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Abstract 

     In this paper, we investigate the influence of the rotation and magnetic field on the 

peristaltic flow of the Bingham fluid in an asymmetric channel with a porous medium 

under the long wavelength and low Reynolds number approximation assumptions.                                                                                                                             
The perturbation method and the Mathematica program for solving nonlinear partial 

differential equations are used to couple the momentum equations with the rotational 

and magnetic field equations. The fluid is considered to be subject to a magnetic field 

and to flow within a porous medium. Graphs are used to display expressions for speed, 

stress gradient, magnetic subject, current density, rotation impact, and drift function. 

The findings reveal that the rotation, density, permeability, coupling diversity, and 

non-dimensional wave amplitude all play significant roles in the phenomenon. The 

quantities flow has been tested for variant parameters. The impact of the Bingham, 

Hartman and Darcy numbers are also tested for different values to indicate the effect 

on the movement of flow fluid. The applications can be seen through many graphics.   
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 تأثير المجال المغناطيسي والدوران على التدفق التمعجي لسائل بينغهام في قناة غير متماثلة بوسط مسامي 
 

زكي حمادي  لقاء كاظم،محمد عبيس   
، بغداد، العراق الرياضيات، كلية العلوم، جامعة بغدادقسم   

 
 الخلاصه 

في هذا البحث، قمنا بدراسة تأثير الدوران والمجال المغناطيسي على التدفق التمعجي لسائل بينغهام في قناة        
تقريب رقم رينولدز   الطويل وافتراضات  الطول الموجي  المنخفضة. يتم  غير متناظرة ذات وسط مسامي تحت 

استخدام طريقة الاضطراب وبرنامج الرياضيات لحل المعادلات التفاضلية الجزئية غير الخطية لربط معادلات  
الزخم مع معادلات المجال الدوراني والمغناطيسي. يعتبر السائل خاضعًا لمجال مغناطيسي ويتدفق داخل وسط  

لسرعة وتدرج الضغط والموضوع المغناطيسي وكثافة التيار  مسامي. تُستخدم الرسوم البيانية لعرض تعبيرات عن ا
وتأثير الدوران ووظيفة الانجراف. تكشف النتائج أن الدوران والكثافة والنفاذية وتنوع الاقتران وسعة الموجة غير  

ضًا اختبار  تم اختبار تدفق الكميات للمعلمات المتغيرة. يتم أي   الأبعاد تلعب جميعها أدوارًا مهمة في هذه الظاهرة. 
لقيم مختلفة للإشارة إلى التأثير على حركة مائع التدفق. يمكن    Darcyو  Hartmanو  Binghamتأثير أرقام  

  رؤية التطبيقات من خلال العديد من الرسومات. 
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1. Introduction 

     A fluid waft mechanism that is known as peristaltic transport is approximately delivered 

with the aid of the propagation of wave trains alongside the channel partitions. This 

phenomenon has several real-world applications in body structure and biomedical engineering, 

which include food swallowing, blood drift inside the bile duct, lymph drive inside the 

lymphatic arteries, urine delivery thru the ureter, chyme motion inside the digestive machine, 

and ovum transport, etc. Initially Latham [1] and Shapiro et al. Burns and Parkes [2] used two 

situations to analyze peristaltic transport; the first example uses the peristaltic flow without 

pressure gradient, while the second involves flow down a channel or tube under pressure. In 

[3], the length wavelength, low Reynolds wide variety peristaltic pumping is utilized. Faraday 

and Richie are the first researchers who conduct a known experiment in which they tested the 

effects of magnetic fluid dynamics[4]. In [5], [6], [7], [8], [9], The peristaltic delivery of the 

fourth-grade fluid is investigated in connection to rotation, initial pressure, heat switch, and a 

prompted magnetic area, effects of rotation, initial stress and inclination of magnetic field on 

the axial velocity and pressure gradient that are discussed in detail. in addition, the closed form 

expressions for the stream function, pressure gradient, temperature, magnetic force function, 

induced magnetic field and current density are developed. Slippy flows which include the phase 

flows in porous slider bearings and flows thru pipes where chemical reactions take the area on 

the walls would be beneficial for the studies of problems in chemical engineering. The tapered 

asymmetric channel in the flow induced by talking peristaltic wave imposed on the non-uniform 

boundary walls to possess different amplitudes and phases [10]. The influence of heat and mass 

transfer on the peristaltic transport of viscoelastic fluid in presence of a magnetic field through 

a symmetric channel with the porous medium has been investigated [11]. The influence of the 

inclined magnetic field on the peristaltic transport of a non-Newtonian fluid in an anti-

symmetric porous channel is discussed. The non-Newtonian fluid is a hyperbolic tangent fluid 

model [12]. Hatem studied the analysis of the effect of rotation on the analysis of heat transfer 

by mixed convection for the peristaltic transport of a viscous liquid in an asymmetric channel 

[13]. He also analyzed the effect of rotation and magnetic field on the analysis of heat transfer 

by mixed convection of a viscous liquid through a porous medium in an asymmetric. Another 

more difficult challenge is when using OCR to recognize mathematical expressions in the 

channel [14]. The obtained results are in agreement with Vajravelu et al. [15] and Sumalatha 

and Sreenadh [16] in a good way. For flows past stiff obstacles containing non-Newtonian 

fluids the no-slip boundary condition is often used. On strong borders, however, it has been 

discovered that a number of polymeric fluids stick-slip or slip. In those conditions, the fluid 

reveals a lack of adhesion on the wetted wall, inflicting it to slide along the wall and exhibit 

slip float behavior. The fluid displays non-continuum functions like slip waft when the 

molecular mean free-route period of the fluid is much like the gap between the plates 

(nanochannels or microchannels). By using the correct slip boundary conditions, the resulting 

equations are solved analytically. The effects of yield stress, amplitude ratio, Darcy number, 

slip parameter, and elastic parameters on flow are depicted in graphs. Medical professionals are 

now able to investigate blood flow in arteries much more effectively than before. The results of 

the current model also help with dialysis, heart-lung, and machine modeling, etc. Understanding 

the intricate physiological reaction of blood in the aforementioned settings is made easier by 

the results of the current model. Using a porous medium in an asymmetric channel, 

Investigating the effects of sliding and rotation on the peristaltic flow of Bingham fluid is the 

aim of this study. The examination of various parameter values occurs as the fluid travels 

through a two-dimensional tube. We look into electrical conduction to the fluid when a rotating 

magnetic field is presented. The velocity is also shown by using a variety of graphs and figures. 

We illustrate gradient pressure, stream function, magnetic force, stress at the lower and upper 
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channels, and induced magnetic and current density. Application of this work is used in the 
engineering field.  

                                                                                                                                                                             

2. Mathematical Formulation for Asymmetric flow: 

     We think about the Bingham fluid flowing in two dimensions through an irregular conduit 

made of porous material. The cause of flow is caused by sinusoidal wave trains moving at a 

steady pace along the channel walls (c). The following factors describe the upper wall's surface:                                                                                                                              

h1(x, t) = E1 − r1 sin[
2π

λ
(x − ct)]       upper wall,                                                                        (1)   

while at the lower wall is given by. 

h2(x, t) = −E2 − r2 sin[
2π

λ
(x − ct) + ∅]           lower wall.                                                        (2)  

where r1 and r2 indicate the wave's amplitudes, respectively. The E1 and E2 denote the channel's 

width, λ specifies the wavelength, The direction of the wave's propagation is represented by X, 

while the time is indicated by t. The difference in phase ∅  varies across the range (0 ≤ ∅ ≤ 𝜋)  

in which ∅ = 0 is equivalent to an out-of-phase, asymmetric channel and ∅ = 𝜋 stands for the 

phase of the waves. Further, r1, r2, E1, E2, and ∅ satisfy the following condition: 

 

 
Figure 1: Cartesian Dimensional Asymmetric Coordinates. 

r1
2 + r2

2 + 2r1r2 cos 𝑖(∅) ≤  (E1 + E2)2.                                                                                        (3) 
 
Furthermore, it is assumed that the walls don't move longitudinally. This assumption limits the 

ability of the walls to deform rather than implying that the channel is stiff during longitudinal 

motions. 

 

3. Basic Equation  

     The fluid exhibits behavior consistent with the Bingham model, and the following 

information about its Cauchy stress tensor is given [17].  

 

σ = −PI +
 S̅  .                                                                                                                                        (4)   
where, 

S̅  = 2μτ + 2𝜏0𝜏̂ .                                                                                                                              (5) 

     In equation (5), τ_0 is the yield stress, and the tensor of the rate of deformation is  τ .  τ  ̂is 

the tensor which is described as follows: 

      𝜏̂ =
𝜏

√2 𝑡𝑟𝑎𝑠 𝜏2
  .                                                                                                                               (6) 
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𝜏 =
1

2
(∇V̅ + (∇V̅)T)  .                                                                                                                       (7) 

Where 𝐼 is the  identifier tensor, ∇̅=(∂X̅ , ∂Y ̅, 0) the gradient vector, 𝑃̅ is the liquid's pressure 

and µ is the dynamic viscosity . 

𝑠̅𝑥̅𝑥̅ = 2𝜇u̅x̅ +  
2𝜏0u̅x̅

√2u̅x̅
2+(v̅x̅+u̅y̅)

2
+2v̅y̅

2
  .                                                                                               (8) 

s̅x̅y̅ = 2𝜇 (
v̅x̅+u̅y̅

2
) + 

2𝜏0(
v̅x̅+u̅y̅

2
)

√2u̅x̅
2+(v̅x̅+u̅y̅)

2
+2v̅y̅

2
  .                                                                                    (9) 

s̅y̅y = 2𝜇v̅y̅ +  
2𝜏0v̅y̅

√2u̅x̅
2+(v̅x̅+u̅y̅)

2
+2v̅y̅

2
  .                                                                                       (10) 

 
4. The Governing Equation 

     The continuity equation may be used to illustrate the fundamental equations of motion in a 

peristaltic transport and magnetic of the Bingham fluid in experimental frame (x ̅, y ̅): 

  
∂ u̅

∂x̅
+

∂ v̅

∂y̅
= 0.                                                                                                                                  (11) 

The x ̅– part of the moment equation is: 

ρ ( 
∂ 

∂t̅
+ u̅

∂ 

∂x̅
+ v̅

∂ 

∂y̅
) u̅ − ρΩ (Ωu̅ + 2

∂ v̅

∂t̅
) =  −

∂p̅

∂x̅
+

∂ 

∂x̅
s̅x̅x̅ +

∂ 

∂y̅
s̅x̅y̅ − 𝜎𝐵0

2u̅ −
𝜇

k̅
u̅ .             (12)  

The y ̅– part of the moment equation is: 

ρ ( 
∂ 

∂t̅
+ u̅

∂ 

∂x̅
+ v̅

∂ 

∂y̅
) v̅ − ρΩ (Ωv̅ + 2

∂ u̅

∂t̅
) =  −

∂p̅

∂x̅
+

∂ 

∂x̅
s̅x̅y̅ +

∂ 

∂y̅
s̅yy̅ − 𝜎𝐵0

2v̅ −
𝜇

k̅
v̅ .             (13)  

Where ρ , p̅, μ, k̅, B0, Ω  are  the constant density, pressure, dynamic viscosity, permeability 

parameter, constant magnetic field, and rotation, respectively. The  u̅ and v̅ are the velocities in 

X and Y paths in a given frame. 

The flow in the laboratory frame is erratic (x ̅, y ̅). Therefore, with a coordinate system traveling 

at the speed of  wave c in wave frame (X, Y), the motion is steady. The following expressions 

x̅ = X̅ − ct ̅, y̅ = Y ̅, u̅(X̅, Y̅) = U̅(x̅, y̅) − c , v̅(X̅, Y̅) = V̅(x̅, y̅) , P̅(X̅) = P̅(x̅, t)̅.                    (14) 

where  u, v and p  represent the velocity components and pressure in the wave frame, 

respectively. Set up the following non-dimensional quantities to perform the non-dimensional 

analysis: 

x =
1

λ
x̅ , y =

1

d
y̅ , u =

1

c
u̅ , v =

1

δ c
v̅ , t =

 c

λ
t ̅, δ =

d

λ
 , Re =

ρ c d 

 μ 
, Da =

 k̅

d2, 

sxx =
λ

μ c
s̅x̅x̅ , sxy =

d

μ c
s̅x̅y̅  ,  syy =

d

μ c
s̅y̅y̅ , 𝑀 = √

σ𝐵0
2𝑑2

μ 
, h1 =

1

d
h1
̅̅ ̅ ,   h2 =

1

d
h2
̅̅ ̅ ,   β = 𝑀2 +

1

 Da 
  , R𝑛 =

𝜏0𝑑

 μ𝑐
 , p =

𝑑2

λμ c
p̅ .                                                                                  (15)                                           

where δ is the wave number, Re is the Reynold number, M is the magnetic field, ∅ is the phase 

difference, and Dais the  Darcy number. 

 

Then, in view of Eq. (15), Eq. (1), (2), and (8) to (13) take the form: 

The equation (1) becomes: 

ℎ1(𝑥, 𝑡) = 1 − 𝑎 𝑠𝑖𝑛(2𝜋𝑥) .                                                                                                   (16)                                                        

The equation (2)becomes: 

ℎ2(𝑥, 𝑡) = −𝐸2 − 𝑏 𝑠𝑖𝑛( 2𝜋𝑥
+ ∅) .                                                                                                  (17) 

The equation (8) becomes: 
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𝑠𝑥𝑥 = 2𝛿
𝜕𝑢

𝜕𝑥
+  

2𝛿𝑅𝑛(
𝜕𝑢

𝜕𝑥
)

√2𝛿2( 
𝜕𝑢

𝜕𝑥
 )

2
+(𝛿2 

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 )

2
+2𝛿2( 

𝜕𝑣

𝜕𝑦
 )

2
 .                                                                 (18)  

The equation (9) becomes: 

𝑠𝑥𝑦 = (𝛿2  
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 ) +  

𝑅𝑛(𝛿2 
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 )

√2𝛿2( 
𝜕𝑢

𝜕𝑥
 )

2
+(𝛿2 

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 )

2
+2𝛿2( 

𝜕𝑣

𝜕𝑦
 )

2
 .                                                    (19)      

The equation (10) becomes: 

𝑠𝑦𝑦 = 2𝛿
𝜕𝑣

𝜕𝑦
+  

2𝛿𝑅𝑛(
𝜕𝑣

𝜕𝑦
)

√2𝛿2( 
𝜕𝑢

𝜕𝑥
 )

2
+(𝛿2 

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 )

2
+2𝛿2( 

𝜕𝑣

𝜕𝑦
 )

2
 .                                                                    (20)      

The equation (11) becomes: 

    
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
=

0  .                                                                                                                                        (21) 
The equation (12) becomes: 

𝑅𝑒 𝛿(
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) −

𝜌𝑑2

𝜇
𝛺2𝑢 − (2𝛺𝛿2𝑅𝑒) (

𝜕𝑣

𝜕𝑡
) = −

𝜕𝑝

𝜕𝑥
+ 𝛿2 𝜕

𝜕𝑥
𝑠𝑥𝑥 +

𝜕

𝜕𝑦
𝑠𝑥𝑦 − 𝑢 (𝑀2 +

1

𝐷𝑎
).                                                                                                                                     (22) 

The equation (13) becomes: 

𝑅𝑒 𝛿3(
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) −

𝜌𝑑2

𝜇
𝛿2𝛺2𝑣 − (2𝛺𝛿2𝑅𝑒)(

𝜕𝑢

𝜕𝑡
) = −

𝜕𝑝

𝜕𝑦
+ 𝛿2 𝜕

𝜕𝑥
𝑠𝑥𝑦 + 𝛿

𝜕

𝜕𝑦
𝑠𝑦𝑦 −

 𝑣𝛿2 (𝑀2 +
1

𝐷𝑎
)                                                                                                                                    (23)  

The relations establish a connection between the velocity components and stream function (ψ): 
𝑢 = 𝜕𝜓 ⁄ 𝜕𝑦            𝑣 = − 𝜕𝜓 𝜕𝑥⁄ .                                                                                       (24)  

Substituted Eqs. (24) in Eqs. (18), (19), (20), (21), (22), (23),  respectively. 

𝑠𝑥𝑥 = (2𝛿)
𝜕2𝜓

𝜕𝑥𝜕𝑦
+  

2𝛿𝑅𝑛(
𝜕2𝜓

𝜕𝑥𝜕𝑦
)

√2𝛿2( 
𝜕2𝜓

𝜕𝑥𝜕𝑦
 )

2

+(−𝛿2 
𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2  )
2

+2𝛿2(− 
𝜕2𝜓

𝜕𝑥𝜕𝑦
 )

2
 .                                                 (25)   

𝑠𝑥𝑦 = (−𝛿2  
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
 ) +  

𝑅𝑛(−𝛿2 
𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2 )

√𝛿2( 
𝜕2𝜓

𝜕𝑥𝜕𝑦
 )

2

+(−𝛿2 
𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2  )
2

+2𝛿2(− 
𝜕2𝜓

𝜕𝑥𝜕𝑦
 )

2
 .                                  (26)  

𝑠𝑦𝑦 = −𝛿
𝜕2𝜓

𝜕𝑥𝜕𝑦
+  

2𝛿𝑅𝑛(
𝜕2𝜓

𝜕𝑥𝜕𝑦
)

√𝛿2( 
𝜕2𝜓

𝜕𝑥𝜕𝑦
 )

2

+(−𝛿2 
𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2  )
2

+2𝛿2(− 
𝜕2𝜓

𝜕𝑥𝜕𝑦
 )

2
  .                                                  (27)      

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕2𝜓

𝜕𝑥𝜕𝑦
= 0  .                                                                                                                                  (28)  

𝑅𝑒 𝛿(
𝜕2𝜓

𝜕𝑡𝜕𝑦
+

𝜕3𝜓

𝜕𝑥𝜕𝑦2 −
𝜕3𝜓

𝜕𝑥𝜕𝑦2) −
𝜌𝑑2

𝜇
𝛺2 𝜕𝜓

𝜕𝑦
− (2𝛺𝛿2𝑅𝑒)(

𝜕2𝜓

𝜕𝑡𝜕𝑥
) = −

𝜕𝑝

𝜕𝑥
+ 𝛿2 𝜕

𝜕𝑥
𝑠𝑥𝑥 +

𝜕

𝜕𝑦
𝑠𝑥𝑦 −

𝜕𝜓

𝜕𝑦
(𝑀2 +

1

𝐷𝑎
)  .                                                                                                                                     (29)  

𝑅𝑒 𝛿3( −
𝜕2𝜓

𝜕𝑡𝜕𝑥
+

𝜕3𝜓

𝜕𝑥2𝜕𝑦
−

𝜕3𝜓

𝜕𝑥2𝜕𝑦
) +

𝜌𝑑2

𝜇
𝛿2𝛺2 𝜕𝜓

𝜕𝑥
− (2𝛺𝛿2𝑅𝑒)(

𝜕2𝜓

𝜕𝑡𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝛿2 𝜕

𝜕𝑥
𝑠𝑥𝑦 +

𝛿
𝜕

𝜕𝑦
𝑠𝑦𝑦 −

𝜕𝜓

𝜕𝑥
𝛿2 (𝑀2 +

1

𝐷𝑎
)  .                                                                                                           (30)  

The dimensionless and boundary condition in the wave farms is [18]:  

𝜓 = 𝐹 2⁄  ,  𝜕𝜓 ⁄ 𝜕𝑦 = −1 at y= h1 .                                                                                   (31) 

𝜓 = −𝐹 ⁄ 2 ,  𝜕𝜓 ⁄ 𝜕𝑦 = −1 at y= h2 .                                                                                (32)   
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5. Solution of the Problem 

     It is impossible to provide a precise answer for each of the random parameters involved. We 

take perturbation strategy to get the answer. We go beyond treating the disorder. 

ψ = ψ0 + 𝑅𝑛 ψ1 + O(𝑅𝑛
2), 

F = F0 + 𝑅𝑛F1 + O(𝑅𝑛
2)  .                                                                                                  (33)  

 Substitute the terms (33) into Eqs. (25)-(30), and the equations for the boundary conditions 

(31) and (32) (δ≪1), Due to the fact that higher order components involve the power of (δ) is 

lower and negligible, we may construct by equating the coefficients of the following system of 

equivalent powers  Re: 

From Eq. (26) and Eq. (29) we get: 
dp

dx
= ηψy +  ψyyy + 𝑅𝑛 ψy − 𝛽 ψy  .                                                                                            (34)  

𝜂 =
(𝛺2𝑑2𝜌)

𝜇
 .                                                                                                                           (35) 

𝛽 = 𝑀2 +
1

Da
 .                                                                                                                                    (36)   

From differential of y for Eq. (34), we get 

0 = ψyyyy + 𝑅𝑛 ψyy − 𝛽 ψyy + ηψyy  .                                                                                         (37)  

From Eq (30) we get: 

−
∂p

∂y
= 0   .                                                                                                                                             (38)   

6.  Zero Order System 

When the order's terms are 𝑅𝑛  that are trivial in the system of zeroth order, we obtain: 

ψ0yyyy − 𝛽 ψ0yy + η ψ0yy = 0 .                                                                                           (39) 

Such that 

ψ0 = F0 ⁄ 2 , ∂ψ0 ⁄ 𝜕𝑦 = −1 at y= h1 and  

ψ0 = −F0 ⁄ 2 , ∂ψ0 ⁄ 𝜕𝑦 = −1 at y= h2 .                                                                             (40) 

 
7. First order system 

ψ1yyyy
+ ψ0yy − 𝛽 ψ1yy +  η ψ1yy

= 0.                                                                                        (41)  

 ψ1yyyy
− 𝛽 ψ1yy +  η ψ1yy

= −ψ0yy .                                                                                 (42) 

ψ1 = F1 ⁄ 2 , ∂ψ0 ⁄ 𝜕𝑦 = −1 at y= h1 and  

ψ1 = −F1 ⁄ 2 , ∂ψ0 ⁄ 𝜕𝑦 = −1 at y= h2 .                                                                             (43) 

And by resolving the related zeroth and first order systems, you may obtain the final equation 

for the stream function: 

ψ = ψ0 + 𝑅𝑛 ψ1.                                                                                                                                (44)   

Where the functions (ψ0, ψ1) hefty expressions Consequently, they will be mentioned in 

Appendix.  Eqs. (29) can be written as   
𝜕𝑝

𝜕𝑥
= ψ0yyy +  𝑅𝑛ψ1yyy + 𝑅𝑛ψ0yy + 𝑅𝑛

2ψ0yy − 𝛽 ψ0y + ηψ0y − 𝛽𝑅𝑛ψ1y + η𝑅𝑛ψ1y . (45)  

The definition of pressure increases per wave length (Δp) is 

Δp = ∫
dp

dx

1

0
dx.                                                                                                                                     (46)  

 

8. Results and discussions  

     To investigate the impact of physical factors like the effect of the Darcy number (Da), 

Reynolds number (Re), Rotation (Ω), Porous medium parameter (k), Material fluid parameters 

(Rn), Density (ρ), Viscosity (μ) Magnetic field (M) and phase difference (∅), the plotted axial 

velocity (u), pressure rise (∆p) and stream function (ψ) in Figures 2-18 are illustrated using the 

software MATHEMATICA. 
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8.1    Velocity Distribution (u) 

Figures 2, 3, and 9 show the effect of variation in viscosity (Ω), (Da) and (d) on the velocity 

axial (u), at the lower part of the channel the viscosity increase but the velocity decrease and in 

the rest part of velocity increase by viscosity increase. Figure 4 shows that the axial velocity 

increases with an increase in (Rn). Figure 5 shows that the axial speed with increasing (M) 

increases in the central area of the canal, while the axial velocity decreases at the boundaries of 

the canal wall. Figure 6 shows the effect of (ρ) when axial speed increases, it starts decreasing 

and then it is combined with the other. Figure 7 the effect of (∅) when the speed increases, it 

starts decreasing at the left channel wall, then it merges with the other one in the center, and 

then increases at the right channel wall. Figure 8 shows that axial speed with increasing (E) 

decreases in the central area of the canal, while axial velocity increases at the boundaries of the 

canal wall. 

 

8.2    Pressure Rise (∆𝐩)  

Figures 10–13 display the various pressure increases in the wave outline's capability of 

volumetric stream rate for various Darcy number (Da), Rotation (Ω), material fluid parameter 

(Rn), magnetic field (M) and phase difference (∅). The link between the non-dimensional 

average pressure rises per wavelength and the dimensionless mean flow rate (Q1) with variation 

in the interesting parameters included in (∆p) will be demonstrated in this subsection. Figure10 

shows the effect of increasing the parameter (Rn) on (Δ𝑃) revealing that pressure rice per wave 

length Δ𝑃 increases in magnitude in all regions. Figure 11 demonstrates that pressure increase 

(∆p) diminishes as (Da) In the zone of increased pumping and the compounding region (∆p < 

0), it is seen that pumping rises. According to Figure 12, the pumping rate decreases in a cop 

umping zone where (∆p <0, Q1< 0) with an increase in (M) and increases in a retrograde region 

where (∆p > 0, Q1 > 0), as seen in the graph. The pressure rises (∆p > 0) increases as the 

magnetic field (M) grows. Figure 13 shows the pressure rice per wave length Δ𝑃 decreases in 

magnitude for fixed values of the viscosity ∅.  

   

8.3    Trapping phenomenon 

     An interesting component happens in peristaltic flows closed movement strains lure bolus, 

or the extent of fluid called a bolus, in the channel tube close to the partitions, and this trapping 

bolus advances along the path of the wave. In Figures 14 –18, plots of the streamlines are shown 

at different values of (Ω), (Da), (Rn), (M), and (∅). Figure 14 shows that trapping exists in the 

channel's midpoint and that decreases the size of the trapping bolus as (Da) increases. Figures 

16-18 show the exhibits that the trapping exists in the focus of the channel, we perceive that the 

size of the growing trapping bolus with increasing (Ω), (∅), (Rn) and open channel with (Ω 

=1.1), (∅ =π⁄2), (Rn =0.5). Figure 15 shows that trapping exists in the channel's midpoint and 

that the size of the trapping bolus shrinks and expands as (M) increase 

 

9. Conclusions 

     The peristaltic motion of the Bingham plastic fluid in an asymmetric channel with a porous 

material was examined. In this study, we determine the impact of magnetism and rotation on it. 

By choosing peristaltic waves with various ranges, phases, low Reynolds numbers, and 

wavelengths, the asymmetric duct is created. The expression for the axial velocity, magnetic 

force, flow function, and current density was also obtained using an application of the 

perturbation method. Graphs are used to illustrate the findings as follows: 

A. The velocity profile increases in view of an increase in Ω, 𝑅n, Da, and ∅. However, it 

decreases with increasing 𝑀. 
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B. When increasing the speed relative to density (ρ) it starts decreasing and then remains 

constant. 

C. The pressure rice per wave length Δ𝑃 decreases in magnitude for fixed values of the viscosity 

∅ shows the effect of increasing the parameter Rn on Δ𝑃 reveals that pressure rice per wave 

length Δ𝑃 increases in magnitude in all regions. 

D. According to the parameters that are being employed, it is seen that the volume of the trapped 

bolus starts to decay and rise. 

E. There are several applications for peristaltic movement in both engineering and physical 

sciences. These waves, which spread throughout the length of an extensible tube and mix and 

transport fluid in the wave's direction, are really produced by the expansion and contraction of 

the extensible tube. The ureter and extracorporeal blood circulation are two tubular organs in 

the human body where this process takes place. 
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