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 Abstract 

       The main goal of this paper is introducing and studying a new concept, which is 

named H-essential submodules, and we use it to construct another concept called 

Homessential modules. Several fundamental properties of these concepts are 

investigated, and other characterizations for each one of them is given. Moreover, 

many relationships of Homessential modules with other related concepts are studied 

such as Quasi-Dedekind, Uniform, Prime and Extending modules. 
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 و مقاسات ههم إسينشيل H-جزئية الجههرية من النمط لالمقاسات ا
  

 ،تماضر عارف ابراهيم*منى عباس احمد
 جامعة بغداد، بغداد، العراق، للبنات قدم الرياضيات، كلية العلهم

 

 الخلاصة
المقاس الجزئي  اسم  عليهأطلقنا  تقديم ودراسة مفههم جديد  هه البحث هذا من الرئيس الهدف إن     

 سينذيلمقاس ههم إ استخدمناه في تعريف المفههم الاخر والذي أطلقنا عليه اسمالذي و -H النمطالجههري من 
Homessential module)) تم أعظاء العديد من النتائج المهمة حهل هذين المفههمين، وتذخيص آخر .

 الأخرى  ببعض المقاساتمقاس ههم اسينذيل لكل من هذين المفههمين. إضافة الى ذلك فقد تم دراسة علاقة 
 ولي والمقاس التهسعي.س المنتظم، المقاس الأامقاس كهاسي ديدكند، المق مثل  ذات العلاقة

 

1. Introduction 

     Throughout this paper, all rings are commutative with identity and all modules are unitary left R-

modules. "A submodule V of a module U is called essential (simply V ≤ e U), if the intersection of V 

with any non-zero submodule of U is not equal to zero" [1]. In this paper, we introduce a new concept, 

named Homessential module. This concept needs to define a certain type of submodules named H- 

essential submodules, where a proper submodule V of U is called H-essential, if for each non-zero 

homomorphism    HomR(
  

 
   );  (

    

  
) is an essential submodule of U. A module U is called 

Homessential if every proper submodule of U is H-essential. 

      In section two; we investigate the main properties of H-essential submodules; we determine the 

trace of the quotient module over any H-essential submodule, see Proposition (2.8). Also, we show 

that the intersection of any two H-essential submodules is also H-essential, see Proposition (2.11). 

Furthermore, another characterization of H-essential submodule is given, see Theorem (2.12), and we 

show that every rational submodule is H-essential (see 2.13). Moreover, we prove that in the class of 

polyform module, every essential submodule is H-essential, Corollary (2.15).  
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   Section three of this paper is devoted to introduce and study the concept of Homessential module, 

we give another characterization of Homessential module, see Proposition (3.6). Also, the 

relationships of Homessential module with some other related concepts such as quasi-Dedekind, 

uniform and prime and extending modules are studied, see the results (3.9), (3.10), (3.12), (3.14) 

(3.15), (3.16) and (3.17). 

2. H-essential Submodules 

     This section is devoted to studying the main properties of H-essential submodules. 

Definition (2.1): Let U be an R-module. A proper submodule V of U is called H-essential, if for each 

non-zero homomorphism     HomR (
  

 
   );   (

  

 
) is essential submodule of U. 

Examples (2.2): 

1.  Consider the  -module  4, the submodule ( ̅) of Z4 is H-essential, since the non-zero 

homomorphism in       (
   

  ̅ 
    ) is only the inclusion homomorphism. In fact  (

   

  ̅ 
)=( ̅), and ( ̅) is 

essential submodule of   4. 

2. In the  -module   6, the submodule ( ̅) is not H-essential. In fact; there exists a homomorphism f: 
   

  ̅ 
     with f (

   

  ̅ 
) is not essential submodule of   6. 

Proposition (2.3): If V is H-essential submodule of U, then rU ≤e U for each (0≠) r   annR(V ). 

Proof: Let (0≠)  r   annR(V ). Define f: 
  

 
 → U by   (u + V ) = ru for each u + V  

  

 
. It is clear that   

is well defined and homomorphism. Since V is H-essential, then  (
  

 
) = rU is essential submodule of 

U.  

     As a consequence of Proposition (2.3) we have the following. 

Corollary (2.4): Every non-zero H-essential submodule cannot be faithful. 

     We need to give the following lemmas. 

Lemma (2.5): [1] If A and B are submodules of an R-module U such that A ≤e B ≤e C. Then A ≤e U if 

and only if A ≤e B and B ≤e U. 

     The following Lemma can be easily shown. 

Lemma (2.6): Let         be a family of essential submodules of an R-module U. Then ∑       ≤e U. 

Proof. It's obvious from Lemma (2.5). 

     "Recall that a ring R is called Noetherian if every ideal of R is finitely generated" [2, P.55]. 

Proposition (2.7): Let R be a Noetherian ring, and U be an R-module. If V is H-essential submodule 

of U, then annR(V)U ≤e U. 

Proof: Since R is a Noetherian ring, then annR(V ) is finitely generated ideal of R. That is annR(V) = 

(r1, r2,…, rn) for some ri   annR(V ). This implies that annR(V )U = ∑   
 
   U . By Proposition (2.3), riU 

≤e U for each i=1,2, . . ., n, and by Lemma (2.6), (annR(V ))U ≤e U.  

     "For R-modules U and V, the trace of an R-module U is defined by TV(U) =∑   (U) where      

HomR (U, V ) ([2], p.27)". If V=R, then the trace of U on R is denoted by T(U). 

Proposition (2.8): Let U be an R-module and T(U) is the trace of U on R. If V is an H-essential 

submodule, then either T( 
  

 
 )  is zero or T(

  

 
)U is essential submodule of U. 

Proof: Suppose that T(
  

 
) ≠ 0 and (0≠)     HomR( 

  

 
 , R). For each u   U, one can define  u: R → U 

by  u(r) = ru; for all r   R. It is clear that  u is well defined and homomorphism. So ( u  )   HomR( 
  

 
 , U). Since V is H-essential submodule of U, then (fu  ) 

  

 
≤e U for each u   U. This implies that   

(
  

 
)u ≤e U for each u   U. Since T(

  

 
)U =  ∑   

  

 
    , so we have   

  

 
 U ≤  ∑   

  

 
     = T(

  

 
 )U 

≤ U. By Lemma (2.6), we get T(
  

 
)U ≤eU.  

Proposition (2.9): Let U be an R-module. If V is an H-essential submodule of U with annR(V) ≠ 0, 

then annR(U)   annR(V). 

Proof: It is clear that annR(U) ≤ annR(V ). Now let (0≠) r   annR(V ), by proposition (2.3), rU ≤e U, 

hence rU≠ 0, that is r   annR(U). Therefore annR(U)   annR(V).  

Examples (2.10):  

1. From Example (2.2)(1) , the submodule ( ̅) is H-essential of  4. So by Proposition (2.9),      (  4) 

        ( ̅). In fact,      ( ̅) =   , and      (  4) =   . 



Ahmed and Ibrahiem                                Iraqi Journal of Science, 2019, Vol. 60, No.6, pp: 1318-1386 

 

8818 

2. Consider the   -module  .   is H-essential submodule of   (as we will see in Example 2.14), but 

     ( )=           since      ( ) = 0. 

Proposition (2.11): Let A and B be H-essential submodules of an R-module U, then A ∩ B is an H-

essential submodule. 

Proof: If A∩B = 0, then we are done. Assume that A∩B ≠ 0 and 0 ≠    HomR( 
  

   
, U). It is clear 

that HomR (
  

   
, U) ≤ HomR(

  

 
; U) + HomR(

  

 
, U) [3]. So for all     HomR (

  

   
, U),  =   +   where   

  HomR(
  

 
, U) and     HomR(

  

 
, U) with  (

  

 
) ≤e U and  (

  

 
) ≤e U implies  (

  

 
) +  (

  

 
) ≤e U. Hence 

 (
  

   
) ≤e U, hence we are done.  

Theorem (2.12): Let U be an R-module, and 0 ≠ V ≤ U. Then the following statements are equivalent: 

1. V is H-essential submodule. 

2. For each    EndR(U) such that V≤ ker ;  (U) ≤e U. 

Proof: (1)   (2) Let    EndR(U) and V ≤ kerf. Define g : 
  

 
 → U by  (u + V ) =  (u). It is clear that 

  is well defined and homomorphism. By assumption,   (
  

 
) ≤e U. But by definition of g,   (

  

 
) = 

 (U), thus   (U) ≤e U. 

(2)   (1) Let    HomR(
  

 
, U), and consider the natural epimorphism π: U → 

  

 
 , then  o π   

EndR(U). But V ≤ ker ( o π), so by assumption  oπ (U) ≤e U. This implies that  (
  

 
 ) ≤e U. That is V 

is H-essential submodule of U.  

     "Recall that a submodule V of an R-module U is called rational if HomR(
  

 
, E(U)) = 0, where E(U) 

is the injective hull of U" [2, P.12]. 

Proposition (2.13): Every non-zero rational submodule is H-essential. 

Proof: Let V be a non-zero submodule of an R-module U. It is clear that HomR(
  

 
 , U) ≤ HomR(

  

 
, 

E(U)), and since V is rational submodule, then HomR(
  

 
 ,E(U)) = 0. This implies that HomR(

  

 
 U) = 0, 

that is V is H- essential. In fact there is no non-zero homomorphism   HomR(
  

 
  U) with   (

  

 
 ) ≤e U. 

 

Example (2.14): Consider the  -module  , where   is the set of all rational numbers. Since   is 

rational submodule of   hence by Proposition (2.13),   is H-essential submodule of  . 

      "Recall that an R-module U is called polyform if every essential submodule is rational" [4]. By 

proposition (2.13), we conclude the following. 

Corollary (2.15): If U is polyform module, then every essential submodule of U is H-essential. 

3. Homessential Module 

          In this section, we introduce the class of Homessential module. 

Definition (3.1): An R-module U is called Homessential module, if every proper submodule of U is 

H-essential. A ring R is called Homessential, if R is Homessential R-module. 

Examples (3.2): 

1. The zero R-module is a Homessential module, since (0) has no non-zero H-essential submodule 

V of (0) such that  (V)  is not essential submodule of (0). 

2.   4 is a Homessential module, since the only proper submodule of   4 is ( ̅), and ( ̅)  is H-

essential submodule see (example (2.2)(1)(.  

3. The  -module    
 is Homessential module. In fact, it's uniform module [5], then the result 

follows Remark (3.3)(4). 

Remarks (3.3):  
1. Every simple module is a Homessential module. 

2. A semisimple module is not Homessential module. 

3. Every integral domain R is Homessential R-module.  

4. Every uniform module is Homessential module, where an R-module U is called uniform if every 

non-zero submodule is essential in U [2].  

5. Every monoform module is Homessential, where a module U is called monoform if every non-

zero submodule is rational [5], in fact this follows directly from Proposition (2.13). 
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Proof: 3. Let R be an integral domain, and I be a non-zero ideal of R. We can easily show that in an 

integral domain every non-zero ideal is an essential ideal. This implies that 
 

 
 is singular R-module, 

hence, it is torsion. On the other hand, R is torsion free R-module, therefore HomR( 
 

 
   ) = 0, that is R 

is Homessential module. In particular, Z is Homessential. 

      4. It is obvious.  

Proposition (3.4): A direct summand of a Homessential module is Homessential. 

Proof:  Let U=U1 U2 be a Homessential module, where U1 and U2 be R-submodules of U, and V be a 

submodule of U1. Let 0 ≠  EndR(U1) such that V ≤  ker . Consider the following sequence of 

homomorphism: 

U1 U2 
  
→U1

 
→ U1

 
→ U1 U2 

 Note that       EndR(U), and V≤ker(     ). Since U is Homessential, then by Theorem (2.12), 

(     )( U1 U2)  e U1 U2 = U. This implies that  (U1)  e U and so that  (U1)  e U1 [1].  

Proposition (3.5): Let U be an R-module. Then U is Homessential R-module if and only if U is 

Homessential 
 

 
-module for each ideal    ≤ annRU. 

Proof: Assume that U Homessential R-module. Since   ≤ annRU, then     (
 

 
   ) =     

 

  
 

 
     

for each submodule V of U [6, Ex.3, P.51]. By assumption  (
 

 
)   U for each       ( 

 

 
   ), hence 

 (
 

 
)   U for each       

 

  
 

 
    . The convers is in similar way.  

        The following theorem gives another characterization of Homessential module. 

Proposition (3.6): Let U be an R-module, and V be a non-zero submodule of U. Then the following 

statements are equivalent: 

1. U is a Homessential module. 

2. For each           with ker ≠0;         .    

Proof: (1)   (2) Let U be a Homessential module, and  EndR(U), with ker  ≠ 0. Put V = ker , by 

assumption V is H-essential submodule of U. By Theorem (2.12),   ( )    . 

 (2)   (1) Let V be a non-zero proper submodule of U, and  HomR( 
 

  
   ). Note that V ≤ ker(   ), 

where  : U  
 

 
 is the natural epimorphism. Since V≠ 0, then ker(   ) ≠ 0. By Theorem (2.12), V is 

an H-essential submodule, hence U is Homessential module  

     "Recall that a submodule V of a module U is said to be closed if V has no proper essential 

submodule in U" [1, p.18] 

Proposition (3.7): Let U be a Homessential module.  If U is a semisimple module, then for every 

 HomR( 
 

  
   ), f is an epimorphism. 

Proof: Let V is a proper submodule of U and  HomR( 
 

  
   ). By the definition of Homessential 

module,  ( 
 

 
)    . But U is semisimple, so that  ( 

 

 
) is closed submodule of   [7]. This implies that 

 ( 
 

 
) = U, hence   is an epimorphism.  

     "Recall that an R-module U is said to be quasi-Dedekind, if for every non-zero homomorphism 

 End(U), ker =0" [8] 

Proposition (3.8): Let U be a quasi-Dedekind module with     (U) is a maximal ideal of R, then U 

is Homessential. 

Proof: Put A= 
 

       
, since annR(U) is a maximal ideal, then A is field, and clearly U is quasi-

Dedekind A-module, therefore U is free A-module. This implies that U          and iI, AA Ai 

[7, Lem (4.4.1), P.88]. Since U is indecomposable [8, Rem (1.3), p.24], then U   A as A-module. 

Thus U is simple, and by Remarks (3.3)(1), U is Homessential.  

Corollary (3.9): If U is a finitely generated quasi-Dedekind module, then U is Homessential. 

Proof: Since U is a finitely generated quasi-Dedekind module, then U is uniform [8], and by Remark 

(3.3)(4), U is Homessential.  
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        "A ring R is called regular (in the sense of Von Newmann) if for each aR there is exists bR 

such that a=aba" [2, P.4]. Under certain condition Homessential module can be quasi-Dedekind as the 

following proposition shows. 

Proposition (3.10): Let U be a Homessential R- module. If         is a regular ring, then U is quasi-

Dedekind. 

Proof: Let 0≠        . We have to show that ker =0, otherwise; since U is a Homessential 

module, so by Proposition (3.6),  ( )    . But        , then U= (U)      [7, Exc. 17(a), 

P.272]. This implies that            . Since ker ≠0, so      is not essential in U, which is a 

contradiction.  

Remark (3.11): The condition "       . is regular" cannot be dropped from Proposition (3.10), for 

example; Z4 is  Homessential Z-module but not quasi Dedekind, since         . =    which is not 

regular. 

     It is known that if U is a semisimple module, then         is regular [9, Cor.(2.22, P.52)]. So by 

this fact and Proposition (3.10) we have the following. 

Corollary (3.12): If U is semisimple and Homessential module, then U quasi-Dedekind. 

Remarks (3.13):  

1. The condition "semisimple" in Corollary (3.12) cannot be dropped. For example, the  -module 

   
is uniform module, so it is Homessential (see Remark (3.3)(4)) but it is not quasi-Dedekind 

module, since it is not semisimple module. 

2. In general, Homessential module need not be prime module; for example: the   -module  4 is 

Homessential but not prime module.  

     The following Corollary gives a necessary condition under which Homessential module can be 

prime. 

Corollary (3.14): Let U be a Homessential module. If U is semisimple, then: 

1. U is a prime module. 

2.  annR(U) is a prime ideal of R. 

Proof: 1. The result follows by Corollary (3.12), and [8, Prop.(1.7), p.26]. 

2. The result follows by Corollary (3.12), and [8, Cor.1.8, p.26].  

     "Recall that an R-module P is said to be projective if for every epimorphism f: B   C and for 

every homomorphism g: P   C there is a homomorphism h: P   B with g = hf" [7, Def. (5.3.1) (b), p. 

116]. 

Corollary (3.15): Let R be a regular ring and U is a finitely generated projective module. If U is 

Homessential, then U is a quasi-Dedekind module. 

Proof: Assume that U is a Homessential module. Since U is a finitely generated projective module 

over regular ring, then         is regular [7,Exc.17(c), P.272], and by Proposition (3.10), we are 

done.  

       "Recall that an R-module U is called Z-regular, if every cyclic submodule of U is direct summand 

and projective" [10]. 

Corollary (3.16):  Let U be a Z-regular module. If U is a Homessential module, then U is quasi-

Dedekind. 

Proof: Since U is a Z-regular module, then         is regular [10]. But U is Homessential, then by 

proposition (3.10), U is a quasi-Dedekind.  

        "Recall that an R-module U is called extending if every submodule of U is essential in a direct 

summand of U" [2, p.118], and U is indecomposable, if the only decomposition U=A B are those in 

which either A=(0) or B=(0) [7, p.285]. 

Proposition (3.17): Every non-zero extending and indecomposable module is Homessential. 

Proof: Since every non-zero extending and indecomposable module is uniform, then the result follows 

by Remark (3.3)(4).  
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