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Abstract  

     Serious gases have been highly related to being prejudiced against human life 

within the environment. The evolution of a trustworthy gas sensor with an elevated 

response is of major importance for detecting various hazardous gases. Titanium 

dioxide (TiO2) nanotubes (TNTs) are favorable candidates with considerable potential 

and stellar performance in gas sensor applications. In this work, we have studied the 

effect of voltage on preparing TiO2 nanotubular arrays via the anodization technique 

for gas sensor applications. A simple electrochemical anodization approach was used 

to synthesize titanium dioxide nanotubes. Diverse techniques of characterization were 

used to evaluate TNTs. The results gained from field emission scanning electron 

microscopy (FESEM), energy dispersion spectroscopy (EDS), and X-ray diffraction 

(XRD) indicate that TiO2 was formed. Gas sensors were created, and the gas detection 

characteristics were directed towards hydrogen sulfide (H2S), which is not a healthy 

gas. The sensor made from these nanotubes responds well to this gas at different 

temperatures and has high sensitivity. The H2S-detecting characteristics were 

evaluated at values ranging from room temperature up to 300 oC. Results show that 

the gas sensor TNTs that was prepared at 30 volt for H2S gas sensing has the highest 

sensitivity and shortest response time at room temperature. 

Keywords: Electrochemical deposition, TiO2 Nanotubes,  Hydrogen Sulfide (H2S) ,  

Gas Sensing, Sensitivity 
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 الخلاصة  
من  غاز  ال  ات حياة الإنسان في البيئة. إن تطور مستشعر بالتأثير على  ترتبط الغازات الخطيرة ارتباطًا وثيقًا        
  (TNTs)  له أهمية كبيرة في اكتشاف الغازات الخطرة المختلفة. تعتبر الأنابيب النانوية   العاليةستجابة  ال   خلال

إمكانات كبيرة وأداء ممتاز.  في تطبيقات مستشعرات الغاز لما تمتلكه من    مفضلة   TiO)2(لثاني أكسيد التيتانيوم  
تأثير الجهد لتحضير   النانوية عبر تقنية الأنودة في تطبيقات استشعار    2TiO  انابيبفي هذا العمل ، درسنا 

كسيد التيتانيوم. تم  و الغاز. تم استخدام طريقة بسيطة من الأنودة الكهروكيميائية لتصنيع الأنابيب النانوية لثاني أ
لتقييم   متنوعة  توصيف  تقنيات  النتائج  TNTsاستخدام  تشير  الإلكتروني  المستحصلة  .  المجهر    الماسح من 
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 (FESEM ( والتحليل الطيفي لتشتت الطاقة ،  )EDS ( السينية  قد   2TiO ( إلى أنXRD(، وانحراف الأشعة 
(، وهو  S2Hالغاز نحو كبريتيد الهيدروجين )  الكشف عن توجيه خصائص   و . تم إنشاء مستشعرات الغاز  تتشكل 
من هذه الأنابيب النانوية جيدًا لهذا الغاز عند درجات حرارة  المصنع  . يستجيب المستشعر  ضار بالصحة غاز  

حرارة الغرفة    بدرجات حرارة تتراوح من درجة  S2Hمختلفة ولديه حساسية عالية. تم تقييم خصائص الكشف عن  
هي أعلى    S2Hفولت لستشعار غاز    30عند  المحضر   TNTs. أظهرت النتائج أن مستشعر الغاز  Co  300  الى

 حساسية وأقصر وقت استجابة في درجة حرارة الغرفة.
1.  Introduction 

     With the prompt development of industrialization and the social economy, a considerable 

amount of industrial waste gases, such as hydrogen sulfide (H2S), carbon monoxide (CO), 

nitrogen oxides (NOx), sulfur dioxide (SO2), and several volatile organic compounds, are 

released into the environment. One of the more worrisome pollutants, H2S, is often found in the 

production of paper and pulp, coal mining, and natural gas extraction [1-4]. In addition to being 

corrosive, fetid, poisonous, and combustible, H2S also affects human breathing, eyes, and the 

central nervous system at low doses [5,6]. So, it is of significance to improve quite sensitive, 

reliable, and rapid H2S sensors. Semiconductors are perfect materials for gas sensors; 

accordingly, their conductivity is based on the concentration of the gas in contact. Currently, 

semiconductors of metal oxides such as zinc oxide (ZnO), stannic oxide (SnO2), indium oxide 

(In2O3), and titanium dioxide (TiO2) have been utilized to reveal harmful gases [7-12]. TiO2 is 

highly applied as a material for gas sensing in order to detect harmful and toxic gases due to its 

excellent physicochemical properties. Firstly, TiO2 is an n-type semiconductor with a bandgap 

of about 3.2 eV [13-17]. Moreover, TiO2 has the features of chemical stability, environmental 

friendliness, biocompatibility, and low synthesis cost [18-23]. Secondly, in overview, sensors 

founded on semiconductors of metal oxide are types that control surface resistance because of 

the chemisorption of gases on the surfaces of semiconductors. In the reaction, the increased 

charge carriers on semiconductor surfaces will reduce the thickness of the depletion layer there, 

which will subsequently cause the resistance of the semiconductor to drop [24]. Importantly, 

the major interest is in discovering options for operating  sensors at low temperatures (room 

temperature) without losing elevated sensing capacity [25,26]. Nonetheless, the sensitivities of 

their gas are frequently only obtained at high temperatures, resulting in low durability and high 

energy consumption [27]. In order to have a large surface area for gas arrival from the 

surroundings, the size-specific geometrical properties of the structures should exist in the 

nanodomain to solve this issue. The most encouraging structures are therefore those that are 1D 

or 2D, such as nanorods, nanotubes, nanobelts, and nanoplates [28,29]. Through these 

structures, titanium dioxide nanotube arrays have an elevated potential [30]. Therefore, this 

research aims to study the effect of voltage on preparing TNTs by an anodization method and 

fabricating them for H2S sensing. TNTs displayed well-sensing performance at room 

temperature; thus, these findings lead to increased durability and low-energy consumption. 

 

2. Experimental 

2.1.  Materials  

     AnalaR Chemical Company supplied ethylene glycol (EG, 99.5%) and ammonium fluoride 

(NH4F, 98.0%). Titanium foils with a thickness of 0.8 mm and a purity of 99.99% were used 

(Flow Serve Company, USA). In addition, deionized water (DI) (Nanopure Water System, 18 

MΩcm at 25 °C) was used to produce all the solutions during the experiment. A power supply 

(Laboratory DC Power Supply, TM-605) was employed as the voltage source. 
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 2.2. Syenthesis of TNTs nanofilm 

     In this study, the electrochemical anodization procedure was used to prepare TNTs [31]. 

Firstly, the Ti foil was ultrasonically cleaned for 15 minutes with acetone, followed by 15 

minutes each with ethanol and DI water before anodization, and then etched with 6 M HNO3 

before anodization. Anodization of TNTs on Ti foil (10 mm × 20 mm × 0.8 mm) was applied 

in a cell with two electrodes. Titanium foil was the working electrode, while graphite was the 

counter electrode (a 2 cm distance between the electrodes was maintained). NH4F (0.5 wt%) 

dissolved in water (5 vol%) with ethylene glycol as the electrolyte. The cell was attached to a 

power supply and subjected to different voltages (10, 20, 30, and 40 volts) for 1 hour at room 

temperature. After that, the prepared samples were washed with DI water. To obtain TNTs, the 

prepared samples were annealed at 500 °C for one hour at a rate of heating of 2 oC.min-1. 

 

2.3. Characterization of TNTs 

     The morphologies of TNT nanofilm were studied using a field emission scanning electron 

microscope (FESEM) (MERLIN, ZEISS, Germany), while element analysis was done using 

energy dispersive X-ray (EDS) spectrometers. Then, using Cu Kα radiation (λ = 0.1541 nm) in 

X-ray with voltage (60 kV) and current (60 mA), X-ray diffractometry (X-ray, 

PANALYTICAL, X-Pert Pro) was used to identify the phase composition of TNT samples. 

Moreover, the data on patterns were gathered with 2 theta, ranging from 10 to 80 °C. The 

crystallite sizes (D) of TNTs were calculated using the Scherrer equation [32].  

 

                                                   𝐷 =  
0.89 𝜆

ß𝑐𝑜𝑠𝜃
                                                    (1) 

where λ is the wavelength of the X-rays, cosθ and ß are the incident angles of the X-rays, and 

the full width is half the maximum of the maximum diffraction peak, respectively. 

 

2.4. Measurements of gas sensing 

     A suitable setup is created with the intention of determining the sensitivity parameter, which 

mostly pertains to the reaction time and recovery time of the manufactured TiO2 gas sensor 

detector. The schematic design shows how the test setup functions (Figure 1). The sensor was 

first put on the heater after the test chamber was opened. The conductive aluminum sheet was 

used to make the appropriate electrical connections between the pin feedthrough and the sensor, 

and then the test chamber was sealed. After that, a bias voltage of 6 volts was supplied across 

the electrodes' two sides. The test chamber was then evacuated to a pressure of around 1 mbar 

using the rotary pump, and the sensor's working temperature was then adjusted using a 

temperature controller. The needle valves were used to control the H2S gas flow rate, and the 

PC-interfaced digital multimeter of type UNI-UT81B was used to monitor the current 

fluctuation. First, the biasing current of air flow was recorded by the digital multimeter; after 

that, the testing gas (H2S) was switched on, and after several seconds the current had low 

variation; then the test gas was switched off to record the recovery time.  
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Figure 1 : Schematic diagram of gas sensing and the electrical circuit setup 

 

     The gas sensor's reaction and recovery times (TNTs) describe how long is needed for the 

response to increase to 90% of the stable value and decrease to 10% of its superior value after 

adding and removing gas, respectively. Furthermore, the sensor's sensitivity can be calculated 

using equation 2 [33-35]: 

                                              S% = 
𝑅𝑜𝑛− 𝑅𝑜𝑓𝑓

𝑅𝑜𝑓𝑓
 𝑥 100%                                             (2) 

     where S is the sensitivity of the sensor, while Ron, and Roff are the electrical resistances of 

the sensor in the gas and air, respectively. 

 

3.  Result and discussion   

3.1. Structural and morphological characteristics 

     Figure 2a-d display the FESEM images of TNTs that were prepared at different voltages 

(10, 20, 30, and 40 volts). As shown in Figure 2, the TNTs became clearer and the nanotubes 

grew longer as the voltage increased. The improvement in the diameter and length of the tubes 

can be noted by adjusting the voltages of anodization [36,37]. Figure 2a shows that the TiO2 

nanotubes have not been formed under this oxidation voltage (10  volts). TNTs were formed, 

however, when the voltage was increased to 20 and higher. It is recognized from the mechanism 

of the reaction that the growth phase of the TNTs has entered. However, the top view and cross-

section of TNTs nanotubes formed at various voltages are shown in Figure 2. The inner and 

outer diameters of TiO2 nanotubes, as well as their lengths, may be calculated from 

photographs. Under anodization conditions, the inner and outer diameters of TiO2 nanotubes 

are 53 to 133 nm and 65 to 150 nm, respectively, and the tube length is 1.8 to 5.87 µm.  
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Figure 2: Top view FESEM images of TNTs prepared at: (a) 10 V ; (b) 20 V; (c) 30 V, and (d) 

40 V). Cross-sectionals of the TNTs are displayed in the inset of the figure  

 

     EDS was also used to analyze the elements of TNTs that were prepared at different 

anodization voltages. The elemental weight percentages of TNTs were mentioned as given in 

Table 1. In addition, Figures 3 and 4 display the EDS spectrum and elemental mapping of TNTs 

that confirm the presence of titanium and oxygen elements. Furthermore, fluorine and carbon 

come from the electrolyte of anodizing. While at 10 volt, iron was detected, which was 

confirmed to come from the composition of the titanium foil. Thus, it proved that 10 volt was 

not a suitable voltage to prepare TNTS with high purity. 

 

Table 1 : EDS analysis for TNTs at at different voltages (10, 20, 30, and 40 volts) 

Applied voltage (volt) Element Weight (%) Weight (% Error) 

10 C 5.4 0.1 

N 3.7 0.2 

O 19.4 1.0 

Ti 71.3 0.2 

Fe 0.2 0.0 

20 C 4.8 0.1 

N 3.4 0.3 

O 22.6 2.4 

Ti 69.2 0.2 

30 C 4.6 0.1 

N 3.0 0.3 

O 21.1 1.9 

Ti 71.3 0.2 

40 C 5.3 0.1 

N 3.6 0.5 

O 22.8 3.4 

Ti 68.2 0.3 
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Figure 3 : EDS of TNTs prepared at : (a) 10 V ; (b) 20 V; (c) 30 V, and (d) 40 V 

 

 
Figure 4 : EDS elemental mapping of TNTs prepared at: (a) 10 V ; (b) 20 V; (c) 30 V, and 

(d) 40 V 

 

     Figure 5 shows the X-ray diffraction patterns of the synthesized samples with different 

voltages of anodization. Alongside the strong diffraction peaks matching the titanium foil 

substrate (reference code: 00-051-0631). Six diffraction peaks were detected at 24.93◦, 37.67o, 

47.93o, 53.78o, 62.11o, and 75.08◦ were also located in all the prepared samples. The peaks of 

diffraction are listed in the lattice planes 101, 004, 200, 105, 213, and 215 according to reference 

code 00-021-1272. Thus, we deduced that TiO2 (anatase) was formed on the titanium foil 

mesh’s surface. Besides, one-diffraction peak corresponds to the rutile TiO2 according to the 

reference code 00-021-1276. According to the XRD examination, the TNTS nanotubes are 

polycrystalline, and using the data from the XRD in Figure 5, the average crystallite size (14.9 

nm) from the total width at half the maximum of TiO2 anatase 101 diffraction peaks is 

calculated using Equation 1. 
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Figure 5 : XRD diffractograms of TNTs prepared at different voltages (10, 20, 30, and 40 

volts) 

 

3.2. Performance of gas sensing  

     The variations in the resistance of semiconductors are the foundation for the sensing 

efficiency of semiconductors. These variations are caused by the interactions between 

atmospheric gases and semiconductors. In order to characterize the features of gas sensing, 

dynamic alterations in resistance are used. The ratio of the resistance in air to the resistance 

when the gas is present (Ra/Rg) is commonly used to describe the sensitivity response of the gas 

sensor, an n-type semiconductor, to a reducing gas. In contrast, the response of an oxidizing 

gas is described as the resistance of the gas to resistance without the presence of the gas (Rg/Ra) 

[34]. The results of the interference between gas and TiO2 nanotubes showed that when the H2S 

gas was introduced, the resistance of the TiO2 nanotube sensor decreased. Figures 6-9 shows a 

typical response of the n-type gas sensor (TiO2 nanotubes) to the reducing gas (H2S), which 

was confirmed by the resistance in the air being greater than the resistance in the presence of 

the gas [38]. 

 

 
Figure 6 : Change in the resistance of TNTs prepared at 10 volt to H2S gas at different 

operating temperatures 
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Figure 7 : Change in the resistance of TNTs prepared at 20 volt to H2S gas at different 

operating temperatures 

 

 
Figure 8 : Change in the resistance of TNTs prepared at 30 volt to H2S gas at different 

operating temperatures 
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Figure 9 : Change in the resistance of TNTs prepared at 40 volt to H2S gas at different 

operating temperatures 

 

Response and recovery times are the primary concerns for gas sensing properties, particularly 

at low operating temperatures. To select the optimal temperature for the working of the prepared 

TNTs gas sensor at different anodizing voltages, the gas sensors' responses to 450 ppm H2S 

were examined at an operating temperature starting from room temperature up to 300 °C, as 

shown in Figure 10. According to Figure 10, the response times of H2S gases via the TNTs that 

were prepared at 30 volt were less compared to the TNTs sensors that were prepared at 10, 20, 

and 40 volts. Furthermore, at the operating temperature (room temperature), all the prepared 

samples as gas sensors appeared to have a good response time for H2S sensing of less than 28 

seconds. While the recovery times of all gas sensors prepared at 10, 20, 30, and 40 volts at a 

lower working temperature were 72.9, 58.5, 155.7, and 138.6 seconds, respectively. TNTs at 

30 volt could be the perfect nanostructure for gas detection due to their ingrained qualities of a 

considerable surface area, superior rate of electron transport, intense adsorption capacity [39], 

and many porous positions for the prompter diffusion of the gas [40,41]. 

 

 
Figure 10 : Response and recovery times of TNTs prepared at : (a) 10 V (b) 20 V, (c) 30 V, 

and (d) 40 V 
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     Figure 11 shows the gas sensitivity of the TNTs sensor to H2S at different operating 

temperatures ranging from room temperature to 300 °C at a 450 ppm concentration of H2S. The 

sensitivity of TNTs sensors ranged from about 4.365 to 38.107%, and the highest sensitivity at 

room temperature was 38.107% for the TNTs sensor that was prepared at 30 volt. That way 

proves that the sensing sensitivity is mostly changed by different working temperatures. The 

highest sensitivity at room temperature for TNTs sensor was caused by the high porosity and 

large diameter of TNTs thin film, which allowed for easy adsorption and desorption of gas 

molecules [42]. 

 

 
Figure 11 : Sensitivity of TNTs prepared at (a) 10 V (b) 20 V,(c) 30 V, and (d) 40 V 

 

     The sensing mechanism of TNTs gas sensors generally depends on the surface 

characteristics of the nanomaterial. Firstly, the adsorption of oxygen from the atmosphere takes 

place. The adsorbed oxygen elicits the electrons of the conduction band from the surface of 

TNTs grains, leaving behind positively charged donor ions. The electrical field between 

negatively charged oxygen ions such as O- or O-2 and positively charged donor ions become 

stronger. As a result, the greater the number of oxygen ions on the surface, the greater the 

potential barrier, and thus the greater the resistance. Because of the reaction with gas molecules, 

the amount of O- or O-2  in the environment decreases as the gas is present, resulting in a 

decrease in resistance [43]. So, At room temperature, the TNTs gas sensor has an unusually 

good response. This is most likely due to the fact that TiO2 nanotubes are made up of tiny 

nanocrystals that have been linked together into a 1D tubular shape. As a result, there are a lot 

of active sites for gas chemisorption. The walls of TiO2 nanotubes may also be able to hold a 

lot of gas molecules, so the nanotubes can act as gas diffusion nanochannels [44].  

 

4. Conclusion 

     The anodization technique was applied to prepare highly ordered TiO2 nanotube arrays 

(TNTs). Furthermore, this work focused on the influence of voltages on the surface 

characteristics of TNTs and then the effect on the TNTs as a gas sensor. Results of the test of 

gas sensing show that TNTs at 30 volt achieved a significantly greater sensitivity to H2S at 

room temperature as well as a shorter response time. The superb efficiency of the TNTs in gas 

detection may be attributed mostly to their extremely ordered nanotube morphology and their 

high surface area. This study provides the possibility of studying the sensing of H2S via 

observation of the response and recovery time at the different operating temperatures of H2S 

gas at a constant concentration of 450 ppm. Thus, this study demonstrated the possibility to 
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improve the TNTs sensor for the detection of H2S gas at low temperatures (room temperature) 

with high sensitivity, which, compared with the flammable H2S gas, can be more helpful for 

the production of H2S gas sensors. 
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