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Abstract

Non-homogeneous Poisson process with power law intensity function has often
been used as a model for describing the failure pattern of repairable systems.
Maximum likelihood and Bayesian estimation are used to estimate model
parameters. Simulation and realistic application are used and represented by shutting
down the gas power plant in Mosul. Stops in hours are designed with the power law
random process model in order to obtain a model that represents the average stop
time of the units throughout the study period in the best way. The results of the
application on the data of the three concerned stations show that the Bayes estimate
is better than the maximum likelihood estimate. This proves that the Bayes methods
are very accurate and effective in estimating the rate of occurrence parameters.

Keywords: Non-homogeneous Poisson process, Power law process, Maximum
likelihood estimator, Bayesian estimator.
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1. Introduction

A repairable system is often modelled as a counting failure process. Repairable system
reliability analysis must consider the effects of successive repair actions. When there is no
trend in the system failure data, the failure process can often be modelled as a renewal process
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in which successive repair actions bring the system to be good as a new state [1]. This paper
deals with the estimation of power law process (PLP) parameters using two estimation
methods, namely the maximum likelihood estimation (MLE) and the Bayes method (Bay).
For systems undergoing reliability improvement testing, it is critically important to identify
whether significant improvement is occurring. System reliability improvement can be
detected by observing a significant trend of increasing successive time between failures, i.e.,
system failure inter-arrival times. System reliability deterioration can be detected by
observing a significant trend of decreasing successive time between failures, as the non-
homogeneous Poisson process (NHPP) is capable of modelling these models. If the failure
intensity function is decreasing over time, the times between failures tend to be longer, and if
it is increasing, the times between failures tend to be shorter. For renewal processes, the times
between failures are independent and identically distributed. A homogeneous Poisson process
(HPP) is a special case of the renewal process when the times between failures are
independent and exponential [2].

2. Power Law Process (PLP)

The power law process is one of the most common functions in the study of reliability
growth models. The first ideas of this process go back to Duane (1964), who published a
paper in which he presented data on the failures of different systems during their development
programs and showed that this process is equivalent to the non-homogeneous Poisson
process, in which the time rate of the occurrence follows the Weibull distribution [3]. Several
authors have extensively researched the use of the power law process for evaluating hardware
reliability growth and identifying software failures. For instance, Pulcini (2001) delved into
Bayesian prediction methods for anticipating future failure times and the number of failures in
a specific time interval for a repairable system that undergoes minimal repairs and periodic
overhauls. Sen (2002) explored the Bayesian prediction of the Weibull intensity, while
Pfefferman and Cernuschi-Frias (2002) introduced a nonparametric prediction approach. In
addition, Pievatolo et al. (2003) provided an example of how the power law process can be
applied to forecast the anticipated number of failures in underground trains during a given
period.

Assume that the process {X(t),t = 0} represents an NHPP, if the time rate of occurrence
is described by the following formula:

At) = APt >0;4,8 >0, (1)

then the process {X(t),t = 0} is called the power law process. One of the specifications of
this process is that the distribution of the periods between the occurrence of events follows the
Weibull distribution with the following probability density function [8] [9]:

f(t1B,A) = BAtE1e M0 ;¢ > 0; 4,8 > 0, ?)

where A and S are parameters of the Weibull distribution, S can be seen as a measure of the
non-homogeneity of the failure rate: if § > 1 (8 < 1), then the failure rate is increasing
(decreasing) and this indicates a deterioration (resp. growth) in the system reliability. If
B = 1, then the failure rate is considered to be constant [10]. The cumulative function of the
rate of occurrence in the period (0,t,) is defined as follows:

m(t) = fot/'l(u)du
= [, Bl tdu
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=Af;0<t<t,, (3)
which is called the mean rate of occurrence (power law function). The number of occurrences
follows the Poisson distribution with parameter A(t) in the time period (0,t,] [11]:

n,—-m(tg)
pIN(@) =n] =2 0,12, 4
3. Parameters Estimation
There are several methods for estimating the parameters of the power function process. In
this research, the maximum likelihood estimation and the Bayes estimation are used and a
comparison between them is conducted.

3.1 Maximum Likelihood Estimation

The maximum likelihood estimation is one of the most widely used methods for estimating
stochastic model parameters due to its efficient properties including stability and minimum
variance unbiased estimators. The parameter estimations of this method are characterized by
making the likelihood function at its maximum. The probability distribution of the intervals
between the occurrence of failures in NHPP follows the exponential distribution with
parameter A(t) in the period (0,t,] with the following probability density function [12]:

f(6) = A(De 0" 2@ g <<t )

The following likelihood function for the intervals between the occurrence of events is
[13][14]:

L(ty by s tai B, ) = (T AtD)exp (= f;" A()dx), (6)

where (t4, t,, ..., t,) represent the periods between failures, then we have:
LB, A) = (TTy pALL ™ )exp(—2th) W)
= (T, £ )exp(—2ef) . ®)

By taking natural logarithm for (8):

£(8,2) = In[L(B, D] = nin(B) + nin(2) — Aty + (B — 1) T, In(ty). ©)
To find the maximum likelihood estimators for two parameters (8, 1), the first derivative of
the equation (9) is taken to each parameter as follows:

ae(B,A
TR = L - Atflin(t) + BiLy In(t) (10)
ae(B,2)
—aﬁ =24, (11)
After equalizing the two equations to zero, we get:
Z = Atfin(ty) + Ty In(t) = 0 (12)
2ty = (13)
AF=n, (14)
substituting (14) into (12), we get:
2= nin(ty) — T, In(t) (15)
BMLE = < (16)

nin(ty)-Xi-, In(t;)

Where By, is the MLE for 8, substituting (16) into (14), we get the MLE for A:
A n

Amre =

17

BMmLE
tn
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3.2 Bayes Estimation (Bay)

The Bayes estimation is one of the best methods for estimating the parameters of
stochastic processes due to its accuracy. This method depends on the prior distribution of
parameters and the information resulting from the sample about the parameter that is obtained
from the maximum likelihood function in order to get the posterior distribution of the function
[15]. From the likelihood function (7), we assume that the prior distribution for each
parameter follows the gamma distribution [16]:

B~Gamma(a,b), A~Gamma(c,d),
The probability density function for each parameter is given as follows:

p(B) = m alebh (18)
p(A) = %/15 le=dt (19)

The joint prior distribution function for (g, 1) is [5][17]
p(ﬁ ) r(a)r(c)ﬁa 1)c-1 —(bB+dl) (20)

then the posterior distribution function is:
p(B, A|Data) < p(B, L(B, 1)

b4d* a-1jc-1,=(bB+dA) gnyn AP B-1
F(a)I"(c)B prate ™ [liz t;
b4dc a+n-19c+n-1 —(bﬁ+d1) Atn n -1
F(a)F(C)ﬁ A =1 L
a+n—1,c+n-1 —(bB+d/1)—/1t n . B-1
« B A e n iz, & . (21)

ff[ga+n—1;tc+n—1e—(bﬁ+d1)—1t£ m, tf_ld[:’d/l
The Bayes estimator for power law process parameters can be obtained as follows:

B _
a+njctn—1,-(bB+d)-Aty 1 F-14)
Bray = E[B|Data] = [ p(8, A|Data)di = —& e M, ¢ a

_ _a.B _ .
[ [ pa+n—1jc+n-1e (bB+dD)—Aty, 1‘[?=1 tiﬁ 1d,8dl
(22)
fﬁa+n—1lc+ne—(b,8+dl)—/1tg M, ftag

Agay = E[A|Data] = ,A|Data)dp = :
Bay [ |Da a] fp(ﬁ |Da a) p ffﬁa*’"—l/lc*’"‘le_(bﬁ+d/1)_u’€ e, tiﬁ_ldﬁd/l

(23)
It is difficult to obtain results for the integrals in equations (22) and (23), so we use the
Laplace approximation as an approximation method as follows [18][19][20]:
If we have the following formula:
[ enuBDI++p)gpan

I(Data) = E[u(B, A|Data)] = o@D agar , (24)

where u(f, A) is a function of parameters, in equation (22) it is equal to £, and in equation
(23) it is equal to A, p is the natural logarithm of the previous common distribution of
parameters, and it is defined as follows:
b%d¢
p=In [F e @] +(a— D) + (c — Din() — (b + dA), (25)
£ is the natural logarithm of the likelihood function which is defined as follows:

£ =nin(B) + nin(A) — At + (-1 IL, In(t) . (26)

Let:
h(B.2) = (£ +p). (27)
(B, 2) =~ In(w(B, 1)) + h(B, 2). (28)

Then the equation (24) becomes:

2599



Alsultan and Sulaiman Iragi Journal of Science, 2024, Vol. 65, No.5, pp: 2596-2604

_ _ [em (BDgpgaa
I(Data) = E[u(B, A|Data)] = ToR R apar”
Thus, Laplace's estimate for this equation is as follows:
I(Data) = E[u(B,A|Data)]
* 1/2

- [% exp{n(h*(B*, 1) —h(B, 1)},  (30)
where the symbolic |.| denotes the determinant of the matrix, and (£, 1*) are the values that
maximize the function h*(8*,1*). (B, 1) are the values that maximize the function h(g, 1),
2" and X are the negative inverse of the Hessian Matrix for h* (8*,1*) and h(f, 1) at (8", %),

and (B, A), respectively:

(29)

-1

_9h o
_ 2B2 aBoA
s=[-H "t = % (31)
T 9par oAz
_ 0% o
. _ ap? aBoA
F=-HOT = L (32)
T 9par oz
Note that & is a constant, while h* changes with u, whereas:
(B, 1) = ~In(B) + h(B, D). (33)
W (B 2) = ~In(A) + h(B, A). (34)
Then the Bayes estimators for the power law process by the Laplace approximation are:
N 12
Bric =[] " exp fn (R5(87, 4 = (B, ) ). (35)
- ‘N2
Toic =[] expln(ha(8%,2) — (B, D)} (36)

For a comparison and to determine the best method, the mean absolute percentage error
(MAPE) is used according to the following formula [21]:

Clem [mO-RO
MAPE =+ t=1|—m(t) , (37)

where m(t) represents the real value, m(t) represents the estimated value.

4. Simulation

To compare the maximum likelihood and Bayes estimator of parameters A and 8, a
simulation with 1000 repetitions is used. Multiple different cases are considered in the
simulation study that depends on the different values of the sample size n = 25,50, 100. For
each caseand f = 0.5,2.5,4 = 0.5,1.5 and specify default values for the prior distribution
parameters as in the following table:

Table 1: Default values for the parameters of the prior distribution of the Bayes estimator

Case a b c d
I 0.5 0.5 0.5 0.5
Il 1.5 0.5 1.5 0.5
1l 0.5 15 0.5 15
v 15 15 15 15

MAPE is used to measure the performance of the MLE and Bayes estimator.
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Table 2: The simulated MAPE for the MLE and Bayes estimator for PLP.

n parameter MLE Bay I Bay II Bay Il Bay IV

o $=0.5, 2=0.5 30.397 29.731 28.569* 28.674 29.879
B=2.5,2=1.5 30.298 22.888 22.563* 28.356 25.161

= $=0.5, 2=0.5 19.914 19.687 19.321* 19.361 19.757
B=2.5,2=1.5 19.385 16.594 16.041* 18.097 17.676

$=0.5, 2=0.5 14.061 13.989 13.853* 13.875 14.005

100 B=2.5,2=1.5 11.844 11.097 11.093* 12.006 11.319

Numerical results in Table 2 show the MAPE of the PLP using the two methods MLE and
Bayes method. From the comparison of the values of MAPE, it appears that the Bayesian
model is the best method compared to other Bayesian models and the MLE method.

5. Application to a Real Data

In order to evaluate the applicability of the proposed methods, real data from the Mosul
gas power plant is used. This data shows the intervals between successive failures in days for
the Mosul gas power plant in Nineveh Governorate in Iraq during the period from 1/5/2019 to
30/6/2021.

Table 2: MAPE values for methods used to estimate the PLP parameters

Unite Size Method B A MAPE
MLE 0.42268 11.63708 36.948

Bay | 0.48394 8.52938 32.906

M1 49 Bay I 0.55998 6.02398 28.303*
Bay II 0.56423 5.83326 28.306

Bay IV 0.47995 8.81374 33.019

MLE 0.4348 11.39495 39.985

Bay | 0.49708 8.35728 37.576

M2 50 Bay I 0.57372 5.91491 33.703*
Bay II 0.57829 5.72393 34.041

Bay IV 0.49271 8.64254 37.308

MLE 0.41016 12.39101 35.439

Bay | 0.47025 9.08233 32.673

M3 50 Bay II 0.54591 6.39036 29.322*
Bay Il 0.54956 6.20069 29.62

Bay IV 0.46682 9.3644 32.559

Table 2 shows the estimation of the PLP parameters using the proposed methods in the paper.
From MAPE results, it is concluded that the Bay Il model for estimation yields efficient
estimators in representing the data.

The following Figures show the PLP estimated using estimation methods compared to the
real cumulative values representing the intervals between successive failures of the stations.
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Figure 1: Estimated functions of the cumulative number of the intervals between successive
failures for station M1 using different methods.

B  Real Data
o = MLE
X 1 ®™ Bayesl
B Bayesll
L o & Bayesll
= & 1 ™ BayesV
T
LL
5 3 4
= o -—————
2 ==g==;__-‘
[S o
=] o
=z —
o |
Te)

T T T T T T
0 10 20 30 40 50
Failure Time

Figure 2: Estimated functions of the cumulative number of the intervals between successive
failures for station M2 using different methods.
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Figure 3: Estimated functions of the cumulative number of the intervals between successive
failures for station M3 using different methods.
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The previous Figures show the estimated functions of the cumulative number of intervals
between the successive failures for the Mosul gas power plant using estimation methods. It is
observed that the Bayesian model is the closest to the real data and this demonstrates the
efficiency of this method of estimation compared with the MLE and other Bayes models.

6. Conclusion

In the applied aspect, it was concluded that the Bay II model is the best in estimating the
power law process parameters of the gas power plant compared to the maximum likelihood
estimation and the rest of the Bayes estimators. This is in agreement with the results of the
simulation of the stochastic process and this indicates that the Bay II method gives efficient
results in terms of estimating the parameters of the power law process. We recommend the
beneficiary of the Mosul gas power plant to adopt the results reached in estimating the
expected number of stops for the units under study.
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