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Abstract: 
      This paper examines the finding of spacewise dependent heat source function in 

pseudoparabolic equation with initial and homogeneous Dirichlet boundary 

conditions, as well as the final time value / integral specification as additional 

conditions that ensure the uniqueness solvability of the inverse problem. However, 

the problem remains ill-posed because tiny perturbations in input data cause huge 

errors in outputs. Thus, we employ Tikhonov’s regularization method to restore this 

instability. In order to choose the best regularization parameter, we employ L-curve 

method. On the other hand, the direct (forward) problem is solved by a finite 

difference scheme while the inverse one is reformulated as an optimization problem. 

The later problem is accomplished by employing lsqnolin subroutine from 

MATLAB. Two test examples are presented to show the efficiency and accuracy of 

the employed method by including many noises level and various regularization 

parameters.  

 

Keywords: Pseudo-parabolic equation, Inverse problem, von Neumann stability 

analysis, Finite difference method, Tikhonov regularization method. 
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 الخلاصة

في ايجاد المصدر الحراري المعتمد على الفضاء في معادلة شبه قطع مكافئ مع شروط  يبحث هذا البحث     
لنهائية / شرط التكامل كشرط إضافي. المتجانسة، بالإضافة إلى القيمة الزمنية ا Dirichletحدودية من نوع 

التي تضمن وحدانية و وجود الحل للمسألة العكسية. ومع ذلك، لا تزال المسألة عليلة الوضع لأن الاضطرابات 
الصغيرة في بيانات الإدخال تسبب أخطاء جسيمة في المخرجات. وبالتالي، فإننا نستخدم طريقة تنظيم 

. من ناحية L- curveأجل اختيار أفضل معلمة تنظيم، نستخدم طريقة  تيخونوف لاستعادة الاستقرارية. من
أخرى، تم حل المسألة المباشرة )الأمامية( من خلال مخطط الفروق المحدودة بينما تتم إعادة صياغة المسألة 
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الفرعي من  lsqnonlinالعكسية كمسألة امثليه. تم إنجاز المسألة الأخيرة من خلال استخدام روتين 
MATLAB تم عرض مثالين للاختبار كفاءة ودقة الطريقة المستخدمة من خلال تضمين العديد من مستويات .

 الضوضاء ومختلف معاملات التنظيم.
 

 1. Introduction  

     The pseudoparabolic equations of higher order play an important role in the Mathematical 

modeling of moisture transfer, fluid filtration and heat propagation [1], [2]. The pseudo-

parabolic inverse problems are of great interest, which arise in the modeling of numerous 

phenomena like the wave processes, chemical, engineering, diffusion, plasma physics and 

heat conduction [3]. Also, pseudoparabolic inverse problems have many applications in real 

life phenomena like the theory of small oscillation of a rotating fluid [4] and infiltration of 

homogeneous fluids in strata [5].  

 

     A. I. Ismailov in [6] theoretically studied the two-dimensional pseudoparabolic inverse 

problem with the additional integral conditions. Sh. Lyubonova and A. Tani in [7] discussed 

the stabilization of multi-dimensional pseudoparabolic inverse problem with the coefficient of 

Piezo conductivity also they discussed the regularity of the solution. In [8], the authors 

analysed the existence and uniqueness of the solution of the third order pseudoparabolic 

inverse problem with periodic and integral conditions. Abylkairov and Khompysh [9] studied 

the existence and uniqueness of solution for right side of pseudoparabolic inverse problem 

which is described the motion of the Kelvin-Voight fluids. Antotsev et. al [10] proved the 

unique solvability for pseudoparabolic inverse problem with a P-Laplacian and under 

nonlocal integral over-determination condition by using the Galerkin method. For the other 

related work of pseudoparabolic inverse problems, see [11], [12], [13], [14], [15], [16]. 

 

     The authors in [17] solved the pseudoparabolic problem to identify the space dependent 

forcing term. The authors in [18] presented the fourth order pseudoparabolic inverse problem 

to determine the unknown coefficient. In [19], the authors presented the inverse problem for 

pseudoparabolic equation with periodic boundary conditions, and it has been numerically 

solved to identify the space dependent heat source. Whilst, the authors in [20] considered the 

pseudoparabolic inverse problem with integral overdetermination condition to reconstruction 

the unknown time coefficient.  

 

     The other related work is found on the pseudoparabolic inverse problems. Irem and Timar 

in [21] solved the quasilinear pseudoparabolic equation with an unknown coefficient under 

periodic boundary conditions and overdetermination data to determine the coefficient and 

source term. While in [22] the multi-dimensional pseudoparabolic problem by using the 

meshless radial basis function method is solved. In [23], the authors employed the Cubic B- 

spline collection method to reconstruct time-dependent coefficients of the fourth order 

pseudoparabolic inverse problem subject to the additional nonlocal data.  

 

     In this paper, we investigate the third order psudoparabolic inverse problem to reconstruct 

the space dependent heat source coefficient with Dirichlet boundary conditions and two 

different types of additional data. To discretize the direct problem numerically, we use the 

finite difference method then for obtaining the solution for inverse problems, we minimised 

the least square’s objective functional in a suitable norm. The novelty of this work occurs in 

firstly solving 3rd order pseudoparabolic inverse coefficient problem numerically via finite 

difference scheme combined with the Tikhonov regularization technique. Secondly, 
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employing two parameters selection strategy, L- curve and minimum      curve in order to 

obtain an accurate and stable solution. 

   

      The article consists of eight sections: Section 2 is devoted to the mathematical formulation 

of inverse problem. In section 3, FDM is used to discretize the direct problem. In Section 4, 

the stability analysis is covered. Test examples for the direct problem are in Section 5. 

Whereas, Section 6 presents the minimization of the function-based numerical technique. In 

Section 7, the numerical results of the inverse problem I and II are described, respectively. 

Section 8 is the conclusions that are highlighted.  

 

2. Mathematical Formulation  
Consider the source determination problem for pseudoparabolic equation of the form 

       

  
 

        

     
 

        

   
                                               

Where     {                } is the solution domain, under the initial 

condition  

                                                                                

The homogeneous Dirichlet boundary condition  

                                                                                 
and the final time specification condition  

                                                                                    
or integral mass additional condition 

∫                          
 

 

                                                 

 

     We call equations (1) - (4) the inverse problem I (IP- I) and equations (1) - (3) and (5)  the 

inverse problem II (IP- II). The unique solvability of above problems has been established in 

[24] and reads as follows: 

 

Definition: The pair of functions give               is called a classical solution to the IP-I 

or IP-II, if            
        and             and satisfies the equations (1)- (4) or (1)-(3) 

and (5). 

 

Theorem 1. Consider the listed below conditions [24]: 

                    [   ] 
                                    

                                   

                                   
If the conditions (A1)- (A3) hold, then IP-I has a unique solution and if the conditions (A1), 

(A2) and (A3) holds, then IP-II has a unique solution. 

 

3. Discretization of direct problem  

      We present Eqs. (1) - (4) which is the direct problem when      and      are known and 

the temperature        is to be determined together with the required outputs     or     . 

Rewriting Eq. (1) by a form of (FDM) as follows [25], [26], [27]: Denote for  (     )  

                  where space node       , and time node           
 

  
        

 

  
                               are positive integers and based on the finite difference 

method, Eq.(1) can be rewritten as: 
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(
                         

     
)

 
 

  
(
                   

     
)                                                                    

where, 

                            

 (    )   (    )                  

rearranging Eq. (6),  we get: 

                                                                               
where, 

  
 

     
       

  

     
 

 

     
                                                          

       Applying boundary condition in Eq. (6) and then Eq. (1) can be rewritten as a system of 

linear algebraic equations               at each time τj+1  for j = 0, …, Nτ. 

            
where 

     (                         )      
  (                   )   

 

      The last equation is solved for the unknown vector V
j+1

 using the Gauss elimination 

method to solve the system to march the time level from j to j + 1. Where D and E are 

tridiagonal matrices that satisfy the condition of diagonal dominated entries. 

  {
                             

                                           
                                                                

  

  {
                             

                                           
                                                                

 

     (    )                            

     (    )                             

     
   (       )                          

 

 

4. Stability analysis  

     We presented the Von Neumann stability analysis [28], [29] direct problem. We are taking 

     in Eq. (7) then we get: 

 

                                                                                    
where, 

  
 

     
      

  

     
 

 

     
                                                     

now, we present the error as follows: 

                                                                                 
     

       where      is the numerical solution and      is the exact solution and both      and      

verifying Eq. (9). For the linear partial differential equations, the variation of error can 

express as a finite Fourier series in the interval [l, T] as: 

       ∑    
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      where    
  

 
                   √          is called the Euler formula and S is 

a function of time. The term            as the proposed solutions at    applying this data 

into Eq. (9) to find S as follows:  

                                           

                           

                                                                                                                                                      

simplifying above equation, we get: 

(             )                

which can be written as, 

  
             

             
 

for γ < 0 and α > 0 hence γ < α from this we get |S|< 1, then the scheme is unconditionally 

stable. 

 

5. Example for direct problem  

Consider the direct problem in Eqs. (1)-(3) with      : 

                                    [   ] 
The analytical solution for the given data is: 

                
 

   

                              
and heat source is: 

                     [   ]  
     Figure 1 explains the exact and numerical solution for         and the absolute error. From 

this figure, one can notice an excellent matching with the error magnitude of order 

          Whilst, Figure 2 explains the comparison between the numerical and the exact 

solution for desired outputs      and     . Also, accurate solutions are obtained. 

 

 
Figure 1: Exact (left), numerical (middle) solutions and absolute error (right) for direct 

problem (1)- (3) with mesh size             . 
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(a) 

 
(b) 

Figure 2: Numerical and Exact solutions for (a)     , (b)      when               
 

6. Inverse problem  
     This section is devoted to solving the inverse problems (1)- (4) and (1)- (3), (5), that is 

when      is unknown, in addition to heat distribution        which satisfy Eqs. (1)- (4) for 

IP-I and Eqs. (1)- (3) and (5) for IP-II. The numerical technique used is to recast the problems 

to an optimization problem by imposing the extra measurement (4) or (5) in a suitable norm 

and applying Tikhonov regularization to maintain stability. The cost functional  

For IP − I is; 

      ‖           ‖   ‖    ‖                                             

For IP-II is: 

       ‖∫             

 

 

‖

 

  ‖    ‖                                             

     where, β ≥ 0 the regularization parameter should be selected according to some techniques 

like L-curve [30], Morozov’s discrepancy principle [31], or trial and error [32]. The 

discretized form of (14) and (15) are 

  ( )  ∑(             )
 

  

   

  ∑  
 

  

   

                                       

   ( )  ∑(∫                
 

 

)

   

   

  ∑  
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     The objective functions (16) and (17) are minimized by subroutine lsqnonlin from 

MATLAB optimization toolbox. This routine tries to solve nonlinear least- squares curve 

fitting problem starting from the initial guess    for an unknown source term. Further, one can 

impose an upper and lower bound for f which are taken to be [−10
2
, 10

2
], respectively. Also, 

in this routine, we did not need to provide the gradient of KI, KII that can be approximated 

internally by finite - differences. In order to solve this optimization problem, the Trust- 

Region-Reflective (TRR) algorithm was applied which mainly depends on the interior-

reflective - Newton method [33- 36]. 

 

     The following parameters are essential to start the minimization process and to terminate 

the minimization process when of the following prescribed parameters are achieved: 

 • Allowed number of iterations = 6000. 

 • Specified solution and objective function Tolerance = 10
−15

. 

     The IP-I given by (1)-(4) and IP-II given by (1)-(3) and (5) are solved subject to noisy 

measurement and the exact data (4) or (5). The noise contaminated is simulated as [37- 41]: 

 

                                                                          
For IP-I 

                                                                         
for IP-II  

      where   represents a Gaussian random vector with mean equal to zero and standard 

deviation   is given by: 

       
  [   ]

                                                                        

       
  [   ]

                                                                        

 

where p represents the percentage of noise. We use the normrnd built in function to generate 

the random variables                     as follows: 

                   

7. Results and discussion 
     We introduce some test examples for each inverse problem to explain the stability and 

accuracy of the computational procedure based on the finite difference method combined with 

the minimization of the Tikhonov function (16) and (17). 

 

     To assess the reconstruction accuracy of the heat source, we use the root mean square error 

rmse which is given by the next expression 

        √
 

  
∑(             )

 

  

   

 

  

7.1 Numerical results for IP -I 

Assume the IP-I with l = T = 1 and input data: 

                                   [   ]   

                     
 

   

               
where the analytical solution are: 

                
 

   

                 
                

that can be checked by direct substitution. 
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 Firstly, we examine the IP-I with various mesh sizes such as           {        } in the 

absence of noise and regularization. From Figure 3 and Table 1, it can be realized that the best 

choice for       is 60 which presents the lowest        . 
 

     One can notice that all the conditions for IP −I are satisfied and hence the unique 

solvability of the solution is guaranteed. Initially, we try to retrieve the function      and 

      for noise free case       then for    {          } noisy data. The objective 

function (16) is plotted as a function of the number of iterations in Figure 4. The fast 

convergence that can be seen in Figure 4, which reaches a very low value of O(10
−14

). 

 

Table 1: Numerical information for IP-I. 

        No. of iteration Obj. fun. Value at final 

iteration 

     Time consumed in 

second 

20 11 1.42644E-17 0.3980 5.4 

40 16 2.33092E-17 0.2003 15.6 

60 15 2.71453E-14 0.1337 34.6 

 

 
Figure 3: Numerical and exact solution for heat source      when          {        }  
 

     Now, for evaluating the stability of the approximate solution with respect to (20), the noise 

was added     {          } to the additional data      as in (25). Figure 7 presents the 

identification of the estimated     . For this case, the obtained results were inaccurate and 

unstable when the regularization parameter    , see Figure 5. Hence, the Tikhonov 

regularization scheme was applied by adding the regularization parameter 

    {              } (for both cases of noise data) to restore the stability. Figures 6.a and 

7.a show that the objective function (16) decreases rapidly and reach a stationary value of 

          A set of values of regularization parameter     {              }  was applied 

for           and           noise seen in Figure 6.b and Figure 7.b respectively, these 

figures show that the approximate solution of heat source      is stable and reasonable. Exact 

and numerical temperature        with regularization data for both cases 

    {          } are plotted in Figure 12. Table 2 depicts other details about          the 

number of iterations and computational time. 
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Figure 4: The unregularized objective function (16),          {            } noise. 

 
Figure 5: Numerical reconstructions and exact solution for       with various noise level 

    {            }  without regularization applied for IP-I. 
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(b) 

Figure 6: (a) The objective function (16), (b) Numerical reconstructions and exact solution 

for      with regularization parameter     {              } and           noise. 

 

 
(a) 

 
(b) 

Figure 7: (a) The objective function (16), (b) Numerical reconstructions and exact solution 

for       with regularization parameter     {              }  and           noise. 
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     The L-curve plot is a powerful tool to choose the suitable regularization parameter for the 

given data in the regularization method. The L- curve is based on a log -log plot of the 

residual norm ‖           ‖versus the corresponding regularized solution norm ‖  ‖. It is 

an appropriate graphical tool for displaying trade-off between the fit of the given data and the 

size of a regularization solution [42], [43].  

 

       Figures 8 and 9 show that the best value of regularization parameters are    
 {              }  which are located near the corner of L- shape curve. 

 

 
Figure 8: The L-curve plot with various regularization when p = 0.05% noise. 

 

 
Figure 9: The L-curve plot with various regularization when p = 0.5% noise. 

 

      In fact, L-curve consists of two parts: the vertical part for small values of β such as 

{              }   In this part, the solution norm starts to increase. Then horizontal part for 

large values of   such as {             }  Which is this part as   increases the residual 

decreases. Therefore, the best selection for   can be found in corner of the L- curve, as clearly 

visual in Figures 8 and 9. Also, Figures 10 and 11 present the graph of          versus the 

regularization parameter   varies from      to     . From these figures, it can deduce that 
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the best value for   meets the minimum point of the curve which is associated with 

appropriate  , see Table 2, for more numerical information obtained from an iterative process 

of minimization subroutine lsqnonlin. 

 
Figure 10: The         plot with various regularization when            noise. 

 

 
Figure 11: The         plot with various regularization when           noise. 
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Figure 12: Exact and numerical temperature        with (a)            and         , 

(b)          noise and         . 

 

Table 2: Numerical information for IP-I with noise 

                                     

No. of iteration 34 65 25 

Objective function (16) at final iteration 0.2846 0.0291 0.0029 

        0.2036 0.1209 0.1777 

Computational time 93.1 128.6 57.6 

                                    

No. of iteration 31 38 31 

Objective function (16) at final iteration 0.2885 0.0320 0.0056 

        0.1888 0.2823 1.3114 

Computational time 69.8 75.0 64.8 

 

7.2 Numerical results of IP-II  

       We examine the IP −II which described by (1)- (3) and (5) with the following data when 

T = 1: 

                                    [   ]  
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(   
 

   

     )                

   
      [   ]  

with unknown heat source and solution 

               

                
 

   

                
      

     The conditions in Theorem 1 are satisfied and hence, the solution of IP − II exists and is 

unique. Firstly, starting with case       i.e, without noise. Figure 13, represents the 

objective minimization in this case can be seen a rapid convergence to reach a low stationary 

value          in 16 iterations only. For evaluating the stability of numerical results, adding 

a small percentage     {          } of noise. Figure 14 shows that the inaccurate and 

unstable results of heat source      are obtained in this case. The Tikhonov regularization  

method employs to obtain stable reconstruction for       L-curve method and minimum 

     curve (as explained in previous example of IP-I) are applied to identify the appropriate 

regularization parameter, these are shown in Figures 17- 20. 

 

 
Figure 13: Objective function (17) with various noise and no regularization. 

 
Figure 14: Numerical solution and Exact solution for      with no regularization. 
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     Regularization parameters     {              } was chosen for the noise data 

            Figure 17.a shows that the objective function (17) decreases rapidly in a small 

number of iterations. The Tikhonov approach with selected parameters gives a reasonable and 

stable approximate solution of heat source     (see Figure 17.b). When             deduce 

the regularization parameters     {              }, one can observe that these choices of 

  give the stable and accurate approximate solution for heat source      (see Figure 16). It 

can be seen in  Table 3 that the numerically observing results become more accurate and 

stable when the percentage of noise p decreases from                  In Figures 17- 20, one 

can notice that           represents the optimal value based on L-curve criteria or     -

graph. The numerical result of        are presented in Figure 21, this figure shows the 

analytical (31) and numerical solution for temperature        together with the absolute error 

graph. 

 
(a) 

 
(b) 

Figure 15: (a) The objective function (17), (b) Numerical reconstructions and exact solution 

for        with regularization parameter     {              } and            noise 

applied for 

IP-II. 
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(a) 

 
(b) 

Figure 16: (a) The objective function (17), (b) Numerical reconstructions and exact solution 

for     , with regularization parameter     {              } and          noise. 

 

 
Figure 17: The L-curve plot with various regularization parameter when            noise. 
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Figure 18: The L-curve plot with various regularization parameter when          noise. 

 

 
Figure 19: The         plot with various regularization parameter when p = 0.05% noise. 

 

 
Figure 20: The         plot with various regularization parameter when          noise. 
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Figure 21: The exact temperature and numerical temperature       , with (a)    
       noise and regularization parameter        , (b)          noise and        . 

 

Table 3: Numerical information of IP-II with noise and regularization 

                                     

No. of iteration 31 23 24 

Objective function (16) at final iteration 0.0290 0.0030 3.2E-4 

        0.1378 0.1836 0.6273 

Computational time 64.6 49.8 50.1 

                                    

No. of iteration 32 31 27 

Objective function (16) at final iteration 0.2765 0.0332 0.0068 

        0.5084 0.3476 1.2510 

Computational time 64.9 76.0 55.7 
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     Finally, we notice that from Tables 2 and 3, the IP-I is better than IP-II in         but in 

time consumed IP-II is better than IP-I. Mathematically, this case is because IP-I is a 

particular case from IP-II in terms of approximating integral data as the average of 

temperature distribution over a time interval. However, from a practical point of view, the 

second problem is more applicable than the first one. Because the average temperature 

distribution is much easier to capture than the final time data. 

 

8- Conclusions  

     The pseudoparabolic inverse problems from a class of third order are presented to recover 

the space dependent source      numerically. The initial and Dirichlet boundary conditions 

with overdetermination conditions are used for unique recovery. The inverse problems 

investigate under temperature distribution at final time condition and mass/energy 

specification (integral type) data. FDM method based on the Cranck-Nicholson scheme 

utilised to discrete the direct problem. Also, the von Neumann technique was used to study 

the stability and convergence of the proposed numerical direct algorithm. The inverse 

problems were reformulated as a nonlinear optimization problem and solved numerically by 

lsqnonlin iterative routine from MATLAB. We test the source reconstruction for both exact 

and noisy data to evaluate the stability of the approximated solution. To stabilize the ill-posed 

problem under investigation, we apply Tikhonov’s regularization method. Which is based on 

converting ill-posed problem to a family of well-posed problems related to the regularization 

parameters. Choosing regularization parameter β that balances accuracy and stability is the 

major challenge when solving the ill-posed problem with regularization. In this research, we 

employ L -curve criteria and minimum      curve to find the best/ optimal regularization 

parameters which give the stable and accurate solution. Finally, a couple of numerical test 

examples are given, and the accuracy of results is presented by figures and tables which 

confirm the stability of our results. 
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