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Abstract

This paper introduces the Right Truncated Inverse Gompertz Distribution
(RTIGD) with two parameters & and 9 with some of its properties as; (Survival-
Function, Hazard-Function, cumulative distribution function, probability density
function, r-th moment, mean, variance, Moment Generating Function, Median, and
Mode. In addition, we propose a new hybrid algorithm, namely the firefly Algorithm
with Cuckoo Search Algorithm (FA_CSA) to estimate the parameters based on the
survival functions of RTIGD. Simulation is utilized to compare the proposed
algorithm with traditional methods, for example, the Maximum Likelihood Estimator
and moment method and the standard algorithms Firefly Algorithm and Cuckoo
Search. In most cases, the results demonstrate that the proposed algorithm (FA_CSA)
provides an accurate estimation for the survival function since it has less mean squared
error than the other estimation methods.

Keywords: Firefly Algorithm, Hybrid Algorithm, Cuckoo Search Algorithm, Right
Truncated Inverse Gompertz distribution (RTIGD), Maximum Likelihood Estimation
Method.
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1. Introduction

Recently, survival analysis has been executed in most science fields. The term survival
analysis means an analysis that is performed to specify the probability of occurrence of the
events associated with failure or death time after treatment [1].

For many years, statisticians have been interested in estimating survival functions [2-6]. In
addition, statistical distributions have been long employed in survival analysis [7-9] .Recently,
numerous researchers focused their consideration on suggestions for more flexible probability
distributions, by using different approaches to describe a set of data. Distribution properties are
very useful to illustrate the ability of that distribution. Without losing the generality, the
Truncated Distributions (TD) are more realistic to describe phenomena. In statistics, TD refers
to conditional distribution created by imposing limits on the domain of another probability
distribution. The TD arises in the practical statistics in cases where the ability to record or even
to know about the occurrences is limited to the values that lie above (below) a given threshold
or in a specific range. Therefore, this paper introduces the truncated distribution and estimates
the parameters depending on the survival function. However, the classical statistical methods
are not appropriate for the survival function due to the nonlinearity of a model distribution
makes the estimation of parameters more difficult and more challenging [10]. Thus, the
research community aims to estimate the parameters by using meta-heuristic algorithms. Shin
et al. [11] used a meta-heuristic algorithm presented by Genetic Algorithm (GA) to maximize
the result of log-likelihood to estimate the parameters of the mixture's normal distribution.
Yoon et al.[12] estimated the parameters for appropriate probability distribution by using a meta
heuristic approach (harmony search algorithm). Ali [13] proposed the Jackknife algorithm
which estimated parameters of the Gumbel distribution.

Even though meta-heuristic algorithms have been effectively used to solve complex
problems, there is no standard algorithm that can be used for all problems depends on the no-
free-lunch theorem [14]. Consequently, the contemporary concepts of hybrid algorithms
facilitate the selection of an appropriate algorithm that aims to overcome the implied limitation
of meta-heuristics in attempting to solve parameter estimation procedures. So, the aim of this
is to introduce a hybrid algorithm to estimate the parameters of Right Truncated Inverse
Gompertz Distribution based on survival functions.

The rest of the paper is organized as follows: Section 2 describes the Right Truncated
Inverse Gompertz Distribution. Section 3 presents some properties of the Right Truncated
Inverse Gompertz Distribution. Section 4 and section 5 introduce the Maximum Likelihood
Estimation and Moment Estimation Methods, receptively. Section 6 describes the Meta-
heuristic Algorithms. To demonstrate the effectiveness of the proposed Hybrid Meta-
heuristic algorithm, numerical results and discussions are presented in Section 7. In section
8 conclusions are given.

2. Right Truncated Inverse Gompertz Distribution (RTIGD)

Gompertz presents a two parameters of the probability distribution [15] which is widely
utilized in SA to represent behavioral science data and human mortality. It is an extension of
the exponential distribution, and it has numerous utilize in real-life [16]. Eliwa et al.[17]
introduced Inverse Gompertz Distribution (IGD) with different estimation methods and
properties.

The random variable (X) is said to have IGD if it has the following the p.d.f :
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fs o) =2 e _é(ez 1)+ x,8,0>0. (1)

Where 6 and 9 represent the shape and the scale parameters, respectively. The (CDF) of the
Inverse Gompertz Distribution (IGD) is as follows:

s( %
o)
F(x;6,9)= e (2)
The right-side truncation for the inverse Gompertz distribution is
f(x;8,9)

fRTIGD (x) = FL0.9)

Therefore, Right Truncated Inverse Gompertz Distribution (RTIGD) on [0,1] is given as
follows:

9
5 —%(ef—1)+%
f(x;6,9) — 22 €

frrigp(x;6,9) = F(Lo.0) o) (3)
And the CDF, SF and HF for RTIGD are expressed respectively as follows:
9
F(x;6,9) e_g <e§—1>
Frricp(x;6,9) = F(l;,8,,19) = () (4)
e’ 9 9
e—%(ef—l e_g (eﬁ—l)_e_g <e§—1)
Srriep (%;8,9) =1 = Frrygp(x;6,9) =1 ——5 5N ) ®)
e—ﬁ(" -1) —5(9 1)
9
5 () ,
Frriaps89) xz‘sﬁ : e_g(eh%_
RTIGD (X; e 9\~ —_ %2
And Hgrigp(x; 6,9) = Serien(8.9) CA . (6)

Where x is a random variable value and0 <x < 1, 9 is the scale parameter
where (9 > 0), andé is the shape parameter where (6 > 0).
Figures (1- 4) illustrate the (PDF, CDF, SF and HF) for the RTIGD of some cases of § and 9

. Figure 1: RTIGD (p.d.f) Figure 2: RTIGD (c.d.f)
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Figure 1: probability density function for Figure 2: cumulative distribution function
RTIGD for RTIGD
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Figure 3: RTIGD (S.F)
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Figure 3: Survival function for the RTIGD Figure 4: Hazard function for the RTIGD
3. Some properties of the Right Truncated Inverse Gompertz Distribution
In this section, some properties are given for RTIGD. However, some properties are
complicated to be solved. For this reason, we use numerical analysis to find some of them. We
also do some simplifications for the E(x") by using the Binomial theorem and Tayler series
n
@Fx)" = z ") (Fx)la .
" ()
3.1 r-th Moment:
The r-th moment can be derived as follows:

9 9
s —g<e§—1>+2 s —g(e§—1> 9
rn _ (lor _ 1l or2® _lorz€ ex
E(x") = fo X' frriep (%) dx = fo X T dx = fo X T dx
e e
%) k 0 k
s -k (s 9 ) 8 -k /s k(9 9
e Ayl 2
= [ x' =0 dx = [ x" =0 dx
fo e_g (e9-1) fo _ e_g (e%-1)
5 Ty VS iy (D)L
L2 ey Hev(s) e
= xT k=0 dx
0 —§(e‘9—1)
e 9
. ) k (—0KH e sk 2 (k—j)+1
5D SO ()
= ;&) keo 7 dx
0 —g(e‘g—l)
(o]
Kk K—j+1
5 ok gy sk D
5 5 D SO E)(=
=y e dx
0 —g(es—l)
*© k
5 DK 1y /8 kﬁ(k—'+1)
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ler k=0 )=0 dX
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When r=2, we get

k j 0 m m
5 E § SO @)Y (a(eepen)”
k=0 j=0

S
o5 (2-1)

E(x?) =
And if r=3, then

Z DS 6 () o) )
k=0 =0

~5 (e9-1)

E(x3) =
While | if r=4, then we have

” k (_1)k+j k § k o (-nm i m 1
8 _ K (1) (9 ) Zm:o( m! )( (ﬁ((k ])+1)) 3—m)
k=o 0

8
o3 (e0-1)

E(x*) =

3.2 The Variance
The Variance (Var) of RTIGD can be found as follows:
o? = Var(t) = E(t?) — [E(D)]?
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3.3  The Moment Generating Function (MGF)
The MGF of RTIGD can be derived as follows:

M (1) = E(e) = [] ™ farigp(®) dx

1 M 1 —m—
_J' etx (Pk]m (X m 2)dX= (Pk,j,m fo etxX m ZdX
= Qkjm f Z X" M2 dx
—o

Where, et Z (tx)n

n=0 n!
_ . L yh—m-2 _ ) * @ xhmmel g _
(576 ) 00 = (3, (8)
Pijm (Z ) n-m-1"

E § 1)“*1 kS com . N OLIE!
j ) Zm=0 m! Ok=j+1)™ Zn=0Tn—m—1
j=0

—5 (e%-1)

Therefore, M, (t) =

3.4 Median
The Median of RTIGD can be found as follows:

1
Frrigp(x) = >
9
ex— 9
() L () e

2

/ 8<2 1) ) 9
— | ex—
ln(e 7 >=ln<e_5(eﬁ_1))—ln2=> ex—1=¢? -1 +%ln2

v 9 0 v 9 9 9 9 9

ex =e +Eln2 = lnex—ln(e +Eln2>=> ;—ln(e +Eln2)
9

x =—

med ln(e19 +% In 2)

3.5 Mode
The Mode of the RTIGD can be found as follows:

dfrTIGD (X) —0
9 9
—g <e§—1>+2 5 9 g 9 —g (e§— 1>+§
x2 | e <? ex —— X—2> - |2xe
dfgrricp(X) _ 8 —0

dx
dx e_g (e“’— 1) x*
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(e—%(eg-l%% (56 o)) o> e-%@*)*g) -

9
dex —9 —2x=0.
It can be obtained numerically, furthermore it always exists and unique.

4 -The Maximum Likelihood Estimation Method (MLE)
The likelihood function (L) is given by:
5 L (X1,X3, 0., X, 6,9) =

s % 9
-2 eXi-1 +o
[Tt frriep (Xi) = in=1\ 1 e_g(ee_l) /

Taking the natural logarithm to the two sides to get:

LnL = nLnd — 2 YL, Ln(x;) + 9 X, ——§ Hl <efl—1>—n(—§(e‘(’—1)>

9

LnL = nLn§ — 2 Y™, Ln(x;) + 9 ¥ ——g n <efl_1>+n (e®— 1) (7

The partial derivative of equation (7) in terms of the unknown parameters (8§, 9)respectively:

9

dLnL n_lgn - 1, 9
=—-—= i—1 n- -1

a8 5 9 1(e >+ a(e )

9

§—§Z?=1<ex‘i—1>+n§<eﬁ—1) =0 ®)

9 9
§9YN L oeXi_gyn (eXi—1

dlnL _op 1 =1 x =t 9nded-nse®  -ns

a0 Zi:lx_i_ 02 + 02 5

9 9
89 YL, = eXi-83l, [ eXi-1

n 1 =1 x =t +8n5e9—n8e3+—n8_0

i=1Xi 92 92 92

9 9
Py, ——89 XL, — €5 — 5N 1<e"1—1>+n8e‘9(19—1)—n8—0 9)

Since two non-linear equations are difficult to solve, so that the Newton-Raphson method is
utilized to estimate the parameters § and 9.
From the equations of (8) and (9), we get:
SmLE\ _ _ f(8,9)
(gMLE) ( ) ] (g(6 19))
9

let f(6,19)=%—% s (e"t—1>+n (e )
And,
J J
g(8,9) =92 ?21%— 859 Y, xl eXi— 83, <exi — 1) + nse?(@—1)—né

Then
f(89) -n
a5 o2 (10)
1 19 9
9 ‘{‘l_ x,__ n
6f(6,19) _ i=1 xi Z 1(6 1) + ﬁneﬂ_neﬁ + i (11)
a0 92 92 92
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And,
9 9
aggia) 9 Y %exi—2?=1<exi—1>+ ne?®—-1)—n (12)
99(8,9) n (L) [2® ;9 = - 9 9
2D = 293 __62i=1(x_i) Tetitent | = ST, e+ no(9 () +e) -

né(e?) (13)

The Jacobean determate formulas are now as follows:
af(6,9) af(s9)

J=| 08 99
09(6,9) 09(8,9)
26 29

As a result, the equation matrices are utilized to estimate the parameters for RTIGD on [0,1]
using the Newton-Raphson method.

9
2 12" 1<exl 1>+n—(e -1)

() = () -1 Ty

92 ——619 = exl -5Y, eXi— 1>+n6 eV(9-1)-né
af(6,9) 6f(5,19)

Let u1= Py ,u2= T, 3 = f(5 19)

ag(8,9) ag(8,9)

4 = 966 yUs = gaﬁ 6=g(6;19)

Therefore,
(?:MLE = 6+ hy (14)
Iy = Yo + kq (15)
Where:

Jl= = adj()) , by = 2T apg g, = el

|] | U Us—UzUyg Uy
which depend on (4-8) and (4-9)
So, the estimated survival function Sgr;ep(x) by MLE will be as follows:

(16)

5. Moments Estimation Method (MOM) :

The MOM was utilized to estimate the parameters of § and 9 for the Right Truncated Inverse
Gompertz Distribution on [0,1]. the MOM can be get by equating sample moments to the
population moments.

E(xk)—— noxk  where k=1,2,...

The first and the second moments of the population and sample for two parameters of the
RTIGT are given depending on the general form of x™ moment [18], respectively as follows:

I OO T e
k=0 J=0

~5 (e9-1)

E(x") =

whenr =1,
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° Z Z;((”ﬁf&j) (T) (g )k Z:=o(( ;1). ) (s((k_j)+1))m S

~5(e9-1)

Ex) =
Hence, when, M; = E(x)

z Z 1)k+1 )k Z:ﬂ(%) (8((k—j)+1))m _L
j=0

_g(eﬁ—l)
2 z ( 1)k+] g)k z:ﬂ(%) (8((k—j)+1))m —
j=0
_g(es_l) ~0 (17)

when r = 2 then,

0 X . N
2 D E) ()6 T () (aepi)” e
_ k=0 J=0

“8(e9-1)
9
The second moment for the both population and sample is:
——(Z L1 x7),
M, = E(xz)
" K j LY m m
Z S EE) () @) X (onen)”
k=o 70
(Zl 1X 1 o (e3—1)
DD N0 6 TR e 2
Eikax) T =0  (18)

The Newton-Raphson method is utilized to estimate the parameters of 6 and 9. because two
non-linear equations are difficult to solve.
From equations (17) and (18), we get:

Gros) =G -7 (69)

let £(5,9) =x— .
And,
k+] Kk 0 \m . o
%2 Z z] -0 ( 1) ) an:o(%) (B((k—])+1)) ﬁ
— n
g(8,9) = _(21 1Xj 8 (e9-1)
e

The Jacobean determate formulas are now as follows:

of(89) 0f(8,9)
] = a6 09
~ og(59) 9g(5,9)
a6 a9

899



Jabbar and Kalaf Iragi Journal of Science, 2024, Vol. 65, No. 2, pp: 89/- 906

As a result, the follows equation matrices are utilized to estimate the parameters for the
RTIGD on [0,1] by using the Newton-Raphson method(zMOM) = (8—") -

MOM Yo
k (o o]
Z z (& 1)k+1 @) Z (G25) (atape)™
j=0 m=0

-1 —%(eﬂ—o
Z z ( Dkﬂ %)k Zw (E27) (ocaep+n)™ 25
—(Zn 2 j=0 m=0
i=1 Xi (eﬂ_l)
af(8,9) af(8,9)

ag(6,9 ag(6,9
Therefore,
(?:MOM = 6y + hy, (19)
Iyom = 9o + ks, (20)
Where,

J7t= 2 adj()), hy = 278 and k, = el

|]| UiUs—Uply Uy
That depend on (19) and (20)
So, the estimated survival function Sgr;ep () py MOM will be given as follows:

N 9
- N ) MOM
_SmMom (e19MOM _1) —% (e x -1
e Ymom —e

S x;6,9) = 3 B
1%"(1)%( ;6,9) _M(eﬂMOM -1)
e YMoMm

: (21)

6. The Meta-Heuristic Algorithms.

Recently, the traditional mathematical method can occasionally fail to solve and address the
parameter of the model estimation[19-21]. In the real world, the Meta Heuristics algorithm
(MA) provides a near-optimal solution[22]. These algorithms have grown and used in
popularity due to their important properties and benefits such as ease of implementation and
flexibility [23].

6.1. Firefly Algorithm (FA)

The FA was developed by Xin_She Yang in 2008 [24] by modeling the brightness of the
fireflies and their behavior in nature. The majority of the fireflies produce brief, rhythmic, and
distinctively patterned lights. The primary function of these lights is to draw in hunters. Each
firefly's attractiveness varies based on how much light it can be produced. In fact, the lighter
side of each pair of fireflies attracts the one with the less light. [25, 26]

The firefly algorithm (FA) steps :

Step 1. Generate values of parameters FA (the parameter for randomization (o), firefly
attractiveness (3,) , population size N, media light absorption coefficient y and a maximum
number of generations.

Step 2: Generate a random solution set X;.

Step 3: Evaluate the light intensity (1), at (X;) from the likelihood function (objective function)
of all solutions in the population.

9
f =nLné —2 )L, Ln(x;) +1‘)Z{‘=1%—§ L 1<e"1 - 1) + ng(e19 -1)

Step 4: Update each solution with the position update equation
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—vr2 1
t+1 _ t st t .
Xt = x{ + Boe V(%] — x{) + « (rand—z),

ry =l x; = x; ll= ng=1<xi,k—xj,k>2, v E€[0,0), «€ [0]

Step 5: Perform Greedy selection.
Step 6: Terminate if a termination criterion is fulfilled otherwise go back to step 3.

6.2. Cuckoo Search Algorithm (CSA)

Cuckoo search (CS) was created in 2009 by Suash Deb and Xin-She Yang. The CSA is a
population based meta-heuristic algorithm inspired by the reproductive behaviors of the cuckoo
bird [27].Cuckoo birds may remove other eggs from communal nests where they lay their eggs
in order to increase the probability of hatch [28, 29]. Because their eggs hatch before the host
bird's eggs, the cuckoos lay their eggs in a nest where the host bird had just laid its own eggs.
As soon as the eggs hatch, the cuckoo chick begins to push the host eggs outside of the nest in
order to acquire a larger portion of the food provided by its host bird. Flights on Levy Recent
studies, including those by [30].

The steps of CSA are as follows:
Step 1. Generate values of parameters CSA (p, € [0,1]), maximum the number of
generations and population size N
Step 2: Generate a random solution set X;.
Step 3: Evaluate the objective function from the likelihood function.
5 9

f =nLnd —2 ¥, Ln(x;) + 192111%— S 2t <ex_i — 1) + ng(e‘9 -1)

Step 4: A new solution is randomly generated by using a Levy flight as follows.
xt*t = xf + p®Levy (1)
where (p) is the step size, @ denotes entry-wise multiplication, and Levy(Q) is the
Levy distribution.
Step 5 if (F(x™*) > f(x"))
Then simply replace the old solution with the new solution x**%.

Step 6: A Part (p,) of solutions is randomly chosen and replaced with new solutions generated
by using local random paths.as follows — x{** = x + w (xf — xf), where (x/) and (x;) are
two various solutions at random chosen and (w )is a random number.

Step 7: a ranking of the solutions based on (f), The best solution has been chosen. The iteration
count goes up.

Step 8: The procedure is repeated until the termination conditions are met.

Step 9: Produce the best solution discovered.

7. The Proposed Hybrid Meta-Heuristic Approach

There are different types of algorithms that are used for optimization each one has a different
weaknesses and strengths. Some of them work well with specific problems, while others may
not. Not only do they differently perform on different problem classes, but also they differently
behave on distinct problem instances. According to Wolpert and Macready (1997)'s the NFL
theorem in heuristic search, there is no method that performs well on all problems [14]. As a
result, we consider two critical components of modern meta-heuristics: exploration and
exploitation. Thus, a new hybrid algorithm namely FA_CSA combing the firefly Algorithm
with Cuckoo Search Algorithm to estimate the parameters (5, 9) of the Right Truncated Inverse
Gompertz distribution based on SF. Since the diversity is very effective if the algorithm
converges slowly to solutions that hop around some potentially optimal solutions.
The steps of FA_CSA are as follows:
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Step 1: Generate values of parameters FA and CSA (the randomization parameter «, firefly
attractivenessf,, population size N media light absorption coefficient y and a maximum
number of generations.

Step 2: Generate a random solution set X;.

Step 3: Evaluate the objective function by minimizing the log-likelihood of all solutions in the

population.
9

f =nlné —2 ¥", Ln(x;) + 192’1-21% — %Z{;l <ex_i — 1) + n%(eﬁ - 1)

Step 4: Light intensity (1) is determined by fitness function at (X;). Step 5: Update each solution

with position using a Levy flight for CSA and Update Equation as follows. xf*' = xf +

Boe VT (xf — x) + (rand — ;) (p ®Levy(R))
where (p) is the step size, @ denotes entry-wise multiplication, and Levy(A) is the Levy
distribution.

Step 6: Perform Greedy selection
Step 7: Terminate if a termination criterion is fulfilled otherwise go back to (step 3).

8. Simulation study

The proposed method's estimation performance is validated using simulation. Furthermore,
1000 replications were used to generate each simulation condition. To investigate the effective
size of the samples, mutable sizes are tested: 15, 30, 60, 90,120 ,160, and 200. The steps of
simulation based on Mean Squared Errors criteria were introduced as follows.
Step 1: Initialize all the parameters of FA, CSA and FA_CSA Methods.
Step 2: Generate random samples as (uq,u,, ..., u,), Which can be defined by continuous
uniform distribution of interval (0,1). After that, using (CDF) to transform it to random samples
that is followed the RTIGD:

9 9
_%<ez_1> _g(&_l> 6<e% 1) 5,9
e e —5 - 9 _1
Frrigp(;8,9) =—F%——, W =—5—— = e =w e (e¥-1)
e )

—% (eg—1> = Iny; +<—% (eﬁ—l)) = e —1 =—% Inu; +(e% —1)
)

ex = —g Inu; +e? = ex=¢" —% nuy = %:ln(e19 —% lnui)
9
B ln(eﬁ—g lnui)
Then, define a vector which is used for all required parameters; such as X = [§,9 ], and
generates N solutions for X
Step 3: Compute the S from equation (5).
Step 4: Then, Compute (S) based on (MLE) and (MOM) by using equations (16) and (21)
Step 5: Calculate the best solution ($) from FA, CSA, FA_CSA methods.
Step 6. Based on (L=1000) trials, MSE will be calculated as follows;

MSE = (:3k,(5 - 5)°).

Xi

8. Numerical Results

To determine the best method of the proposed estimation method (FA_CSA) by estimating
the survival function based on the scale and shape parameters (§,9) of RTIGD, seven sample
sets (15, 30, 60, 90, 120, 160, 200) are used. Tables (1)-(4) illustrate the results of the simulation
of the proposed estimation by utilizing the survival function and MSE of all the estimation and
the classical methods, meta-heuristic algorithm (FA_CSA, CSA, FA, MLE, MOM) depend on
the survival analyses and MSE. The sets of parameters (6;,91), (62,92), (63,93), and (64,9,)
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that are used in the fourth table are (2,1), (3,2), (2,2), and (1,2), respectively. These tables
showed that the Hybrid Algorithm (FA_CSA) provided less Mean Square Error in all cases for
the survival function. This implies that the (FA_CSA) method was the best of the other
estimators. In addition, in Table 1, we notice if the two parameters are different i.e. the scale
parameter is less than the shape parameter (first case), then the CSA algorithm showed that it
has less MSE, than FA algorithm, MLE, and MOM. In this paper, when n= 160 and the survival
function value is equal to 0.24853619, the classical methods MLE and MOM showed that MSE
Is stronger than the CS algorithm FA. While in Table 1, we notice that the best algorithm comes
after the FA_CSA algorithm. The CSA algorithm showed that it has less MSE than MLE, then
MOM, and then FA in all the different samples that are taken in this paper. In Table 3, when
the parameters of shape and scale are equal and their value is equal to 2, we note that the
classical methods (MLE, MOM) provided reasonably suitable solutions, showing that MSE is
less than CSA and FA in all the different samples that are chosen except the case when n =
160 and the value of the survival function is (0.70066124 ), we note that CSA and then FA have
MSE less than MLE and MOM, While in Table 4, when the shape parameter is less than the
scale parameter, we note that the classical methods (MLE, MOM) provided reasonably suitable
solutions, showing that MSE is less than CSA, and FA when n = 15,30,60,200, but in the case
of n = 90,120, it was shown that CSA possesses Less MSE, so it is better than FA, MLE, and
MOM, but when n=160, we notice that CSA is better than MLE, MOM, and FA.

Table 1: MSE values of § when 81 = 2 and 81 =1

0.51399103  0.00022452 0.00026418 0.00021073 0.000109201 0.000058592  FA_CSA
0.54621339  0.00025122 0.00029835 0.00020593 0.000205111 0.000129229  FA_CSA
0.93782066 0.00067983 0.00087951  0.000003867  0.000003861 0.0000037455 FA_CSA
0.80864843 0.00053203 0.00065391  0.000036615 0.0000366153  0.0000294678 FA_CSA
0.50921327 0.00021976 0.00025929 0.00024086 0.000218407 0.000124167  FA_CSA
0.24853619 0.000053238 0.00006177 0.00056469  0.0003744895  0.0000302333 FA_CSA
0.80622061 0.000018751 0.000405884  0.00003755 0.000037551 0.0000173341 FA_CSA

Table 2: MSE values of § when §, =3 and 9, = 2

0.22568305  0.000049232 0.0000509328 0.0005995666  0.0000358966  0.00001411691 FA_CSA
0.52969078  0.000269217 0.0002805723 0.0002211907  0.0000659206  0.00006301401 FA_CSA
0.32883322  0.000104295 0.0001081313 0.0004504643  0.0000449796  0.00003519722 FA _CSA
0.21891907  0.000046323 0.0000479256 0.0006100871  0.0000302368  0.00001403676 FA_CSA
0.46764682  0.000210211 0.0002186941 0.000283399  0.0000490429  0.00004534779 FA_CSA
0.23787034  0.000054672 0.0000565823 0.0005808381  0.0000182799  0.00001793788 FA_CSA
0.74849087 0.000532149 0.0005602385 0.0003596656  0.0001046597  0.00008154242 FA CSA

Table 3: MSE values of § when 65 =2and 95 =2
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0.38501026  0.00014005 0.0001482329  0.000378212  0.0001415739  0.0000077046  FA_CSA
0.35738965  0.00012090 0.0001277273  0.000412948  0.0001555131  0.0000212501  FA_CSA
0.10866648  0.00001124 0.0000118084  0.000794475 0.0000335452  0.0000020396 ~ FA_CSA
041725363  0.00016441 0.0001741005 0.000339593 0.0001481170  0.0000245383  FA_CSA
0.22350023  0.00004743 0.0000499523  0.000602952  0.0000875128  0.0000015754  FA_CSA
0.70066124  0.00045711 0.0004909262  0.000089601  0.0000517870  0.0000292561  FA_CSA
058990013  0.00032628 0.0003479821 0.000168181 0.0001136663  0.0000104644  FA_CSA

Table 4: MSE values of § when 6, =1and 9, = 2

045161268  0.00018208  0.000203954  0.000300728  0.000296004  0.000037627  FA_CSA
0.34015476  0.00010384  0.000115705  0.000435396  0.000337102  0.000001822  FA_CSA
0.14215532  0.00001825 0.0000202081  0.000735897  0.000226647  0.000000498 ~ FA_CSA
054327752 0.00026195 0.0002951504 0.000208595  0.000192656  0.000002786  FA_CSA
090183611  0.00068672  0.0008133084 0.000009636  0.000009635  0.000001397  FA_CSA
0.19990599  0.00003604  0.0000399624  0.000427033 ~ 0.000015499  0.000003792  FA_CSA
0.33880791  0.00010295 0.0001147907  0.000351734  0.000032424  0.000002115  FA_CSA

8. Conclusions

In this paper, we propose three methods (CSA), (FA) and (FA_CSA) to estimate survival
functions based on the parameters (6,9) of RTIGD. Simulation is utilized to compare the
suggested method with a classical method which includes (MLE and MOM). The results show
that in the first, second, third and fourth cases, it was found that FA_CSA algorithm is better
than the other algorithms in all the different sample sizes that are randomly selected in this
paper, where the proposed algorithms are strengthened by taking the strengths of each proposed
algorithm in this paper and merging them with Some in order to give better and stronger results,
as the results proved that the new algorithms are the best because they have less MSE.
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