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Abstract

The main goal of this paper is introducing and studying a new concept, which is
named H-essential submodules, and we use it to construct another concept called
Homessential modules. Several fundamental properties of these concepts are
investigated, and other characterizations for each one of them is given. Moreover,
many relationships of Homessential modules with other related concepts are studied
such as Quasi-Dedekind, Uniform, Prime and Extending modules.
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1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unitary left R-
modules. "A submodule V of a module U is called essential (simply V <, U), if the intersection of V
with any non-zero submodule of U is not equal to zero" [1]. In this paper, we introduce a new concept,
named Homessential module. This concept needs to define a certain type of submodules named H-
essential submodules, where a proper submodule V of U is called H-essential, if for each non-zero

homomorphism f € HomR(% ,U); f(%) is an essential submodule of U. A module U is called

Homessential if every proper submodule of U is H-essential.

In section two; we investigate the main properties of H-essential submodules; we determine the
trace of the quotient module over any H-essential submodule, see Proposition (2.8). Also, we show
that the intersection of any two H-essential submodules is also H-essential, see Proposition (2.11).
Furthermore, another characterization of H-essential submodule is given, see Theorem (2.12), and we
show that every rational submodule is H-essential (see 2.13). Moreover, we prove that in the class of
polyform module, every essential submodule is H-essential, Corollary (2.15).
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Section three of this paper is devoted to introduce and study the concept of Homessential module,
we give another characterization of Homessential module, see Proposition (3.6). Also, the
relationships of Homessential module with some other related concepts such as quasi-Dedekind,
uniform and prime and extending modules are studied, see the results (3.9), (3.10), (3.12), (3.14)
(3.15), (3.16) and (3.17).

2. H-essential Submodules
This section is devoted to studying the main properties of H-essential submodules.
Definition (2.1): Let U be an R-module. A proper submodule V of U is called H-essential, if for each

non-zero homomorphism f € Homg (% LU f (%) is essential submodule of U.

Examples (2.2):

1. Consider the Z-module Z, the submodule (2) of Z, is H-essential, since the non-zero
homomorphism in Homy, ((ZZT“) ,Z,4) is only the inclusion homomorphism. In fact f(%)=(?), and (2) is

essential submodule of Z ,.
2. In the Z-module Z ¢, the submodule (3) is not H-essential. In fact; there exists a homomorphism f:

?376) — Z¢ With f (%6)) is not essential submodule of Zs.
Proposition (2.3): If V is H-essential submodule of U, then rU <, U for each (0#) r € anng(V ).
Proof: Let (0#) r € anng(V ). Define f: % — Uby f (u+V)=ruforeachu+ Ve % Itis clear that f

is well defined and homomorphism. Since V is H-essential, then f(%) = rU is essential submodule of

u.ol

As a conseguence of Proposition (2.3) we have the following.
Corollary (2.4): Every non-zero H-essential submodule cannot be faithful.

We need to give the following lemmas.

Lemma (2.5): [1] If A and B are submodules of an R-module U such that A <, B <, C. Then A <, U if
and only if A <, Band B <, U.

The following Lemma can be easily shown.

Lemma (2.6): Let {V;};c; be a family of essential submodules of an R-module U. Then }};¢; V; <. U.
Proof. It's obvious from Lemma (2.5).

"Recall that a ring R is called Noetherian if every ideal of R is finitely generated" [2, P.55].
Proposition (2.7): Let R be a Noetherian ring, and U be an R-module. If V is H-essential submodule
of U, then anng(V)U <, U.

Proof: Since R is a Noetherian ring, then anng(V ) is finitely generated ideal of R. That is anng(V) =
(ry, ra,..., ) for some r; € anng(V ). This implies that anng(V )U = Y;i-; ;U . By Proposition (2.3), r,U
<. Uforeachi=1,2,.. ., n,and by Lemma (2.6), (anng(V ))U <, U. []

"For R-modules U and V, the trace of an R-module U is defined by T\(U) =X, ¢(U) where ¢ €
Homg (U, V) ([2], p.27)". If V=R, then the trace of U on R is denoted by T(U).

Proposition (2.8): Let U be an R-module and T(U) is the trace of U on R. If V is an H-essential

submodule, then either T( %) is zero or T(%)U is essential submodule of U.

Proof: Suppose that T(%) #0and (0#) ¢ € HomR(% , R). For each u € U, one can define f;: R - U
by fu(r) = ru; for all r € R. It is clear that £, is well defined and homomorphism. So (f,o¢) € Homg(
% , U). Since V is H-essential submodule of U, then (f,op) %Se U for each u € U. This implies that ¢
()u <, U for each u € U. Since T)U = (X, () U, 50 we have 9(-)U < (T, 9(;)) U = T(:-)U
< U. By Lemma (2.6), we get T(-)U <,U.

Proposition (2.9): Let U be an R-module. If V is an H-essential submodule of U with anng(V) # 0,
then anng(U) = anng(V).

Proof: It is clear that anngr(U) < anng(V ). Now let (0#£) r € anng(V ), by proposition (2.3), rU <, U,
hence rU# 0, that is r € anng(U). Therefore anng(U) = anng(V). [

Examples (2.10):

1. From Example (2.2)(1) , the submodule (2) is H-essential of Z,. So by Proposition (2.9), anny (Z ,)
s anng (2). In fact, anny (2) = 2Z, and anny (Z 4) = 47Z.
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2. Consider the Z -module Q. Z is H-essential submodule of Q (as we will see in Example 2.14), but
annyg (Q)= anny (Z) since anny (Z) = 0.

Proposition (2.11): Let A and B be H-essential submodules of an R-module U, then A N B is an H-
essential submodule.

Proof: If ANB = 0, then we are done. Assume that ANB # 0 and 0 # f € Homg( ﬁ, U). It is clear

that Homg (AUR’ U) < HomR(%; U) + HomR(%, U) [3]. So for all f € Homg (ﬁ, U), f=h+k whereh

€ Homg(%, U) and k € Homg(3, U) with A(%) <, U and k(=) <, U implies h(5) + k(Z) <, U. Hence
f(AUR) <. U, hence we are done. [

Theorem (2.12): Let U be an R-module, and 0 # V < U. Then the following statements are equivalent:
1. V is H-essential submodule.
2. Foreach f € Endr(U) such that V< kerf; f(U) <, U.

Proof: (1) = (2) Let f € Endgr(U) and V < kerf. Define g : %—> Uby g(u+ V)= f(u). Itis clear that

g 1s well defined and homomorphism. By assumption, g(%) <. U. But by definition of g, g(%) =
f(U), thus f (U) < U.
(2) = (1) Let f € HomR(%, U), and consider the natural epimorphism ©: U — % , then fo n €
Endr(U). But V < ker (fo m), so by assumption forn (U) <, U. This implies that f(% )<, U. Thatis V
is H-essential submodule of U. [

"Recall that a submodule V of an R-module U is called rational if HomR(%, E(U)) = 0, where E(U)

is the injective hull of U" [2, P.12].
Proposition (2.13): Every non-zero rational submodule is H-essential.

Proof: Let V be a non-zero submodule of an R-module U. It is clear that HomR(% , U) < HomR(%,
E(V)), and since V is rational submodule, then HomR(% ,E(U)) = 0. This implies that HomR(% U)=0,

that is V is H- essential. In fact there is no non-zero homomorphism f eHomR(%, U) with f (% ) <. U.

[l
Example (2.14): Consider the Z-module Q, where @Q is the set of all rational numbers. Since Z is
rational submodule of @ hence by Proposition (2.13), Z is H-essential submodule of Q.

"Recall that an R-module U is called polyform if every essential submodule is rational” [4]. By
proposition (2.13), we conclude the following.
Corollary (2.15): If U is polyform module, then every essential submodule of U is H-essential.
3. Homessential Module

In this section, we introduce the class of Homessential module.

Definition (3.1): An R-module U is called Homessential module, if every proper submodule of U is
H-essential. A ring R is called Homessential, if R is Homessential R-module.
Examples (3.2):
1. The zero R-module is a Homessential module, since (0) has no non-zero H-essential submodule
V of (0) such that (V) is not essential submodule of (0).
2. T, is a Homessential module, since the only proper submodule of Z 4 is (2), and (2) is H-
essential submodule see (example (2.2)(1)).
3. The Z-module Ly, is Homessential module. In fact, it's uniform module [5], then the result
follows Remark (3.3)(4).
Remarks (3.3):
1. Every simple module is a Homessential module.
2. Asemisimple module is not Homessential module.
3. Every integral domain R is Homessential R-module.
4.  Every uniform module is Homessential module, where an R-module U is called uniform if every
non-zero submodule is essential in U [2].
5. Every monoform module is Homessential, where a module U is called monoform if every non-
zero submodule is rational [5], in fact this follows directly from Proposition (2.13).
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Proof: 3. Let R be an integral domain, and | be a non-zero ideal of R. We can easily show that in an
integral domain every non-zero ideal is an essential ideal. This implies that % is singular R-module,

hence, it is torsion. On the other hand, R is torsion free R-module, therefore HomR($ ,R) =0, thatisR

is Homessential module. In particular, Z is Homessential.

4. 1t is obvious. [
Proposition (3.4): A direct summand of a Homessential module is Homessential.
Proof: Let U=U;®U, be a Homessential module, where U; and U, be R-submodules of U, and V be a
submodule of U;. Let 0 #fe Endgr(U;) such that V < Kkerf. Consider the following sequence of
homomorphism:

U,0U, £>U1£> U1i> U.6U,

Note that i o f o pe Endgr(U), and V<ker(i o f o p). Since U is Homessential, then by Theorem (2.12),
(iof op)(UBU,) <, Ui®U, = U. This implies that f(U;) <. U and so that f(U;) <, U; [1]. []
Proposition (3.5): Let U be an R-module. Then U is Homessential R-module if and only if U is
Homessential %—module for each ideal I <anngU.

Proof: Assume that U Homessential R-module. Since I < anngU, then HomR(% ,U) = Homr (% ,U)
1

for each submodule V of U [6, Ex.3, P.51]. By assumption f(%) <.U foreach fe HomR(% ,U), hence
f(%) <.U for each f € Homr (% ,U). The convers is in similar way. [
I

The following theorem gives another characterization of Homessential module.
Proposition (3.6): Let U be an R-module, and V be a non-zero submodule of U. Then the following
statements are equivalent:
1. U is a Homessential module.
2. Foreach f € Endg(U) with kerf#0; f(U) <., U.
Proof: (1) = (2) Let U be a Homessential module, and f eEndgr(U), with kerf # 0. Put V = kerf, by
assumption V is H-essential submodule of U. By Theorem (2.12), f(U) <. U.

(2) = (1) Let V be a non-zero proper submodule of U, and f e HomR(g ,U). Note that V < ker(f o ),

where m: U— % is the natural epimorphism. Since V# 0, then ker(f o m) # 0. By Theorem (2.12), V is
an H-essential submodule, hence U is Homessential module [

"Recall that a submodule V of a module U is said to be closed if V has no proper essential
submodule in U" [1, p.18]
Proposition (3.7): Let U be a Homessential module. If U is a semisimple module, then for every
feHomR(g ,U), T is an epimorphism.
Proof: Let V is a proper submodule of U and feHomR(g ,U). By the definition of Homessential
module, £() <. U. But U is semisimple, so that f (<) is closed submodule of U [7]. This implies that
f(%) = U, hence f is an epimorphism. []

"Recall that an R-module U is said to be quasi-Dedekind, if for every non-zero homomorphism
feEnd(U), kerf=0"[8]
Proposition (3.8): Let U be a quasi-Dedekind module with anngz(U) is a maximal ideal of R, then U
is Homessential.
Proof: Put A= annR oL since anng(U) is a maximal ideal, then A is field, and clearly U is quasi-

R

Dedekind A-module, therefore U is free A-module. This implies that U = @;¢; 4; and Viel, Axz= A
[7, Lem (4.4.1), P.88]. Since U is indecomposable [8, Rem (1.3), p.24], then U = A as A-module.
Thus U is simple, and by Remarks (3.3)(1), U is Homessential. []

Corollary (3.9): If U is a finitely generated quasi-Dedekind module, then U is Homessential.

Proof: Since U is a finitely generated quasi-Dedekind module, then U is uniform [8], and by Remark
(3.3)(4), U is Homessential. (I
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"Aring R is called regular (in the sense of Von Newmann) if for each aeR there is exists beR
such that a=aba" [2, P.4]. Under certain condition Homessential module can be quasi-Dedekind as the
following proposition shows.

Proposition (3.10): Let U be a Homessential R- module. If Endg (U) is a regular ring, then U is quasi-
Dedekind.

Proof: Let 0#f €eEndg(U). We have to show that kerf=0, otherwise; since U is a Homessential
module, so by Proposition (3.6), f(U) <. U. But Endy(U), then U=f(U)® kerf [7, Exc. 17(a),
P.272]. This implies that f(U) n kerf = 0. Since kerf#0, so f(U) is not essential in U, which is a
contradiction. [

Remark (3.11): The condition "Endy (U). is regular" cannot be dropped from Proposition (3.10), for
example; Z, is Homessential Z-module but not quasi Dedekind, since Endg(Z,). = Z, which is not
regular.

It is known that if U is a semisimple module, then Endg (U) is regular [9, Cor.(2.22, P.52)]. So by
this fact and Proposition (3.10) we have the following.

Corollary (3.12): If U is semisimple and Homessential module, then U quasi-Dedekind.

Remarks (3.13):

1. The condition "semisimple™ in Corollary (3.12) cannot be dropped. For example, the Z-module
Ly, is uniform module, so it is Homessential (see Remark (3.3)(4)) but it is not quasi-Dedekind
module, since it is not semisimple module.

2. In general, Homessential module need not be prime module; for example: the Z -module Z, is
Homessential but not prime module.

The following Corollary gives a necessary condition under which Homessential module can be
prime.

Corollary (3.14): Let U be a Homessential module. If U is semisimple, then:
1. Uis a prime module.

2. anng(V) is a prime ideal of R.

Proof: 1. The result follows by Corollary (3.12), and [8, Prop.(1.7), p.26].

2. The result follows by Corollary (3.12), and [8, Cor.1.8, p.26]. [

"Recall that an R-module P is said to be projective if for every epimorphism f: B — C and for
every homomorphism g: P — C there is a homomorphism h: P — B with g = hf" [7, Def. (5.3.1) (b), p.
116].

Corollary (3.15): Let R be a regular ring and U is a finitely generated projective module. If U is
Homessential, then U is a quasi-Dedekind module.

Proof: Assume that U is a Homessential module. Since U is a finitely generated projective module
over regular ring, then Endy (U) is regular [7,Exc.17(c), P.272], and by Proposition (3.10), we are
done. [

"Recall that an R-module U is called Z-regular, if every cyclic submodule of U is direct summand
and projective" [10].

Corollary (3.16): Let U be a Z-regular module. If U is a Homessential module, then U is quasi-
Dedekind.

Proof: Since U is a Z-regular module, then Endg(U) is regular [10]. But U is Homessential, then by
proposition (3.10), U is a quasi-Dedekind. [

"Recall that an R-module U is called extending if every submodule of U is essential in a direct
summand of U" [2, p.118], and U is indecomposable, if the only decomposition U=A@B are those in
which either A=(0) or B=(0) [7, p.285].

Proposition (3.17): Every non-zero extending and indecomposable module is Homessential.

Proof: Since every non-zero extending and indecomposable module is uniform, then the result follows
by Remark (3.3)(4). [
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