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Abstract.

In this study, a nonlinear degenerate parabolic equation is used to describe a
nonlinear -Laplacian equation process that arises in many areas of science and
engineering in mechanics, quantum physics, and chemical design. This work has the
objective of proving the existence of the local weak solution of a nonlinear p(x)-
Laplacian equation by the compactness theorem. The uniformly local characteristics
of the solutions for the gradients by estimating the regularization problem and using
the Moser iterative techniques. Moreover, some properties of the local solutions
depend on uniformly bounded situations and the LP®-norm to the gradient is
considered.
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1. Introduction

The asymptotic behaviour of nonlinear degenerate parabolic equations, that includes a
p(x)-Laplacian operator in regular or irregular domains, has been explored by several authors
[1-5]. The global attractor on the natural weak energy space is established by the general
theory, namely the existence, uniqueness, and regularity, see [6-9]. In addition to the typical
questions of the general theory, this paper investigates the existence and stability of the
solutions to the equation associated with the p(x)-Laplacian type with variable or constant
exponents. More specifically, the investigation will focus on the existence and uniqueness of
the weak solution and the global attractor. The consideration of the Cauchy Dirichlet problem
(CDP) for the nonlinear parabolic Laplacian equation is the following:
Uy — diV(QVIVumlp(x)_ZVum) —a(u™) fDA(s)IVum(s, t)lds =0, inD, =D x (0,) (1)

u(x,0) = ¢p(x), in D, 2
u(x,t) =0, on 0D X (0,), 3

where a = a(u™), p(x) = 0, D c RY is an open domain with a smooth boundary 8D which
is bounded. Equation(1) has the term [ pA(s)|Vu™(s, t)|ds, which spatially depends on a

nonlocal function and A(s) is a bounded function. Also, the function o = o(x) =
dist(x,dD) represents the distance function from the boundary. Suppose that p(x),m >
ILN=1,y >0,
g™ € Lima-mED /m(p) - g(x) > 1, |a(§)| < cl§|V™, EER (4)
This problem has received much attention due to various applications in mechanics, quantum
physic, chemical reaction design, and biophysics models. It has been extensively studied
whether equation (1) is linear or nonlinear, uniformly parabolic or degenerate parabolic. We
just give a cursory review of what follows.
The existence of a nonnegative solution to the CDP (1)- (3), stated in the weak sense, is
established if a(u™) = 0, see [10, 11]. The following problem was considered in [12] and
[13].
u, = F(u) + div(|Vu|P~2Vuw), (5)

where F(u) = a(u) — |u|Yuand it is shown the existence of a global attractor in L?(D,),
which is a bounded set in Wol’p (DY) NLY*2(Dy). In [12], the lengthy behavior of solutions to
the next equations below was investigated

up = div(|VulP72Vu) + o [ A(S) |u(s, t)|Bds — A(x) |ul’u, (6)
in LP(D,) space.
In this work, we will study the weak local solution to the problem by using the regularized
method that is typically used (1) with the initial and boundary values (2),(3), respectively.
Also, we should use the test function which is smooth and has a compact support. In this
technique, the compactness theorem is applied. The main techniques are motivated by [10,
12] . However, due to the local and nonlocal nonlinearity of the equation we investigated, we
must restrict the exponents m, p to show the purpose of showing the existence of the problem
(1)-(3) of the initial value. At the same time, in comparison with [6], equation (1) is more
complicated then that in [6] which makes it more difficult to estimate the gradient term of
the solution and to prove the continuity of the solution etc. Also, we did not impose any
restrictions on the derivative o'(¢) of the function a(¢), which is clearly a promotion,
however, it must satisfy that |a'(§)| < c¢|&]""1in [3, 6].

2. The aim and objectives of the study

The objective of the work is to study the existence of the local weak solution of the p(x)-
Laplacian equation by using the theorems of comparison and compactness. The locally
uniform characteristics of the solutions for gradients by estimating the regularization problem
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and using the Moser iterative techniques. Moreover, some properties of the local solutions
depend on uniformly bounded situations, The LP®)-norm to the gradient is considered.

3. Materials and methods

In this section, we begin to give some fundamental definitions as well as characteristics of
functional spaces containing variable exponents. for more details, see [14-17]. In this work,
we will extend the previous results over the following spaces. LP™) (D) is different from the
classical LP (D) space in that the exponent p is not constant but a function. The spaces
LP™) (D) fit into the framework of the Musielak—Orlicz spaces, therefore they are also semi-
modular spaces. Consider the space of all measurable real-valued functions that are
measurable on LP™) (D), such that

1/p(x)
Il ooy = (f [uGOP@dx)

The space (Lp(x)(l)), ||u||p(x)) is a separable, uniformly convex Banach space. Also, the
significant Sobolev space, which is denoted by WP® (D) is defined as follows:
WP (D) = {w:u & |Vu| in LPX) (D)} @)

< 0,

with the norm:

IV ully 0 =l oy + 1V ullpewr gy, Vit € WEPE(D),

The closure of C(D) in W@ PE) (D) becomes W,"*™ (D). A significant property of the
functional spaces, together with variable exponents that were considered in [18],

WP (D) # {v € WPO(D) :v]yp = 0} = WX (D),

The next lemma gives some basic properties of the variable exponent Sobolev space.

Lemma 3.1.

(i) Aspaces LP®) (D), wtr@ (D) and Wol’p(x) (D) are Banach spaces that are reflexive.
(if) Having p(x)-Holder's inequality. Suppose that s, (x) and s, (x) be real functions with
1/s;(x) +1/s,(x) =1 and gq;(x) >1. Then the conjugate space of L51®)(D)
is L5209 (D). For all u € L™ (D) and € L2 (D) , then

|fDu v Xm < leu”LSl(x)(D) ”u”Lsz(X)(D)-

(ifi) J plulP@dx = 1 if [lull oy = 1.

+ —
If ||u||Lp(x)(D) < 1, then ||u||fp(x)@) < £ lulP@dx < ”u”fl’(x)(b)'

p~(x) p(x) p* ()

When p,(x) = p;(x) then LP1X) (D) o LP2() (D).
When p,(x) = p,(x) then WPz (D) & Wwiri¥) (D),
(iv) Then there is a constant C such that if p(x) € C(D)
[ull ooy < ClIVL per gy Vi € Wy PP (D).
Itis called p(x)-Poincarés inequality.
Thus the norms ||Vul| LP@) (D) and ||u||W1,p(x)(D) of the exponent Sobolev space of

Wol'p(x) (D) are equivalent. (see[19]). However, if the exponent p(x) is required to satisfy a
logarithmic Holder continuity condition

lp(x) —p(s)| < w(lx —s|)
Vx,s € Qr, |x —s| < 1/2 with ﬁw(f)ln(l/{) =C < x,

then
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Wy (D) = W) (D). ®
Now we consider the following significant definitions from [19].

Definition 3.2. A positive function u satisfies the conditions (1)-(3); it is referred to be a
weak solution.

u € L. ((0,00); L*(D)), ©)
wm € L. (0, WP D)), e € Le (0,0 1(D)) (10

ﬂ [uf; — 0¥ () |IVu™|P&=2yu™ . Vf|dxdt +
D¢

Il [a(um)f A(s)|[Vu™ (s, t)Ids]f dxdt = 0,VYf € C3(D,). (11)
t D

To find the solution to the problem. (1)-(3) by taking into consideration the regularized
equation

u, — div((e” (x)|Vu™|? + 1/k)PE=D/2yym) — g(u™) Jpy A IVu™ (s, t)|ds = 0, (12)
with (2) as the initial and homogeneous boundary values (3).

Definition 3.3. If wuy; is a solution to the initial boundary problem of (12)-(2)-

(3), limyou, = u in Dy, (1)-(3) has a weak solution u, then u is described to be a local

weak solution.

This study requires some important auxiliary results [17] [20, 21]. They are as follows.

Lemma34.1f n>1>1, q(x) >2,2nl/(n—1) = q(x) =7 =1, u?in WH(D), then

lull g < CV2Nullz 21?113, (13)

Where 0=20r"1—ql)™ )/ (n"t =171+ 2r 1.

This lemma is a generalization of the Gagliardo-Nirenberg inequality.

Lemma 3.5. Let s = s(t) be a positive function on (0, T]. If it has the form

Bt ks + Ct=% > s+ At 1s1H0 0 <t <T, (14)
with4,6 > 0,16 > 1,B,C = 0,k < 1, and then
1 1
S<AT8(Q2A42BTY M)t ™2 4+ 2C(A+ BT )11, T >t > 0. (15)

Lemma 3.6. Suppose that A; = 1,7,R,M > 0,4; > 0.For N = 2,3, let
Ay = RAy_1 —M,0y =nR(1 — Ay_1AgD(N(R = 1) + 1)1,
By = (Ay + M)O3* — Ay, Ay = (1 + A,_1(By — M))BR.
Then
(16)
This lemma was also proved in [12] .

Assume in the study that p(x) > 1+ 1/m, so equation (1) is a double degeneracy
equation. Using the technique of the Moser iteration and the regularized problem (12)-(2)-(3),
we obtain the local boundary properties of the solution u, as well as the local boundary
properties of the LP®)-norm for the gradient Vu,. Estimating and proving the main results of
our study are given in the following section.
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4. The Main Results

Theorem 4.1.

It is assumed that A is a suitable smooth bounded function and that o is satisfied (4).
If p(x) >1+1/m, ¢(x) =0,

P™(x) € LAW-H/M(D) 2 —1/m < q(x) < 3, (17)
1<p), 1 <maxf{p(x)—1-1/m/m,(q(x) —1+ 1/mj}, (18)
€ =max{D, + D,, D3} < 1, (19)
where
D, = mn/(nm(p(x) — 1) —n +mq(x)),
| D, = (m(p(x) —1) + m — 2)/(m(p(x) — 1) — 1)
an

D3 = (n(1 +m))/(mn(p(x) — 1) —n + mq(x))
then the problems (1)-(3) have a solution with a weak local weak u, which satisfies

u™ € L, (0, 00; LQ(x)—1+1/m(D)) N L. (0, 0; VI/Ol’p(x) (D)) (20)
and
lum™l e < c(1 4 t72)(1 + £)~V@E=1+1/m) ¢ >, (21)
where A1 =n(p(x)q(x) + (p(x) —1 —1/m)n)~. Moreover, if p(x) > 2, then
I7u™|]pe < c(1+ %) (1 +1)7°, t>0 (22)
where
5 =max{l+(m—-1)/(m(p(x) —1)—1), § — 1}, = max {(m+ 1)/m, 2}
and

o= (p@)[B3m—1]+m)/([m(px) — 1) — 1](p(x) — 1)).

Theorem 4.2. let u be a nonnegative weak solution to the problem (1)-(3). If v satisfies,

v, = div(e? () |Vv™[PP2vv™) + a(v™) [ A(s)|Vv™(s, t)|ds (23)
D
in D, =D % (0, )
v(x,0) > ¢p(x), x€D (24)
v(x,t) =0, (x,t) €0D x (0,) (25)
then
u(x,t) =2 v(x,t), v(x,t) € D, . (26)

Theorem 4.3. Let u and v be two weak local solutions to equation (1) with y < p(x) — 1 the

same partial homogeneous boundary value

ule(x)x(o.T) =0= Ulfp(x)x(o,r)’
with the initial data
u(x,0) = v(x,0).
Moreover
[Vu™| < co7¥(x), [Vv™| < co7V(x)
then

Jplu™(x, £) = v™(x, )| dx < [l — vgtldx + ¢ fF,p(x)|um — v™|dl
+lim sup Ty (W™ — v™)|u™ — v™|dr, vt € [0,T).

29 Trpx)
where N > 0 is a natural number. The details of the definition and the properties of the test
function 7, (s) are given in the following section.
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5. Discussion of results
Instead of trying to deal with the regularized problem (12)-(2)-(3) directly, one can deal
with the case m = 1, we must consider the approximate problem. For small s > 0

u, = div ((Q”(JC)IVumI2 + (l/k))(p(x)_Z)/ZVum) + a(u™) [ A(y) | Vu™(s,t) |
D
ds  (27)
u(x,0) = ¢pp(x)+s, x€D (28)
ulx,t) =s, x€oD,t=>0 (29)

with a condition ¢, (x) = 0 that is an appropriate smooth function such that

¢k(x) € Lw(D)'limk*w¢’T<nq(x)—1+1/m = ¢mq(x)—1+1/m'

We know that problem (27)-(29) has a nonnegative classical solution u since the existence
of the initial boundary value problem of the quasilinear equation in the divergent form is
obtained using the Leray-Schauder fixed point theory. For more details See [22]. Assume that
s = 0. Following the same procedure in [23-25] , we can prove it.

Ugs = Uy, inC(Dy),
vult - Vul, in LP®)(D,),
Ugse = Vg, in L2(Dy),
QV(x)IVu,'glp(x)‘ZVu,’c’;xi —% Qy(x)IVu,Tlp(x)‘ZVu,@Ci,weakly star

in L, (O, o0; LPOO/(()=1) (D))

and wuy, is the solution to equation (27) with the following initial boundary values
u(x,0) = ¢ (x), x€0D, (30)
u(x,t) =0,x€dD, t=0. (31)
Lemma 5.1. Assume that
(H) a(z) € C(RY),|a(2)| < Aglz|*'™, for someA, > 0.
(Hy) A(x) € L™.

In addition, p(x) <2+ (1/m), 2—-1/m<q(x) <3, then uy €
L2, (o, 0; LI3)1+1/m(D) ) and
I g -141/m < c(1+ £)7HA=1Hm ¢ > 0 (32)

Proof. Just for simplicity, we denote u;, as u in the following proof. Only provide case
proof g(x) > 2 —1/m, if q(x) =2 —1/m, the conclusion can be obtained in a minor
version. Let 4,, = (q(x) — 2)N379,B, = (3 — q(x))N@=4x),

a-1 i

fN(Z):{Z 2, if .ZZ 1/N

nZ°+Byz, if 0<z<1/N.
and suppose that N > k, we multiply (30) with fy(u™) and integrate the result onD.
Since f'(z) > 0, we have

7{ fn@™eYdiv(|vu™|? + (1/k))

=£VQV(IVumI2 + (1/K))

®C-D/20 )

PO 2y (wmydx

p(x)

) dx (33)

um
= _f VQV|Vum|p(x)fz\'r(um)dx = —f VoY v(f (f]\,l(s))l/p(x)ds
D ’ )

Suppose that |a(z)| < Ayz". Then
(™) fy (™) j AGs) IV (s, B) | dsdx
D

jDﬂ{umsl/N}
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< c(MNIDT [ |17u|™ds < c(A)NIOTVU™ |4 ()= 14 1/m-
Ifr =1/m, ?
a@™) fy@™) [, AS)|Vu™ (s, t)| dsdx|
<c@) [umta®OVgyx [ |Vu|™ds
Using Poincare inequality for the second integral so that

a@™ fiy (™) [, AS)IVu (s, )] dsdx| < cllum™ 136111,

|fDﬂ{um>1/N}

|fDﬂ{um>1/N}
then

f a(u™) fN(um) f A(s)|Vu™(s, t)| dsdx

1-q(x)—= + ||um||Q(x)—1+1/m (34)

< Cllvum”(m(q(x)—l)+1)/m [ q(x)-1+1/m

Based on the previous calculations, we get

p(x)
o foumueds + f, " v 1" ()PP ds|
(35)
By using Holder inequality and then we apply Poincare inequality for the second integral, we
have

m p(x)

Jy fu@myued +c [ [ ()" Pds| T die < cllum I TG + 0 (o
(36)
Let N — oo in (36). Conclude that

a4 mgeo-1)+1 mlq(x)—1+(1/m)+p-1—(1/m)] m || q()=1+(1/m)+1
— I dx+c [ u dx < cllu™ll g1 +1m) (37)

By Jessen’s inequality, from (37), we obtain

d
q(x)—14+(1/m) q(x)-1+1/m+p(x)-1-(1/m) q(x)-1+(1/m)+1
20 ™ lgGo-1+aaymy T ™ g6y —11ym < cllu™ 4Gy -141/m)

If 2+ (1/m) < p(x), young inequality,

I mlIQ(x)—1+(1/m) I m”(J(x) 1+(1/m)+p(x)-1-(1/m) <c
q(x)—1+(1/m) q(x)—1+(1/m)

q(x)-1+1/m
dx < cllu™llg ) 141ym + O (Nq(x) 1)

Nax)— 1)

dt
then
™ lggo-141/m S €(1+ O)7HPEITITm
The desired result is satisfied.
Lemma5.2. If p(x) > 1+ % and uy are the solutions to the problem (27)-(30)-(31), then
lult|l < ct™,0<t <1, (38)
[uftlles < c(t + 1)~H/PEI=m=1/m 1 < ¢, (39)
with 2 =n/((mp(x) —m —1)/m)n + q(x)p(x).
Proof. Multiply (27) by u™=1 then integrate the result on D ,
Jp um-Dy,dx = Iy div(o¥ () (|Vu™| + (1/k)) P =2)/2gym)ymi=1) gy
(1-1)
+ [a@™u™ S A ™ (s, )P dsdx
== - 1) [, 0" (VU™ + (1/k)PD=2/2|gym|2ym-D gy
+ [, AS)[Vu™ (s, t)| ds fDa(um)um(l_l)dx
< - -1 [ o’ ) (Vu™| + (1/k))P@=2/2|yym|2m=2) gy
+e () [LIVu™(s, )l ds [ um=D+1 gy
Using Holder inequality and then we apply Poincare inequality for the second integral,
which leads to the conclusion
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d -
- IIumIII_ﬂEijxg +c((ml—-m+1)/

m)2P@) [ |y pe+1-1+(1/m)-1-(1/m) /p(x)|P(x) dx
I-1+(1 (x)-1+(1 +1 —
< el 2yl 7u™ o artamy + ™ 1 e my,
from Poincare inequality again and by (26 ), we get

I-1+(1/m) qg(x)-1+(1/m)+1 -1 I-1+(1/m)
C”um”l—1+(1/m)”Vum”q(x)—1+(1/m) + C”um”l—1+(1/m) = ||um”l—1+(1/m) +
mil—1
cllu ||l—1+(1/m)'

Assume that = (ml —m + 1)/m . So

L lumlk + cL2P [ |Vum(P(x)+L—1—(1/m))/p|P(x)
dt
D

dx < cllu™[[5*t + cllu™|l;” ™ (40)
Such that c is independent of [. Take

Li=q(x) -1+ 1/m),Ly =rLy_1 — (p(x) —1—=(1/m)),0, = (n(r—1) +
p(x))'rN(1 — Ly_; L"),
where N = 2,3, ---and
uy = (@) +Ly—1—1/m)o;  —Ly,vr>1+ (p(x) —1—(1/m))q(x)"1,and  from
Lemma 3.6, then

lu™ll, <
PO/ P (=1 /m) ||y | L=ON || gyl +p(O=1=(1/m) /p | POION/ PEITL=C/mtn)
LN-1 p(x)
By choosing L = Ly in (40), and from (41), it becomes
d 2w, p()—1-——un
™Y + ¢ ow L PO N ), T < el
Ly—(1
+ cllum[pr =™ (42)
The bounded sequences {Ax} and {5} are shown in the following
umLN < ENt_)LN,O <t<l (43)

Without losing the generality, assume that || u™||,,, = 1. Otherwise, picking &, =1,
(41) is true. As a result, from (40), we have the following formula

% ”um”ix + C_p(x)/eNL?V_p(x)”um”ll:xﬂw”um”ZE,Ji)l_l_ (1/m) —un < C”um”ix'ﬂ 0 <
t<1.
If N=1, by Lemma 5.1, 4; = 0,&; = supyso u™ then it makes (43) true. If (43) is true
for N — 1, from (42),

N N-1
Ly+1
< cllu™ly (44)

(x) 1
% ”umllix + C_%Li,—p(x)||um||2N+“pr(x)_1_(ﬁ)_mvt‘(p(x)‘l—(%)—ﬂzv)}wq

we can pick

1 a—
An = (/11\/_1 <.UN —px)+1+ (E)) + 1) ﬂﬁl,fN =&y (Cp/ONLzIJV(x) 1/1N
N=23..

)1/HN

)

mLn+1

SN + el < cumiN o <t <1 (45)
assume that
1<n /(pkx)—1-1Q/m)n+ q(x)p(x), (46)
Now let N — oo,
An = A=n/(px)—1—-(1/m))n+ p(x)q(x).
™ + clu™ Y < 0. 0<ts<1, (47)
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equation (43) is true because of Lemma 3.5 and (38). Furthermore, it is clear that {£,,} is

bounded. As a result, according to Lemma 3.5,(38) is true. To prove (39), simply set
t=log(1+0),t =1 w(r) = (1+ t)mP@-D-1)/m*ym )

By (40), we get

d
W @Il + L2 [ow E-1-@mp | = < (1 /p(x) = 1= (1/m) Iw (@I

p(x)
+cllw@) ||, T > log?2

By using the lemma 3.1 in [16], we can get (39), however, the details are omitted here.
Lemma 5.3. If p(x) > max{2,1 + (1/m)}, u; is the solution to problems (27)-(30)-(31)
then

VUl iy < ct=@F M=D/mEE-D-D) 4 4176 0 < ¢ < 1, (48)

VUl < c(1+ t)~(P@Em-D+m)/(m(pC)-D-DE-1) ¢ > 1, (49)
and

m—1 m—1
S L ui (uge)?dx ds < ot (gm0 4 oo (WP Hagenm1) 4 cp-@m/mA (50
0<t<T.
Here § = max{(m —1)/m,2}.
Proof: It follows the same technique as in Lemma 5.2.

Proof of Theorem 4.1. Using the compactness theorem (see[15, 26]), theorem 1.1, and from
Lemmas 5.1, 5.2, and 5.3, we consider a sequence {u,} such that u, - u , a.e. in D, if k -
oo , S0 that

Igirga(ukm)gA(s)IVu,Z”(s, t)| ds = a(um)g A(s)|Vug'(s, t)|ds.

Furthermore, the sequence {u;}

u, - u, weak * in L3, (0, 00; L(Q(x)‘l)m“(l))) (51)
Upe = U, weakly in L2(0, 00; L2(12)), (52)
Vul* > Vu™, weakly in [P (O, o0; [PV (D)) (53)

QY IVU P2l > &, aweak x in L (0, 00; LPO/P-D(D))

where & = {§;:1 < i < N} and every & is a function in L%, (O, T; Lp(")/(p(")‘l)(ﬂ))).
(51) and (52) are true. It remains to prove that

§ = o |VumPW=2vum,  in L3, (0, 00; PO/ @-D(D)), (54)
It is easy to know that
fth(ufpt — & Vo +a@™) [, A(s)|Vu™(s, t)|ds @)dxdt = 0,V € C5(Dy), (55)
Thus, Let us assume that
fthE -Vodxdt, Ve € C3(D,) = fth o¥ |Vu™ [P -2yy™ . Vpdxdt ; (56)

then (59) and (10) are true.
First, forany ¢ € C;°(D;),0 <y < 1, we have
fthlpgi(IVukmlp(x)‘ZVukm — Ivalp(x)‘Zva) -V(ugt —v™)dxdt = 0, (57)
If we multiply (27) by u;*y two sides, then
[Ty, wer IVt 1? + (1/k)PE=2/210u 2 dxdt = 1/m [[, peui** dxdt

~ [y, X AVUE I + (1/k) POV - Vipdxde
+ 1y, [a (ukm)£ AW IVt (s, t) Ids] uppdxdt, (58)

5089



Al Oweidi and Aal-Rkhais Iragi Journal of Science, 2024, Vol. 65, No. 9, pp: 5081-5094

Note that when 1 < p(x) < 2,we get
IVui|? = (IVuitl? + (1/k))
(Va2 + (1/0) 7P |vug) < 1V 12 + (1/K))
and when p(x) = 2, we obtain
(VU |2 + (1/k)@PC=2/2| gy |2 > |y PO
(VU |2 + (1/k) @O-272 | < (IVagp P + 1)
By (57), (58), we have
oz o, e dxdt = [, QLu (VU + (1/K) PPV Vipelxdt +
(1/k)((p(x)_2)/2mesﬂ
+ [Ty, [AGEDS AV (5, 01y | e = [f, wel VP 2vuyr - vomdxde
D
- fththVIvalp(x)‘Zva V(U — v™)dxdt = 0 (59)
ﬁffptwtulrfﬂdxdt _ fth QZu,’Z‘(IVuI?IZ + (1/k))((p(x)—Z)/Z((p(x)—Z)/ZVu’fcn .
Vipdxdt + (1/k)(®P)=2)/2 jesD
+ Jlo, | A AV s, )1y |t = [T, welITuf P2 vy
Vv™dxdt
— [Ip, WV IVu™POT2Yu™ - V(i — v™)dxdt
— thl,l)(Qy — o) |Vy™|PGI=2yp™ . Y (u — v™)dxdt = 0
Since
1
(VU |? + (1/k)PEO=D/2yy0 = |V [POO-2vu + (p(x) — 2)/2k { (Vug'? +
(Z/k))(p(x)—4)/2 dz Vul,
Noticing
|fthl/)(QV — o) |Vv™|PX=2yym . g (u — vm)dxdt|

sup [p(e” — epl/e” [, e¥ IVv™ PO~ [Vujt — Vv |dx dt

(X,t)EDt

< sup [P(e” —ol)|/e” (ffD |va|p(x) dx dt + ffD oY Vu™ P17y dx dt|) (61)
)EDt t t

(x,t

P(x)/z . (1/k)p(x)/2’

(p(x)-1)/2

(60)

and
lim ff,, [ (VU2 + (2/k)PD -0/ 2dz0ur - Vipujtdxd = 0,
By Hdlder inequality, there holds
ﬂ o [Vu™ P vy dx dt <
D¢

@ 1/q(x)
(ﬂ (Qm|va|p(x)‘1)q dx dt> . <f (™| Vul*)P™ dx dt)
Dt Dt

wherem =y(p(x) — 1)/p(x), n =y /p(x), q(x) = p(x)/p(x) — 1.
Due to o |[Vu[P®, o¥ |[Vu[P®) € L}(D,) , then

U oY [Vym P& dxdt+ﬂ oY
Dt Dt

Let k-0 in (61). It converges to 0.
Thus,

1/p(x)

Vo™ PO~ vy M dx dt < c.
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1/(m+1) ff, ™+ dxdt — [f, umEVipdxdt
= [y, ¥ ¢ - Vwmdxdt — [f, Yo |Vv™PWTEVe™ - (U™ — v™)dxdt
+ fth[a(um) Jp A VU™ (s, t)| ds|u™pdxdt = 0 (62)
Now, we pick ¢ =y u™ in (55),
1/(m + 1)f Yu™tdxdt —f & - Vypu™dxdt
D¢

D¢
+fth[a(um) Jpy A(S)|Vu™ (s, )| ds|pu™dxdt = fthflp - Vu™dxdt
From this form and (62), we obtain

[fp, W(& = @V IVymPO=29y™) - V(™ —v™M)dxde = 0 (63)

Letv™ =u™ —Ap,A > 0,9 € C;°(D;). Then
[ 9 v = a2 - ag),,)axde = 0
Letd — 0. We haveDt
ff (& - QVIVumlp(x)_zu,’}})dxdt > 0,Vp € C§° (D)
Dy

Furthermore, let's choose 4 < 0, to obtain
fthtp(fi — oY [Vu™|PO)"2y M) dxdt < 0,V € C (D).
Therefore, if pick y satisfies supp ¥ > supp ¢, and on suppe, P = 1, then we can get (56).

Proof of Theorem 4.2. Consider the following rescaling function
v(x, t) = U (x, t), r € (0,1)
then we get
v(x,t) = ruy (x, rm(p(x)"l)"lt),
which is the solution to the Dirichlet problem
v, (x, ) = div(o? (x)|Vv™|PP=2yp™m) 4 ymlp() =2l g (r=myym) fD A(s)|Vv™| ds (64)
v =ru, (x,t) €D x {0} (65)
v=0, (x,t)€dD x(0,00) (66)
Noticing that a(r "™v™) > a(v™), p(x) =2 < 0, and r™PX-D > 1 0<r<1
v (x, t) = div(e¥ [Vv™[P@=2vv™) + a(v™) [, A(s) [Vv™| ds.
Using an argument similar to that in [24] , we can prove this u;, > uy,.
As a result of
[ (2, rmPO=D=11) —qy (x, )] /[ (rmP@=D-1 — 1)¢] >
[(r — 1)/(1 — rm(p(x)—l)—l)t] uk(x,rm(p(x)‘l)‘lt)
asr — 1, then
—u/(m(p(x) —=1) = 1t < uye (67)

Proof of Theorem 4.3. For a small positive constant A > 0, let
D; = {x € D: o(x) = dist(x, D) > A}

and let
1, ifx € DZ/I'
$() =1 >(e(x) - 1), x € Dy \ Dy (68)
0, ifx € D\ Dy

for any given positive integerN, let 7y (z) be an odd function, and
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1, z>1/N,
tv(2) = N272e1"N2° 0 <z< 1/N (69)
clearly,
Ilvin”(n) Ty(2) = sgn(z),z € (—oo, +), (70)
and
0<tNy(Z)<c/z, 0<z<1/N (71)

where c is independent of N. From a process of limit, we can take TN(qb(um — vm)) as the
test function, so

er(¢(um —v™) d(u™ —v™)/ot dx +

D

Jp " GO (|vum|Pe=2yym —|yy™|PO=2yy™) . ¢V (u™ — v™)7' ydx

+ [, o (x)(|vumP®I=2yym —|vpy™m|PE=2yy™) . Y (u™ — v™)7’ ydx (72)
+a(u™) [, A(S)|Vu™(s, t)|ds - Ty (™ = v™))dx = 0

Thus
limlim [ oy (¢@™ = v™)o@™ —v™)/9t  dx =l —v™y,  (73)
I 0¥ () (|vumPPI=2yym —|vy™|P@=2yy™m) . Y(u™ — ™7’y p(x)dx = 0. (74)

By the L'Hospital rule,
1 £, ¥ (B —v™) " ] /2= tim 1] (00" -
™)) (™ — vm)dl“d{] /A

= lli_r)r(l) fg=2/1 Ty — ™M™ —v™)dl = [ Ty(2@™ —v™) (W™ — v™)drl

= I, )T’N(um —v™M)(u™ —v™)dr
j6:4
Since assuming that

0 (%) |Vu|P™ < o0, o(x)|Vv[P™) < oo, we have

}Lin(l) U 0¥ () (|[vumP®-2yym —|vy™|P@-2yp™m) . U (u™ — v™)Ty (p(u™ — v™))dx
~Y1Jp

(75)

=] 14 mp(x)-2y, m _ mp(x)-2y,,m) . m
}LI—I}%UDA\DZAQ (x)(|Vu | vu Ve vy ) V¢|u

—v"| Ty(p@m — v™)dx] (76)
< clim [IDA\DZAT,N (@™ —v™) @™ - vm)dx] /A = fFID(X) Ty —v™) W™ —
v™)dr,
and

UD oy (™) [a(u™) fD A(S)|Vu™|ds — a(v™) fDA(s)IvaIds]dx|
< | [, A Vulds [ [a@™) — a@™)]dx |+c| [ a(@w™) @™ —v™)|v™(¢) ||dx
< cllu™ — v™|1[IVu™ly + cllv™]I?;.
Now, let A > 0,and N — o in (72). Then

— [Ju™ — v™||; < clim supf Ty@W™ —v™)|u™ — v™|dl’ +
dt N-oo rr,

¢ lu™ = v™ [l IVu™l; + cllv™|I3.
It implies that
Jplu™ (e, £) = v (x, O)ldx < [jlugt — ugtldx + gvl_l)gl sup frrp Ty W™ — v™) |[u™ — v™|dl’

+c [lu™ — ™l [IVu™ly + cllv™|IZ, vt € [0,T).
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Therefore, Theorem 4.3. is proved.

6 . Conclusion

The nonlinear degenerate singular parabolic equations that describes the nonlinear p(x)-
Laplacian equation is illustrated. The gradient term has a significant role and influences the
solution's qualitative behavior. The goal of this paper is to prove the positive existence and
uniqueness of the local weak solution of a nonlinear p(x)-Laplacian equation in Theorem 4.1,
4.2. Also, we proved the stability of the solution under some restrictions in Theorem 4.3.
Also, by estimating the regularization issue and employing the Moser iterative approaches,
the locally uniform properties of the solution for the gradients can be determined.
Furthermore, uniformly bounded properties and the LP®™)-norm to gradient estimations are
required for specific properties of the local solutions.
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