060 ) (29)

Where the function s, is arising by integrating the source term from applying the given IVPs in
Eq.(2.2) which are prescribed.
To find out how this method works, the following steps are as follows:

Step 1: to get zy(x,t) solving L(zy(x,t)) + h(x,t) = 0 with IVPsin Eq.(2.2) (2.10)
and integrating both sides of Eq.(2.10) from 0 to t, we obtain

t

20059 = o — | (hGx 0)d(®
0
Step 2 : The next iterate is

L(z, (x,t)) - h(x,t) = 0 with IVPs in Eq.(2.2) (2.11)
Solving this equation and integrating both sides of Eq.(2.11) from 0 to t, leads to obtain

t

z1(x,t) = Yo — f(h(x' t) + azgZox + Zoxxx) d(t)
0

Step (3) : After several simple iterative steps of the solution, the general form of this equation which is
L(Zps1 (%, 1)) - h(X,t) = 0 with IVPs in Eq.(2.2) (2.12)
Solving this equation and integrating both sides of Eq.(2.12) from 0 to t, leads to obtain z,, ., (x, t)

t
Zn+1(X: t) =y — f(h(X, t) + az,Zpyg + anxx) d(t)
0

Evidently each iteration of the function z,, ; (x, t) represent effectively alone solution for Eq. (2.8).
In the above steps, this method has merit to solve and apply KdV equation.
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3. Numerical Examples:
We will be apply SAIM for solving several examples of the KdV equations.

Example 1:
We consider the KdV equation with the following IVP [28] :
Zp — 6ZZy + Zyyy =0 (3.1)
with the IVP z(x,0) = 6x (3.2)
Solution:

By implementing the same steps as described in the previous section, i.e. in section (2), we first begin
by solving the following IVP to find the initial guess zy(x,t), SAIM start as follows

L(z) = z¢,N(z) = — 6224 + 74y and h(x,t) = 0 (3.3
So, the primary step is
L (zg) =0, with zy(x,0) = 6x (3.4)
Then, the general relation as follows
L(Zps1) ¥+ N(zZp)+ h(xt) = 0, z,41(x,0) = 6x (3.5)

By solving the problem defined in Eq. (3.4) we have z,(x,t) = 6x
The first iteration can be get as

(Zl)t =(6 Zo Zox — Zoxxx ) with Zq (X' 0) = 6% (3-6)

Thus, the solution of Eq. (3.6) as
z,(x,t) = 6x + 63tx

The second iteration is

(Zz)t :( 6Z1 Z1x — Z1xxx ) with Z3 (X, 0) = 6x (3-7)
Then, the solution of Eq. (3.7) as

Z,(x,0) = 6x + 63xt + 6°xt? + 2.6°xt3

The third iteration is

(23)t =(623 Zox — Zoxxx ) Withz3(x,0) = 6x (3.8)
Then, the solution of Eq. (3.8) as

z3(x,0) = 6x + 63xt + 6°xt% + 67xt3 + -+

Also, by the same steps, the other solutions can be generated from calculating these problems in the
general form

(Zn+1)t =( 6Zn Znx — Znxxx ) with Zy (X' O) = 6X (3-9)
Hence, in iteration steps, we have
z,(x,t) = 6x(1 + 36t + (36t)% + (36t)% + (361)* + ) (3.10)
Thus, we obtained exact solution as follows
X
z(x,t) = T 3et’ |36t] < 1.
Example2:
Consider the following the KdV equation in Eqg. (3.1) with IVP [28]:
2(x,0) = = (x— 1) (3.10)
Solution:

Applying the same steps as in the previous example, we first begin by solving the following initial
problem in order to find the initial guess z,(x,t), SAIM start by the same step in Eg. (3.3). So, the
primary step is

L (zo) = 0, with 2(x,0) = = (x— 1) (3.11)
Then, the general relation as follows
Lzned) + N (20 )+ (6 1)=0, 2041 (60) = ¢ (x= 1) (3.12)

Via solving the primary problem defined in Eq. (3.11) we get

1578



Yassein and Aswhad Iragi Journal of Science, 2019, Vol. 60, No.7, pp: 1575-1583

1
Zo(x,t) = c x—1)

The first iteration can be get as

(2)e =(6 20 Zox — Zoxxx ) With 2 (x,0) = = (x— 1) (3.13)
Thus, the solution of Eq. (3.13) as

1 1
z,1(x,0) = g(x -1) +g(x -1t

The second iteration is

(22)e =(6 21 Zax — Zugux ) With 75(x,0) = = (x — 1) (3.14)
Then, the solution of Eq. (3.14) is

0—1 1+1 11:+1 Dt? + 1¢3
z(x, )—g(x ) g(x ) g(x ) 6x3(x )
The third iteration is
(23)e =(6 23 Zax — Zaxxx ) With 73(x,0) == (x— 1) (3.15)

Then, the solution of Eq. (3.15) is
1 1 1 1
z3(x,0) = g(x -1) +g(x - Dt +g(x — 1)t? +€(x - Dt3 + -
Hence, in iteration steps, The chain solution can be expressed as

2, (%, ) =%(x—1) (I+t+t2+t34-) (3.16)
Thus, exact solution as the following
( t)—l(x_l) bl <1
Z\ X, = 6 1= t , .
Example 3:
Consider the following the KdV equation in Eq. (3.1) with IVP [28]:
Z(X, 0) = m (317)
Solution:

Implementing the same procedure as in the previous examples, we begin by solving the following
initial problem in order to find the initial guess z,(x,t), SAIM start as follows

So, the primary step is
2

L (z9) =0, with z¢(x,0) = romre (3.18)
Then, the general relation is as follows
L(zns1) + N @) +h (61) = 0, 2011 (x,0) = 3 (3.19)
By solving the primary problem in Eq. (3.18) we obtain
zo(x,0) = (x— 3)2
The first iteration can be get as
(22)¢ =(6 20 Zox — Zoxe ) With 21(x,0) = = (3.20)
Thus, the solution of Eq. (3.20) as:
7z, (x,t) = m
The second iteration is
(22) =(6 21 Zax — Zix ) With 25(x,0) = == (321)

e
Then, the solution of Eq. (3.21) as

Z,(x,t) = m
Hence, in iteration steps, we have
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2

z,(x,t) = 32 (3.22)
Thus we can be get the exact solution to such problem is
2
) =—=
2(x9) = 3y

The following examples, solved easier by the SAIM and the results are a good indicator of the
exact solution and this solution is the same as the result obtained by ADM and VIM, [28].
Example 4:
In the following, SAIM be applied to get solitary wave solution of KdV equation [29]:
Ze = —62%7y — Zyyy (3.23)
with the IVP z(x, 0) = 2 (3.24)

1+e2kx

Solution:

By implementing the same steps as described in the previous section, the SAIM algorithm will be
applied at the following equations (3.23) and (3.24). We first begin by solving the following IVP to
find the initial guess z, (x, t) as follows

L(z) = z;, N(z) = 622z, + 744 and h(x,t) = 0 (3.25)

2kekx
1+e2kx

So, the primary stepis L (zy) =0, with z,(x,0) =

(3.26)

Then, the general relation as follows
L(zZn+1) ¥ N(zp) +h (xt) = 0, 2541 (x,0) =

By solving the primary problem in Eq. (3.26) we obtain
2kekx

1 + e2kx

2keK¥
1+e2kx

(3 .27)

zo(%,0) =

The first iteration can be get as
. 2kekx
(Zl)t =(_6zgu0X - ZOXXX) with Zq (x,0) = 1+e2kx

Thus, the solution of Eq. (3.28) as:

(3.28)

2kek*  2k*eR¥(1 — e?k¥)
1 + e2kx (1 + eZkX)Z

z,(x,t) =

The second iteration is
i 2k kx
(22)r =(—62f215 — Z1xxx ) With 2,(x,0) = Fezkx

Then, the solution of Eq. (3.29) is

(3.29)

x,0) 2kek®  2k*e!¥(1 — e2K%) . k7ek*¥(1 — 6e2kx + etkx) ,
Z,(x,0) = -
2 1 + e2kx 1+ eZkX)Z 1+ ezk)()B
Hence, in iteration steps, we have
_ Zkekx 2k4ekx(1_e2kx) k7ekx(1_6e2kx+e4-kx) 5
2n( 1) = o (1+e2kx)? (1+e2kx)? -

(3.30)

Thus,

z(x,t) = F+/csech vc (x—ct) , noting that ¢ = k?

Then, we get the exact solution of this problem readily.

Example 5:

A renowned model of non-linear diffusive waves was suggested via Boussinesq at the formula [29]:

Zet “Zyx +3(Z)gx + Zyxx »  —80 < x <80 (3.31)
with the IVP z(x, 0) = 222€% ) (x () = Z2aVIHZe @l -1 (3.32)
2x0) = (1+aekx)2 2% 0= (1+aekx)3 '

Boussinesq equation (3.31) describes movements of a long wave in shoaly water beneath gravity
and in a one-dimensional non-linear web.
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Solution:
By implementing the same steps, we first begin by solving the following I\VVPs in order to find the
initial guess z, (x, t), SAIM apply accordingly the same step in Eqg. (3.31) and (3.32) as the following

L(z) = zg, N(2) = —3(2%)gx — Zyx — Zxxx and h(x,t) = 0 (3.33)
. . _ . 2ak2ek* —2ak3Vi+kZek*(aek*-1)
So, the primary step is L (zg)= O,withzy(x,0) = Lracky? (20):(x,0) = Lrack3
(3.34)
Then, general relation as follows
2ak?ekx —2ak3V1+kZekX(aek*-1)
L(zp+1) + N(z, ) +h(x,t) =0, Zn+1(X: 0) = m' ( Zn+1)t(X' 0) = (1+aekx)3

(3.35)
Solving the problem defined in Eq. (3.34) we get

2ak?e  2ak3V1 + kZef¥(ae®* — 1)

Zo(x,0) = —
0(x0) (1 + aekx)? (1 + aekx)3
First iteration can be get as
(z0)e=(Zoxx + 3(Zg)xx + Zoyxxx )
2ak2ekx —2ak3V1+kZekX(aek¥-1)

withz,(x,0) = T (z1):(x,0) = (Lrack)s (3.36)
Thus, solution of Eq. (3.36) as
z1(x,0) = (ak?(36ae?**) + 90a?e3** + 120a%e**™ + 90a*e”™ + 36a°e®K* + 6ale” ™ +
12akOt*e?k* + 12ak8t*e?kx — 27a2k2t2e3KX — 27a2k*t2e3K% — 48a3k2t2e*X — 48a3k*t2e*kx —
27a*k%t2e k% — 120a%kOt*e3K* — 27a%*k*t2e’K* — 120a%kBt*e3K* 4 240a3KkOt*e*k* +
3a°k2t2e”** 4 240a3k8t*e*** — 120a*kOt*e k¥ + 3a%k*t2e7kX — 120a*kBt*e5k* +
12a°k0t*eK* 4 12a5k8t*e®** + 1/k2 + 1 x 30a2kte3** — Vk2 + 1 x 30a*kte®®* — Vk2 + 1 x
24a5kte®®* — k2 + 1 x 6a°kte”’®* — Vk2 + 1 x 8ak>t3e2K* + Vk2 + 1 x 24akte?®® — k2 + 1 x
19a2k3t3e3K* — k2 + 1 x 1922k5t3e3% 4+ Vk2 4+ 1 x 19a*k3t3e5* + VkZ + 1 x 19a*k>t3e°k* +
VK2 + 1 x 8a°k3t3e®%* + Vk2 + 1 x 8a°k5t3e%* — k2 + 1 x a®k3t3e7kx — ViZ+1xatkitleTIt +

S(aek"+1)8
ak2eKX (3Kk2t2 4 3k* 2 + K33 VK2 + 1 +K5 t3VKZ +1 4+ 6ktVKZ +1+6) )
3(aek"+1)8
Thus, exact solution as
2akZeX® + kvV1 + k2 t

z(x,t) =

(1 + aek* + kv/1 + k2t)2

So as that equivalent
20x,) = 2 sech?(Z 1 M8 T 1), where c = ak?.

We can be computed more iteration steps to get perfect results, but we stop at the first iteration
since it is too long, so the few processes can represent the solution of Boussinesq equation. The
essence of this method, the SAIM in comparison with the other analytical methods does not need
large computations such as Lagrange multiplier in the VIM or any complex assumptions like
nonlinear Adomian’s polynomials in the ADM. It also does not need a long transformation or
constructive homotopy polynomials in HPM. Furthermore, this method proved that it is efficient in
overcoming the difficulties in calculating and solving KdV equation, a solitary wave for KdV equation
and Boussinesq equation with easy steps.

4.Conclusion
This paper presents a technique method for solving the Korteweg-de Vries equations that gives
faster and easier solutions. These solutions come accurate and in agreement with the exact solution
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provided by analytical results. This method is characterized with significant analytical work that
effectively reduced the amount of computational work compared with the classical methods, Adomian
Decomposition Method, Modified Adomian Decomposition Method and Variation Iteration Method
which require longer times. Hence, all examples showed that the results are reliable, efficient,
compatible with the exact solution, and much better than those obtained by other methods. We hope
that this work is a step towards using applications of the Semi Analytical Iterative Method to resolve
non-linear problems emerging various physical phenomena, which may be debated in further work.
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