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Abstract

The Gumbel max distribution is one of the most important statistical distributions
because it has many applications, especially in the field of water research and the
prediction of earthquakes and volcanoes. This work includes a comparison of
several Shrinkage Bayesian methods, namely the Shrinkage Bayesian Square Loss
Function, Shrinkage Bayesian Lenix Function, and Shrinkage Bayesian Unix
Function to estimate the distribution parameter. The research also includes several
simulated experiments according to the sample size change and the real value of the
distribution parameter. The number of experiments is 15 simulated experiments
based on the difference sample size and true distribution parameter values. The
results of the simulation experiments are compared depending on each of the
absolute least difference criteria (ALDC) and the mean squared error (Mse). The
comparison results show that the estimation method is affected by the sample size,
and the real value of the distribution parameter. The best estimation method is the
Shrinkage Bayesian Lenix Function. The Bayesian methods can be applied to other
statistical distributions such that the Lindley Weibull distribution and logistics
distribution.

Key words: Gumbel-Max Distribution, Shrinkage Bayesian Square Loss Function
(BSLF), Shrinkage Bayesian Lenix Function (BLENIXF), Shrinkage Bayesian Unix
Function (BUNIXF)
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1-Introduction

The study of estimation methods for the statistical distribution parameter is still one of the
important topics in scientific research due to its importance in applications that depend on
these distributions. For this purpose, many studies have been carried out. The study
introduced by Tatsuya (1998) includes estimated variance by using a modified shrinkage
estimation method. The experimental results show that the estimation method gives minimum
mean square error values [1]. The study introduced by Mahdi S., and Cenac M. in (2005) that
compares the maximum likelihood, weighted moments and moments estimation methods for
Gumbel distribution by different simulation experiments according to the difference in sample
size and the true value of the parameter of the distribution. The simulation results show that
the weighted moment method is the best [2]. The study introduced by Sara van Erp and others
in 2018 includes regression estimates by using the shrinkage Bayesian method. This study
also compares the Ridge, Lasso, and Hyperlasso with other methods. The experimental
results show that the Lasso gives the best estimation method [3]. The study introduced by
Gholami G. et al in 2020 estimates the parameter of the Gamma Gumbel distribution by the
maximum likelihood method and Bayesian estimation method. The estimation results of real
data with a sample size of 20 observations show that the Bayesian method gives the best
estimator for the parameters of the Gamma Gumbel distribution [4].

The study introduced by Abdulali BAA, et al. in 2022 estimates the parameter of the
generalized extreme value distribution that applies to air pollution, estimation procedure of
the parameter of distribution includes maximum likelihood and moment methods and
compares estimators by the mean square error and root mean square error criteria by deferent
simulation experiments, the estimator's result show that maximum likelihood estimation
method is the best [5].

In this study, a number of simulation experiments with different methods, namely the
shrinking Bayesian estimation, sample size, and the true value of the distribution parameter
are compared based on the least absolute difference and mean square error.

The lack of an estimator close to the distribution parameter can lead to the inability to
apply the different distribution functions (reliability, survival, failure and entropy) and the
occurrence of problems for the distance from the real values.

This research aims to find the best estimator for the distribution parameter depending on
the estimation method, sample size and the real value of the distribution parameter.
Finding an estimator that is close to the parameter of the statistical distribution leads to the
possibility of applying all statistical functions in the application, including reliability,
survival, failure and entropy.

2- Gumbel-Max Distribution

The Gumbel-Max distribution was first proposed by Emil Julius Gumbel (1891-1966).
The distribution is used in many weather experiments and to predict rain, earthquakes and
floods. The distribution has the following characteristics
[1,6,7,8,9]: -
The probability density function is given as follows

_(*=¢€ —e_(%)
f(x,b,c)=hb"1e (5%)e ) (2.1)
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and the Cumulative distribution function is

F(x,b,c) = e‘e_(T) ..(2.2)
The three centroid moments will be
the mean =c + by , ..(2.3)
where y represents the Euler—Mascheroni constant.
The median= ¢ — bLn(Ln(2)) e (2.4)
and the mode = ¢ ..(2.5)
The three variations moments will be [10,11] as follows:
2
The variance= % b? .. (2.6)
The skewness= 1.14 .. (2.7)
The kurtosis= % ..(2.8)

3-Shrinkage Bayesian Estimation methods
These methods were introduced by Xu in 2003 and all methods depend on the maximum
likelihood estimation method [10, 12, 13].

If we have a random sample (X;, X5, ..., X,) with size (n) each of them with Gumbel-
Max, then the logarithm of likelihood function L(b, c¢) will be as follows:-
n

L(b,c) = Ln(l_[ F(xi b, ¢))

=1
nox;—c n xXi—¢
L(b,c) = —Z [ - ] — e_[ 5]
i=1 b i=1
The partial derivatives for each parameter will be
(’)L(b c) 1 n _[xi—c]
=—[n—z e U'b 1] ..(3.1)

aL(b 0) zll[xl—c] ” le[xl_c _xbc (3.2)

The solving of the system aL;ZC) LS — 0 yields the maximum Likelihood (ML)

estimates of (b, c¢) and as numerical solutions of the foIIowmg equations [14, 15].
¢ = b[Ln(n) — Ln(zl e 5] ..(3.3)
!

2?:1 xl'e_[F]
e
PN e[

The estimate of b is explicitly obtained from the first equation and the estimate of c is
then obtained from the second equation after the substitution of the estimated value.

=b+] . (3.4)

(3-1) The Bayesian Shrinkage estimator under squared error loss functions

This shrinking Bayesian estimator involves finding a new estimator according to the
square loss function so that the posterior distribution of the parameter b is the gamma
distribution G (b, t) with the following pdf [2, 6 14,16]: -

thpn—1e —tb

F(b,t) = T with t=Ln[Y e b] such that t represents the limit that depends

on the random variable. The squared error loss function is defined as follows [17,18,19,20]:
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L1(b, Bs) = [b — bs]*

The posterior risk function of b can be calculated as:
~ ~ 2
P1(b» bsl) =Ep [bsl - b]
~ 2 ~
= byy” — 2byy &+ 2
with b~gamma (n,t) the partial derivative with respect to by, . We obtain:

L (b,byy) = 2y — 27

9b,
2% (b,bs1) = 0

bsl - %
The shrinkage estimator is:

bsn1 = k(bsy — by) + by Which by, is the generalized Bayesian estimator, the risk function
of by, is defined as follows:

Pl(b' Bsh{) = E(Bsm - b)z

= Eb[k (bsy — bo) + (bo — b)]?

Taking the partial derivative

~ 2
9p.(b, b R R
w = 2kby, + (2 — 4k)byby, — 2(1 — k)by? —

_ [t(bo” ~ bo) () +[@) +oo]| pmy ;0 + b, 3.5
NEIN (5] -60) (39

(3-2) Bayesian Shrinkage Estimator under Linux Loss Function

2n(bsy + by)

This shrinking Bayesian estimator involves finding a new estimator according to the Linux
loss function
The loss function will be [15]

L2 = e% — aA — 1 with A= 222

The Posterior risk function of the parameter b under the Linex will be as follows:
p2(b,Bs2) = Eylexp(e) (22— 1) — c (%2~ 1) - 1]

=exp(c) Ep [exp(c%z)] — Chby,E, (%) +C-1

b~Gamma (n,t) and l ~ inverse gamma(ﬁ) with the following pdf:

t
(-) = F( ;b= e such that T(n) = (n — DL,
1 t
E() = t t
p2(b, bsz) = (= ) ~abe i +a-1

2p2(bbsa) _ o um—apy _ (n-1) _ (4t
35 = ant (t ab 2)” (n 1)

by, = 11t — (nentem) )]
= exp(-a) [;m;—" — abawz (;5) +a— 1
bsno = k(bg, — bo)+by with
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t -~ t
Pz(b bshz) = exp(—c) (—) — abgp, e +a-1

~ abshz
ap, (b» bsz) _
dk R
~ ~ - b, — b
an(bg; — by ) exp(—a) t*[t — ak(bs, — by) — ab] ) _ at%
—aby)— (n(n—1)t"" exp(—a))~wFD) 1
bsnz = [(t abo) - (nn- DI expl D) Y 60 [i (t - (nt”‘1 exp(—a)n+1)> - 60] +
a[(%)[t—nt"‘l exp(—a)](n_ﬂ) a

60 cer een vee eeevee e e e (3.6)
(3-3) Bayesian Shrinkage Estimator under Unix Loss Function

)

This shrinking Bayesian estimator involves finding a new estimator according to the Unix
loss function so that the loss function will be as follows [2]
n R 2
Lo(b.bey) = wEEEPs) (g —yyB 1)z suchthat 0<w < 1.

The posterior risk function will be :
n

~ w 2
pab,5) = (3~ B BB ) + (1 - wEC2— 1)
i=1
by taking the partial derivation for p;(b, bs;) with respect to bgs

96z b/bs3) Z(S'b”’) and make it equal to zero we get
s3
-~ -1 n .
by =wix + (1 — W)EZT2 such that x = % , b1 ~ inverse gamma (n,t)
1 t
E (;) - (n-1)
Now we have two special cases if w=0 then by; = 222 and if w=lthen by =x.

The previous estimators can be proposed as a special case of the Bayesian estimators that
means w=1, the posterior risk function of the Bayesian Shrinkage Estimator will be as
follows:

pa(b, Bus) = %[Zm 19 ((Bus — bo) — o)’

Eyb™2

2

k(bgs — by) + b
+(1—W)Ebl (bss b") °—1l
By taking the partial derivative of p3(b, bg,3) with respect to k. Assuming w =0,
_ wx-b (1-w)(n-2)
then k—m — 60+ t[w_ = w)(n 2 ) ]
t
Hence, the shrinkage Bayesian Estlmator will be:
bSh = k(bsg - bo) + bo
~ wix—b (1-w)(n-2) _ . (1-w)(n-2)
bsp, = l[wﬂ(l-w)t(n(lz)_bo] + t[Wf+(1_w)t(n_2)—bol *[wx + - bo] + b
Now in case w=0 then
5 B —b, (n—2) n—2 b b 3.7
sh31 = |7 b+t pr— ; *(t —o)+0 (3.7)
( t ) — Po [( ,\t - O]
And in case of w=1 then b3, = X + by . (3.8)
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4-The simulation processes
Simulation processes of the proposed distribution depend on the cumulative distribution
function such that [11,21,22]

F(x,b,c) = e_e_(Tc)

-(59)

Tacking the randomize function R = F(x,b,c) then R = e~ ¢
By solving the equation, we get

x = b[Ln(Ln(R))] + ¢ (4.1)
Such that (x~Gumbel — Max distribution with (b, ¢))
The simulation experiment will be n = 15,25,50,75,100 and b = 0.25,0.50,0.75

5-Experimental Results

The experimental results for the simulation experiments will be as follows [4,23].
Table (1) gives the estimators for each simulation method such that the best estimator is the
absolute least difference criteria (ALDC)

ALDC = min (|&@ — al) (4.2)
Table (2) gives the mean square error and it is the best estimation method
Mse = ic1[@; — a]?
it

where it represents the number of iterations (it = 1000).

(4.3)

After carrying out various simulation experiments, the following tables and figures for
the simulation results were as follows

Table 1: Show the estimation methods

a n BSLF BLINEX BUNIX c.C the best
0.25 15 0.227327 0.280901 0.268891 0.018891 3
0.25 25 0.289401 0.245681 0.286445 0.004319 2
0.25 50 0.249193 0.249865 0.250126 0.000126 3
0.25 75 0.249968 0.25005 0.250032 3.18E-05 1
0.25 100 0.250018 0.250001 0.250025 5.98E-07 2
0.5 15 0.503174 0.496907 0.509935 0.003093 2
0.5 25 0.470059 0.500279 0.471194 0.000279 2
0.5 50 0.599538 0.499979 0.599148 2.14E-05 2
0.5 75 0.55508 0.499976 0.555036 2.38E-05 2
0.5 100 0.453222 0.457244 0.43057 0.042756 2
0.75 15 0.749995 0.750005 0.749998 2.37E-06 3
0.75 25 0.719991 0.786767 0.785987 0.030009 1
0.75 50 0.742365 0.748702 0.743945 0.001298 2
0.75 75 0.749821 0.750012 0.749832 1.18E-05 2
0.75 100 0.748885 0.743 0.748896 0.001104 3
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Figure 1: represent the (C. C) values for each simulation experiment

Tablel and Figure (1) show that the estimators affected by both the sample size and the real
value of the distribution parameter according to (ALDC)

10 8 6 4 2 0

Figure 2: the number of best (ALD) Ofor each simulation experiment
Figure (2) show that the best estimation method is (BLINEX), the number of simulation

experiments in which the (BLINEX) method is the best according to the criterion (ALDC), (9
) times , and percentage(60%) .
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Table 2: show the Mean Square Error and the best estimation method

a n BSLF BLINEX BUNIX Min(mse) the best
0.25 15 7.57E-04 1.18E-03 3.98E-04 3.98E-04 3
0.25 25 2.80E-03 1.87E-05 2.79E-03 1.87E-05 2
0.25 50 6.69E-07 2.56E-08 5.85E-08 2.56E-08 2
0.25 75 1.13E-09 2.82E-09 1.14E-09 1.13E-09 1
0.25 100 5.79E-10 3.21E-11 1.10E-09 3.21E-11 2
0.5 15 1.18E-05 1.13E-04 1.12E-03 1.18E-05 1
0.5 25 1.43E-03 2.29E-06 1.38E-03 2.29E-06 2
0.5 50 2.63E-02 1.45E-07 2.62E-02 1.45E-07 2
0.5 75 6.87E-03 6.88E-10 6.86E-03 6.88E-10 2
0.5 100 3.16E-03 2.05E-03 6.23E-03 2.05E-03 2
0.75 15 2.07E-09 3.24E-11 1.44E-09 3.24E-11 2
0.75 25 9.12E-04 1.78E-03 1.78E-03 9.12E-04 1
0.75 50 8.50E-05 3.09E-06 5.46E-05 3.09E-06 2
0.75 75 9.26E-08 3.63E-10 9.76E-08 3.63E-10 2
0.75 100 2.52E-06 9.91E-12 2.48E-06 9.91E-12 2

2.50E-03

A 2.00E-03

1.50E-03

/ \ 1.00E-03

l \ 5.00E-04

j V \ J 0.00E+00
9

151413121110 7654321

Figure 3: the (Min(MSE)) values for each simulation experiment

The previous table and figure showed the effect of the resulting estimator on both the
sample size and the real value of the distribution parameter according to (Min(mse))

BUNIX

BLINEX

BSLF

12 10 8 6 4 2 0

Figure 4: the number of best (Min(mse)) for each simulation experiment
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The previous Figure shows that the best estimation method is (BLINEX), the number of
simulation experiments in which the (BLINEX) method is the best according to the criterion

(Min(mse)&(ALDC) , (11) and percentage(73%)

25 20 15 10 5 0

Figure 5: the number of best (ALDC&Min(mse)) for each simulation experiment

The previous Figure shows that the best estimation method is (BLINEX), the number of
simulation experiments in which the (BLINEX) method is the best according to the criterion
(Min(mse)&(ALDC)), (20 ) and percentage(67%)

6- Conclusions and Suggestions

1- The Shrinkage Bayesian estimation method is affected by the sample size.

2- The estimation method is affected by the simulation value of the distribution parameter.

3- The best shrinkage Bayesian estimation method is (BLINEX).

4- The shrinking Bayesian methods can be compared with both (the moment's method and
noise method) to note the results.

5- Other parameters of the distributions can be estimated (Weibull and exponential
distribution) by shrinking Bayesian methods to observe the results.
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