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Abstract:

This paper examines the finding of spacewise dependent heat source function in
pseudoparabolic equation with initial and homogeneous Dirichlet boundary
conditions, as well as the final time value / integral specification as additional
conditions that ensure the uniqueness solvability of the inverse problem. However,
the problem remains ill-posed because tiny perturbations in input data cause huge
errors in outputs. Thus, we employ Tikhonov’s regularization method to restore this
instability. In order to choose the best regularization parameter, we employ L-curve
method. On the other hand, the direct (forward) problem is solved by a finite
difference scheme while the inverse one is reformulated as an optimization problem.
The later problem is accomplished by employing Isgnolin subroutine from
MATLAB. Two test examples are presented to show the efficiency and accuracy of
the employed method by including many noises level and various regularization
parameters.

Keywords: Pseudo-parabolic equation, Inverse problem, von Neumann stability
analysis, Finite difference method, Tikhonov regularization method.
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1. Introduction

The pseudoparabolic equations of higher order play an important role in the Mathematical
modeling of moisture transfer, fluid filtration and heat propagation [1], [2]. The pseudo-
parabolic inverse problems are of great interest, which arise in the modeling of numerous
phenomena like the wave processes, chemical, engineering, diffusion, plasma physics and
heat conduction [3]. Also, pseudoparabolic inverse problems have many applications in real
life phenomena like the theory of small oscillation of a rotating fluid [4] and infiltration of
homogeneous fluids in strata [5].

A. 1. Ismailov in [6] theoretically studied the two-dimensional pseudoparabolic inverse
problem with the additional integral conditions. Sh. Lyubonova and A. Tani in [7] discussed
the stabilization of multi-dimensional pseudoparabolic inverse problem with the coefficient of
Piezo conductivity also they discussed the regularity of the solution. In [8], the authors
analysed the existence and uniqueness of the solution of the third order pseudoparabolic
inverse problem with periodic and integral conditions. Abylkairov and Khompysh [9] studied
the existence and uniqueness of solution for right side of pseudoparabolic inverse problem
which is described the motion of the Kelvin-Voight fluids. Antotsev et. al [10] proved the
unique solvability for pseudoparabolic inverse problem with a P-Laplacian and under
nonlocal integral over-determination condition by using the Galerkin method. For the other
related work of pseudoparabolic inverse problems, see [11], [12], [13], [14], [15], [16].

The authors in [17] solved the pseudoparabolic problem to identify the space dependent
forcing term. The authors in [18] presented the fourth order pseudoparabolic inverse problem
to determine the unknown coefficient. In [19], the authors presented the inverse problem for
pseudoparabolic equation with periodic boundary conditions, and it has been numerically
solved to identify the space dependent heat source. Whilst, the authors in [20] considered the
pseudoparabolic inverse problem with integral overdetermination condition to reconstruction
the unknown time coefficient.

The other related work is found on the pseudoparabolic inverse problems. Irem and Timar
in [21] solved the quasilinear pseudoparabolic equation with an unknown coefficient under
periodic boundary conditions and overdetermination data to determine the coefficient and
source term. While in [22] the multi-dimensional pseudoparabolic problem by using the
meshless radial basis function method is solved. In [23], the authors employed the Cubic B-
spline collection method to reconstruct time-dependent coefficients of the fourth order
pseudoparabolic inverse problem subject to the additional nonlocal data.

In this paper, we investigate the third order psudoparabolic inverse problem to reconstruct
the space dependent heat source coefficient with Dirichlet boundary conditions and two
different types of additional data. To discretize the direct problem numerically, we use the
finite difference method then for obtaining the solution for inverse problems, we minimised
the least square’s objective functional in a suitable norm. The novelty of this work occurs in
firstly solving 3rd order pseudoparabolic inverse coefficient problem numerically via finite
difference scheme combined with the Tikhonov regularization technique. Secondly,
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employing two parameters selection strategy, L- curve and minimum rmse curve in order to
obtain an accurate and stable solution.

The article consists of eight sections: Section 2 is devoted to the mathematical formulation
of inverse problem. In section 3, FDM is used to discretize the direct problem. In Section 4,
the stability analysis is covered. Test examples for the direct problem are in Section 5.
Whereas, Section 6 presents the minimization of the function-based numerical technique. In
Section 7, the numerical results of the inverse problem | and Il are described, respectively.
Section 8 is the conclusions that are highlighted.

2. Mathematical Formulation
Consider the source determination problem for pseudoparabolic equation of the form
ov(x,t) d3v(x,7) 0%v(x,1)

at  0x%0t 0x? =/ (1)

Where Dy :={0<x <1< 0,0< 7<T < o} is the solution domain, under the initial
condition

v(x,0)=n(), 0<x<L (2)
The homogeneous Dirichlet boundary condition
v(0,7) =v(l,1) =0, 0<7T<T, 3
and the final time specification condition
v(x,T) =h(x), 0<x<], (4)
or integral mass additional condition
T
f vix,T)dt =e(x), 0<x<lL (5
0

We call equations (1) - (4) the inverse problem I (IP- 1) and equations (1) - (3) and (5) the
inverse problem I1 (IP- 11). The unique solvability of above problems has been established in
[24] and reads as follows:

Definition: The pair of functions give (v(x, ), f(x)) is called a classical solution to the IP-I
or IP-11, if v(x, 7) € C7(Dr) and f(x) € €(0,1) and satisfies the equations (1)- (4) or (1)-(3)
and (5).

Theorem 1. Consider the listed below conditions [24]:

Al:n(x), h(x),e(x) € C3[0,1]

A2:n(0) =0 =0, n"(0)=n"D =0

A3:h(0) =h(l) =0, R"(0)=h"(1) =0

Ad:e(0)=e(l)=0, e"(0)=e"(D)=0

If the conditions (Al)- (A3) hold, then IP-I has a unique solution and if the conditions (Al),
(A2) and (A3) holds, then IP-I11 has a unique solution.

3. Discretization of direct problem

We present Egs. (1) - (4) which is the direct problem when f(x) and n(x) are known and
the temperature v(x, t) is to be determined together with the required outputs h(x)or e(x).
Rewriting Eq. (1) by a form of (FDM) as follows [25], [26], [27]: Denote for v(x; 7;) =

v; j,and f(x;) = f; where space node x; = iAx, and time node 7; = jAt, Ax = Mi and At =

L fori=0,1,..,M, where M,, N, are positive integers and based on the finite difference
Ng
method, Eq.(1) can be rewritten as:
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Vij+1 = Vij _ Vitrj ~ 205+ Vi i(vi+1,j+1 — 20541t Ui—1,j+1>
At (Ax)? At (Ax)?

1 (Viy1; — 205+ Vi—lj)
_ ' : : - 6
Ar( (Ax)? iy (6)

where,
v(x,0) =n(x;), i=01,..,M,

v(0,7;) =v(L,7)=0, j=01,..,N;
rearranging Eq. (6), we get:
—avi_q i1+ (L +20)0; 541 — QVigq ji1 = Y0y + (L= 27)v +yvigy; + ATf5 (7)
where,

1 At 1
o VT @ ®)
Applying boundary condition in Eq. (6) and then Eq. (1) can be rewritten as a system of
linear algebraic equations (M,, — 1) X (M, — 1) at each time tj+1 forj=0, ..., N..
DVI*1=EV/ +b

where
j+1 _ | —
Vith = (v1,j+1,v2,j+1, ...,va_lle) andV’ = (vl,j, V), ""va—l.j)'

The last equation is solved for the unknown vector V** using the Gauss elimination
method to solve the system to march the time level from j to j + 1. Where D and E are
tridiagonal matrices that satisfy the condition of diagonal dominated entries.

1+ 2a, (maindiogonal element)
D = {—a, (upper and lower diagonal element)

0 ow
{ 1-2y, (maindiogonal element)
E =

—¥, (upper and lower diagonal element)
0 ow
by = At(fy;) + avy 1, j=01,..,N,
b, =At(f;;), i=2,..M, j=01,.,N,

be—1 = AT(fo—l,j) + AVM,.,j+1) j=01,..,N;
4. Stability analysis

We presented the Von Neumann stability analysis [28], [29] direct problem. We are taking
f; = 0in Eq. (7) then we get:

—avi_1 41+ (1 +2a)0; 41 — AViyqj41 = YVicr; + (1 = 20)v5 5 + YVig ), 9)
where,
_ 1 _ AT 1 10
T VT o (10)
now, we present the error as follows:
5i,j = Vi,j - vi,j' (11)

where v; ; is the numerical solution and V;; is the exact solution and both V; ; and v; ;
verifying Eqg. (9). For the linear partial differential equations, the variation of error can

express as a finite Fourier series in the interval [I, T] as:
My=Nz

e(x, 1) = z S.ewbsx, (12)
8=1
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where 6, = ”Ts; s=12,..,M, and w = V=1 .e"% is called the Euler formula and S is

a function of time. The term v; ; = STeWi3s the proposed solutions at x; applying this data
into Eq. (9) to find S as follows:
_a5j+1eW9(i—1) + (1 + 2a)5j+1eWi9 _ a5j+1eW9(i+1)
— ysjewg(i—l) + (1 _ zy)SjeWG(i)
+ Vsjewﬂ(i+1)’ (13)
simplifying above equation, we get:
((1 + 2a) — 2a cos 9)5 =(1-2y)+ 2ycosb

which can be written as,

(1-2y)+2ycosb
" (14 2a) —2acos O
for y <0 and a > 0 hence y < a from this we get |S|< 1, then the scheme is unconditionally
stable.

S

5. Example for direct problem
Consider the direct problem in Egs. (1)-(3) withT =1 = 1:
v(x,0) = n(x) = sin(nx) — sin(2nx), x €[0,1]
The analytical solution for the given data is:
4?
v(x, 1) = sin(mx) — e 1+4n?" sin(2nx), (x,7) € Dy,
and heat source is:
f(x) = m?sin(nx), x € [0,1],

Figure 1 explains the exact and numerical solution for v(x, t), and the absolute error. From
this figure, one can notice an excellent matching with the error magnitude of order
0(1073). Whilst, Figure 2 explains the comparison between the numerical and the exact
solution for desired outputs h(x) and e(x). Also, accurate solutions are obtained.

Exact solution Approximate solution for M=N=40 Error graph for M=N=40

exact

Figure 1: Exact (left), numerical (middle) solutions and absolute error (right) for direct
problem (1)- (3) with mesh size M, = N, = 40.
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—exact
—5= numerical

——exact
—== numerical

(b)
Figure 2: Numerical and Exact solutions for (a) h(x), (b) e(x) when M,, = N, = 40.

6. Inverse problem

This section is devoted to solving the inverse problems (1)- (4) and (1)- (3), (5), that is
when f(x) is unknown, in addition to heat distribution v(x, T") which satisfy Egs. (1)- (4) for
IP-1 and Egs. (1)- (3) and (5) for IP-11. The numerical technique used is to recast the problems
to an optimization problem by imposing the extra measurement (4) or (5) in a suitable norm
and applying Tikhonov regularization to maintain stability. The cost functional
For IP — I is;

_ K (f) = llv(x, T) = hII? + BlIf COII%, (14)

For IP-11 is:

T 2

K;(f) = fv(x, dx —e(x)|| + BIfFCOI? (15)
0
where, > 0 the regularization parameter should be selected according to some techniques
like L-curve [30], Morozov’s discrepancy principle [31], or trial and error [32]. The
discretized form of (14) and (15) are
M,

K (f) = D (w0 ) = hGe)” + 8 ) 2, (16)
Mxi:l , i=1 ",

Ku(f)=). ( | oG, dx - e(xi)) +B) f2, (17)
i=1 \70 i=1
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The objective functions (16) and (17) are minimized by subroutine Isgnonlin from
MATLAB optimization toolbox. This routine tries to solve nonlinear least- squares curve
fitting problem starting from the initial guess f,, for an unknown source term. Further, one can
impose an upper and lower bound for f which are taken to be [~10% 107, respectively. Also,
in this routine, we did not need to provide the gradient of K;, K;; that can be approximated
internally by finite - differences. In order to solve this optimization problem, the Trust-
Region-Reflective (TRR) algorithm was applied which mainly depends on the interior-
reflective - Newton method [33- 36].

The following parameters are essential to start the minimization process and to terminate
the minimization process when of the following prescribed parameters are achieved:
» Allowed number of iterations = 6000.
« Specified solution and objective function Tolerance = 10>

The IP-1 given by (1)-(4) and IP-1I given by (1)-(3) and (5) are solved subject to noisy
measurement and the exact data (4) or (5). The noise contaminated is simulated as [37- 41]:

he(xi) = h(xi) + €, [ = 1,2, ...,Mx, (18)
For IP-I
ef(x) =e(x)+e, i=12,..,M,, (19)
for IP-11
where e represents a Gaussian random vector with mean equal to zero and standard
deviation u is given by:

p=p X max |h(x)], (20)
x€[0,1]
w=pX max le(x), (21)

where p represents the percentage of noise. We use the normrnd built in function to generate
the random variables € = (¢;) i = 1,2, ..., M, as follows:
€ = normrnd (0, w, M,)
7. Results and discussion
We introduce some test examples for each inverse problem to explain the stability and
accuracy of the computational procedure based on the finite difference method combined with
the minimization of the Tikhonov function (16) and (17).

To assess the reconstruction accuracy of the heat source, we use the root mean square error
rmse which is given by the next expression

My
211
rmse(f) = M_Z(fl - fexact(xi))z’

7.1 Numerical results for IP -1
Assume the IP-1 with | = T =1 and input data:
v(x,0) = n(x) = sin(nx) — sin(2mx), x €[0,1],
472
v(x,T) = h(x) = sin(mx) — e 1+4n? sin(2mx),
where the analytical solution are:
4m?
v(x,7) = sin(nx) — e 1+an?" sin(2mx),
f(x) = m? sin(mx),
that can be checked by direct substitution.
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Firstly, we examine the IP-1 with various mesh sizes such as M, = N, € {20,40, 60} in the
absence of noise and regularization. From Figure 3 and Table 1, it can be realized that the best
choice for M, N, is 60 which presents the lowest rmse(f).

One can notice that all the conditions for IP —I are satisfied and hence the unique
solvability of the solution is guaranteed. Initially, we try to retrieve the function f(x) and
v(x, t)for noise free case (p = 0)then for p € {0.05%, 0.5%} noisy data. The objective
function (16) is plotted as a function of the number of iterations in Figure 4. The fast
convergence that can be seen in Figure 4, which reaches a very low value of O(10™*%).

Table 1: Numerical information for IP-I.

1.42644E-17 0.3980 54
2.33092E-17 0.2003 15.6
2.71453E-14 0.1337 34.6

X

Figure 3: Numerical and exact solution for heat source f(x) when M,, = N, € {20,40,60}.

Now, for evaluating the stability of the approximate solution with respect to (20), the noise
was added p € {0.05%, 0.5%} to the additional data h(x) as in (25). Figure 7 presents the
identification of the estimated f(x). For this case, the obtained results were inaccurate and
unstable when the regularization parameter 3 = 0, see Figure 5. Hence, the Tikhonov
regularization scheme was applied by adding the regularization parameter
B = {107%,107°,107} (for both cases of noise data) to restore the stability. Figures 6.a and
7.a show that the objective function (16) decreases rapidly and reach a stationary value of
0(1073). A set of values of regularization parameter p = {107%,1075,107%} was applied
for p = 0.05%and p = 0.5% noise seen in Figure 6.b and Figure 7.b respectively, these
figures show that the approximate solution of heat source f(x) is stable and reasonable. Exact
and numerical temperature wv(x,t) with regularization data for both cases
p € {0.05%, 0.5%} are plotted in Figure 12. Table 2 depicts other details about rmse(f), the
number of iterations and computational time.
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05%
5%

-8

Objective function

10-10

1072

30 40 50 60 70 80
Number of Iterations

Figure 4: The unregularized objective function (16), withp = {0, 0.05%, 0.5%} noise.

1014

Figure 5: Numerical reconstructions and exact solution for f(x), with various noise level
p = {0,0.05%, 0.5%}, without regularization applied for IP-I.

1019

[ ;31:10'4

—e— ,=10°

—<— B,=10°

10° §

Regularized objective function

1073 I I I I I I |
o 10 20 30 40 50 60 70

Number of Iterations

(@)
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(b)

e BE exact
o = —o— p,=10"
—%— (,=10°
—v— B,=10"°
y . . . . . . . . . M
(o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 6: (a) The objective function (16), (b) Numerical reconstructions and exact solution
forf (x), with regularization parameter § = {107%,107>,10"%}and p = 0.05% noise.

101§

Regularized objective function
5 5

B
o

—e— 3,=10"
—e— 3,=10"°
—— 8,=10"°

[

N

(a)

12 —

5 10 15 20 25 30 35 40
Number of Iterations

exact

VWWY —o— p,=107"
" % £ -

(b)

Figure 7: (a) The objective function (16), (b) Numerical reconstructions and exact solution
for £(x), with regularization parameter § = {107%,107°,107°} andp = 0.5% noise.
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The L-curve plot is a powerful tool to choose the suitable regularization parameter for the
given data in the regularization method. The L- curve is based on a log -log plot of the
residual norm ||lv(x, 7) — h(x)||versus the corresponding regularized solution norm ||f3||. It is
an appropriate graphical tool for displaying trade-off between the fit of the given data and the
size of a regularization solution [42], [43].

Figures 8 and 9 show that the best value of regularization parameters are =
{107%,107>,107%} which are located near the corner of L- shape curve.

58 —

—=—p=0.05%

57

a @
a &

Solution Norm

@
£

53

52
102 10

Residual Norm

Figure 8: The L-curve plot with various regularization when p = 0.05% noise.

B=107" ——p=0.5%

Solution Norm

I
10

Residual Norm

Figure 9: The L-curve plot with various regularization when p = 0.5% noise.

In fact, L-curve consists of two parts: the vertical part for small values of g such as
{1078,1077,107%}. In this part, the solution norm starts to increase. Then horizontal part for
large values of 8 such as {107%,1073,...,1}. Which is this part as S increases the residual
decreases. Therefore, the best selection for 3 can be found in corner of the L- curve, as clearly
visual in Figures 8 and 9. Also, Figures 10 and 11 present the graph of rmse(f) versus the
regularization parameter B varies from 1078 to 1072. From these figures, it can deduce that
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the best value for B meets the minimum point of the curve which is associated with
appropriate 8, see Table 2, for more numerical information obtained from an iterative process
of minimization subroutine Isqnonlin.

I 1
0
10 10° 107 10 10° 10 1072 107

Regularization parameter 3
Figure 10: The rmse(f) plot with various regularization when p = 0.05% noise.

10

° L
107 10° 10° 10 10 10 10

Regularization parameter 3
Figure 11: The rmse(f) plot with various regularization when p = 0.5% noise.
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Exact solution Numerical solution

exact

u(x,t)

Exact solution Numerical solution

exact

Error graph

08,

MU “ln
‘V,NWW
m H\‘M‘J‘N‘W‘ H‘\u‘}\‘]\u‘l
T
Mﬂmw’“

J| u“ ‘

i

Error graph

Figure 12: Exact and numerical temperature v(x,7) with (&) p = 0.05% and g = 107¢,

(b)p = 0.5% noiseand § = 107°.

Table 2: Numerical information for IP-1 with noise

34
0.2846
0.2036

93.1
g = 107*

31
0.2885
0.1888

69.8

65 25
0.0291 0.0029
0.1209 0.1777
128.6 57.6

B = 1075 B = 107°

38 31
0.0320 0.0056
0.2823 13114
75.0 64.8

7.2 Numerical results of IP-I1
We examine the IP —II which described by (1)- (3) and (5) with the following data when
T=1

v(x,0) = n(x) = sin(nx) — sin(2mx),

5842
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4772

1-— e_1+47r2> (1 + 4m?) sin(2mx)

e(x) = sin(mx) — , x €[0,1],

412
with unknown heat source and solution

f(x) = m? sin(mx)
__4m?
v(x,7) = sin(mx) — e 1+47?" sin(2mx),

The conditions in Theorem 1 are satisfied and hence, the solution of IP — II exists and is
unique. Firstly, starting with case p = 0 i.e, without noise. Figure 13, represents the
objective minimization in this case can be seen a rapid convergence to reach a low stationary
value 0(1071%) in 16 iterations only. For evaluating the stability of numerical results, adding
a small percentage p = {0.05%, 0.5%} of noise. Figure 14 shows that the inaccurate and
unstable results of heat source f(x) are obtained in this case. The Tikhonov regularization
method employs to obtain stable reconstruction for f(x). L-curve method and minimum
rmse curve (as explained in previous example of IP-I) are applied to identify the appropriate
regularization parameter, these are shown in Figures 17- 20.

—&— p=0
—6— p=0.05%
—<%— p=0.5%

10

Objective function

I I I I I I I
30 40 50 60 70 80 90 100

Number of Iterations

Figure 13: Objective function (17) with various noise and no regularization.

100

80

.05% |
.5%

60

— 1

' |

Rk

40 | fi '.

= , g de e B
= Ll e “”E
-20 LEU |

-40

-60

-80

-100

Figure 14: Numerical solution and Exact solution for f(x) with no regularization.
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Regularization parameters f = {1077,107%,107°} was chosen for the noise data
p = 0.05%. Figure 17.a shows that the objective function (17) decreases rapidly in a small
number of iterations. The Tikhonov approach with selected parameters gives a reasonable and
stable approximate solution of heat source f(x)(see Figure 17.b). When p = 0.05%, deduce
the regularization parameters 8 = {107%,1075,107*}, one can observe that these choices of
B give the stable and accurate approximate solution for heat source f(x) (see Figure 16). It
can be seen in Table 3 that the numerically observing results become more accurate and
stable when the percentage of noise p decreases from 0.5% to 0.05%. In Figures 17- 20, one
can notice that B = 107> represents the optimal value based on L-curve criteria or rmse-
graph. The numerical result of v(x,t) are presented in Figure 21, this figure shows the
analytical (31) and numerical solution for temperature v(x, ) together with the absolute error
graph.

10t ¢

[ /31:10'5

—— 3,=10"°

—<— B5;=107

B
o

Regularized objective function

107° ¢

lo-A L L L L L I}
(o) 5 10 15 20 25 30
Number of Iterations
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Figure 15: (a) The objective function (17), (b) Numerical reconstructions and exact solution
for f(x), with regularization parameter § = {107°,107%,1077} and p = 0.05% noise
applied for

IP-11.
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Figure 16: (a) The objective function (17), (b) Numerical reconstructions and exact solution
for f(x), with regularization parameter 5 = {107%,107>,10"°}and p = 0.5% noise.
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Figure 17: The L-curve plot with various regularization parameter when p = 0.05% noise.
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0.05% noise and regularization parameterf = 107>, (b) p = 0.5% noise andf = 10~°

Table 3: Numerical information of IP-11 with noise and regularization

31 23 24
0.0290 0.0030 3.2E-4
0.1378 0.1836 0.6273

64.6 49.8 50.1

g = 107* B = 1075 g = 10-°

32 31 27
0.2765 0.0332 0.0068
0.5084 0.3476 1.2510

64.9 76.0 55.7
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Finally, we notice that from Tables 2 and 3, the IP-I is better than IP-Il in rmse(f) but in
time consumed IP-1I is better than IP-l1. Mathematically, this case is because IP-1 is a
particular case from IP-Il in terms of approximating integral data as the average of
temperature distribution over a time interval. However, from a practical point of view, the
second problem is more applicable than the first one. Because the average temperature
distribution is much easier to capture than the final time data.

8- Conclusions

The pseudoparabolic inverse problems from a class of third order are presented to recover
the space dependent source f(x) numerically. The initial and Dirichlet boundary conditions
with overdetermination conditions are used for unique recovery. The inverse problems
investigate under temperature distribution at final time condition and mass/energy
specification (integral type) data. FDM method based on the Cranck-Nicholson scheme
utilised to discrete the direct problem. Also, the von Neumann technique was used to study
the stability and convergence of the proposed numerical direct algorithm. The inverse
problems were reformulated as a nonlinear optimization problem and solved numerically by
Isqnonlin iterative routine from MATLAB. We test the source reconstruction for both exact
and noisy data to evaluate the stability of the approximated solution. To stabilize the ill-posed
problem under investigation, we apply Tikhonov’s regularization method. Which is based on
converting ill-posed problem to a family of well-posed problems related to the regularization
parameters. Choosing regularization parameter £ that balances accuracy and stability is the
major challenge when solving the ill-posed problem with regularization. In this research, we
employ L -curve criteria and minimum rmse curve to find the best/ optimal regularization
parameters which give the stable and accurate solution. Finally, a couple of numerical test
examples are given, and the accuracy of results is presented by figures and tables which
confirm the stability of our results.
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