The Simulation Technique to Estimate the Parameters of Generalized Exponential Rayleigh Model

Rehab Noori Shalan *1, Iden Hassan Alkanani2

1Department of mathematics, college of science. University of Basrah, Iraq.
2Department of mathematics, college of science for women. University of Baghdad, Baghdad, Iraq

Received: 17/12/2022 Accepted: 21/3/2023 Published: 30/3/2024

Abstract:
The paper shows how to estimate the three parameters of the generalized exponential Rayleigh distribution by utilizing the three estimation methods, namely, the moment employing estimation method (MEM), ordinary least squares estimation method (OLSEM), and maximum entropy estimation method (MEEM). The simulation technique is used for all these estimation methods to find the parameters for the generalized exponential Rayleigh distribution. In order to find the best method, we use the mean squares error criterion. Finally, in order to extract the experimental results, one of object oriented programming languages visual basic. net was used

Keywords: Moment estimator method, Ordinary least squares estimation method, Maximum entropy estimation method

1. Introduction
The application of statistics plays an important role in our divergent phenomenon life, especially in engineering and medicine. The researchers depend on many procedures to find the new or mixture and compose distributions [1]. In 2021, Iden H.H. and Lamyaa K.H. introduced the mixed distribution where mixing between the reliability function for the exponential model

*Email: rehab.shallan@sc.uoBaghdad.edu.iq
and the reliability function for the Rayleigh model by using $X=\min(Y, Z)$, the model is called the Exponential – Rayleigh model.

In 2021 Lamyaa K.H. and I den H.H. applied the maximum likelihood method to estimate the values of the survival function and hazard function based on real data for lung cancer and stomach cancer obtained from Iraq [2,3,4]. In the last research, we introduced the (GER) distribution that strutting is to add the shape parameter to the exponential Rayleigh distribution to get the (GER). The aim of this paper is to compare between (ME) method, (OLSE) method and (MES) method by utilizing the mean squares error criterion for the Monte Carlo simulation technique [5] to find the best one from the others. The organization of this paper is as follows: In section two, the generalized exponential Rayleigh distribution is given. In section three, the estimation method is discussed. In section four, a simulation technique is used. In section five, Numerical results are done. In section six, the conclusion is given.

2. The Generalized exponential Rayleigh distribution

2.1 The probability density function of the generalized Exponential-Rayleigh distribution [6] is given as follows:

$$f(x; \alpha, \beta, \lambda) = \left(\frac{1}{\lambda} x^{\frac{1}{\alpha}} + \frac{\beta}{\lambda} x^{\frac{2}{\alpha}}\right) e^{-\left(\frac{1}{\alpha} x^{\frac{1}{\alpha}} + \frac{\beta}{\alpha} x^{\frac{2}{\alpha}}\right)} x \geq 0 .$$

2.2 The cumulative distribution function for generalized Exponential-Rayleigh distribution is:

$$F(x; \alpha, \beta, \lambda) = 1 - e^{-\left(\frac{1}{\alpha} x^{\frac{1}{\alpha}} + \frac{\beta}{\alpha} x^{\frac{2}{\alpha}}\right)} .$$

2.3 The reliability function of this distribution is

$$R(x; \alpha, \beta, \lambda) = e^{-\left(\frac{1}{\alpha} x^{\frac{1}{\alpha}} + \frac{\beta}{\alpha} x^{\frac{2}{\alpha}}\right)} x \geq 0.$$ Then, the hazard rate function for this distribution

is:

$$h(x; \alpha, \beta, \lambda) = \frac{\alpha}{x^{\frac{1}{\alpha}}} + \frac{\beta}{x^{\frac{2}{\alpha}}} x \geq 0 .$$

3. Estimation Methods: In this section, we describe the estimation of the parameters of the generalized exponential Rayleigh distribution by employing three methods, namely the moment estimation method, ordinary least squares estimation method and the maximum entropy estimation method.

3.1 The Moment Estimator Method (MEM):

The method of the moment is one of the simplest techniques which is commonly used in the field of parameter estimation. The idea of this method is to equate the sample moments and population moments,

$$M_1 = E(X) = \int x f(x; \alpha, \beta, \lambda) dx .$$

$$M_1 = E(X) = e^{-\alpha^2} \left[\frac{\alpha}{\beta} \frac{n}{n+\lambda} \Gamma \frac{n+\lambda+1}{2} + \left(\frac{2}{\beta}\right) \frac{n+\lambda}{2} \Gamma \frac{n+\lambda+2}{2} \right]$$

is the first population moment

$$M_1' = \frac{\sum x_i}{n} = \bar{x}$$ is the sample moment , so

$$M_1 = M_1' .$$ Thus, we have

$$e^{-\alpha^2} \left[\frac{\alpha}{\beta} \frac{n}{n+\lambda+1} \Gamma \frac{n+\lambda+1}{2} + \left(\frac{2}{\beta}\right) \frac{n+\lambda}{2} \Gamma \frac{n+\lambda+2}{2} \right] = \bar{x} .$$

$$f(\alpha) = e^{-\frac{\alpha^2}{2}} \left(\frac{2\beta}{\Gamma} \frac{n+\lambda+1}{2} \Gamma \frac{n+\lambda+1}{2} + e^{-\frac{\alpha^2}{2}} \left(\frac{2\beta}{\Gamma} \frac{n+\lambda}{2} \Gamma \frac{n+\lambda+2}{2} \bar{x} \right) .

M_2 = E(X^2) = \int x^2 f(x, \alpha, \beta, \lambda) dx .$$
Consider that $M_2 = E(X^2) = e^{-\frac{\alpha}{\beta} \left(\frac{n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right)}$ is the second population moment and $M'_2 = \frac{\sum_{i=1}^{n} x_i^2}{n}$ is the second sample moment, so that if we let $M_2 = M'_2$, then we have

$$e^{-\frac{1}{2} \frac{2\alpha}{\beta} \left(\frac{n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right)} = \frac{\sum_{i=1}^{n} x_i^2}{n}.$$

$$f(B) = e^{-\frac{\alpha}{\beta} \left(\frac{2}{\beta} \right) \left(2 \frac{n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right)} + e^{-\frac{\alpha}{\beta} \left(\frac{2}{\beta} \right) \left(2 \frac{n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2} - \frac{2\sum_{i=1}^{n} x_i^2}{n}\right)}$$

$$M_3 = E(X^3) = \int_{\text{all} x} x^3 f(x; \alpha, \beta, \lambda) \, dx.$$

$$M'_3 = \frac{\sum_{i=1}^{n} x_i^3}{n}.$$

$$M_3 = M'_3.$$

$$e^{-\frac{1}{2} \frac{2\alpha}{\beta} \left(\frac{n+3\lambda+1}{2} \Gamma \frac{n+3\lambda+1}{2} + \frac{2n+3\lambda+1}{2} \Gamma \frac{n+3\lambda+1}{2}\right)} = \frac{\sum_{i=1}^{n} x_i^3}{n}.$$

$$f(\lambda) = e^{-\frac{\alpha}{\beta} \left(\frac{2}{\beta} \right) \left(2 \frac{n+3\lambda+1}{2} \Gamma \frac{n+3\lambda+1}{2} + \frac{2n+3\lambda+1}{2} \Gamma \frac{n+3\lambda+1}{2}\right)} \frac{n+3\lambda+1}{2} e^{-\frac{\alpha}{\beta} \left(\frac{2}{\beta} \right) \left(2 \frac{n+3\lambda+1}{2} \Gamma \frac{n+3\lambda+1}{2} - \frac{2\sum_{i=1}^{n} x_i^3}{n}\right)}$$

$$\left[\frac{\partial f(\alpha)}{\partial \alpha}, \frac{\partial f(\alpha)}{\partial \beta}, \frac{\partial f(\alpha)}{\partial \lambda}\right] = \left[\frac{\partial f(\alpha)}{\partial \alpha}, \frac{\partial f(\alpha)}{\partial \beta}, \frac{\partial f(\alpha)}{\partial \lambda}\right] \left[\begin{array}{c}
\frac{2}{\beta} \frac{n+\lambda}{2} \\
\frac{2}{\beta} \frac{n+\lambda+2}{2}
\end{array}\right]$$

\begin{align*}
\frac{\partial f(\alpha)}{\partial \alpha} &= 1 + \frac{\alpha}{\beta} \left(\frac{n+\lambda}{2} \Gamma \frac{n+\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right) + \frac{\alpha}{\beta} \left(\frac{n+\lambda+1}{2} \Gamma \frac{n+\lambda+2}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+2}{2}\right) \\
\frac{\partial f(\alpha)}{\partial \beta} &= -e^{-\frac{\alpha}{\beta} \left(\frac{2}{\beta} \right) \left(2 \frac{n+\lambda+1}{2} \Gamma \frac{n+\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right)} \left(\frac{n+\lambda}{2} \Gamma \frac{n+\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right) \\
\frac{\partial f(\alpha)}{\partial \lambda} &= e^{-\frac{\alpha}{\beta} \left(\frac{2}{\beta} \right) \left(2 \frac{n+\lambda+1}{2} \Gamma \frac{n+\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right)} \left(\frac{n+\lambda}{2} \Gamma \frac{n+\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right) \\
\frac{\partial f(\beta)}{\partial \alpha} &= -1 + \frac{\alpha}{\beta} \left(\frac{n+\lambda}{2} \Gamma \frac{n+\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right) + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2} - 1 \\
\frac{\partial f(\beta)}{\partial \beta} &= -e^{-\frac{\alpha}{\beta} \left(\frac{2}{\beta} \right) \left(2 \frac{n+\lambda+1}{2} \Gamma \frac{n+\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right)} \left(\frac{n+\lambda}{2} \Gamma \frac{n+\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right) \\
\frac{\partial f(\beta)}{\partial \lambda} &= e^{-\frac{\alpha}{\beta} \left(\frac{2}{\beta} \right) \left(2 \frac{n+\lambda+1}{2} \Gamma \frac{n+\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right)} \left(\frac{n+\lambda}{2} \Gamma \frac{n+\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right) \\
\frac{\partial f(\lambda)}{\partial \alpha} &= -\frac{\alpha}{\beta} \left(\frac{2}{\beta} \right) \left(\frac{n+\lambda}{2} \Gamma \frac{n+\lambda+1}{2} + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}\right) + \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2} - \frac{\alpha}{\beta} \frac{2n+2\lambda+1}{2} \Gamma \frac{n+2\lambda+1}{2}
\end{align*}
\[
\frac{\partial f(\beta)}{\partial \lambda} = e^{-\frac{\alpha}{2}} \left(\frac{\alpha}{2} \cdot \left(\frac{2}{\beta} \right)^{\frac{n+2\lambda+1}{2}} \ln \left(\frac{2}{\beta} \right) \Gamma \left(\frac{n+2\lambda+1}{2} \right) + e^{-\frac{\alpha}{2}} \left(\frac{2}{\beta} \right)^{\frac{n+2\lambda+1}{2}} \Gamma \left(\frac{n+1}{2} + \lambda \right) \right)
\]
\[+ e^{-\frac{\alpha}{2}} \left(\frac{\alpha}{2} \cdot \left(\frac{2}{\beta} \right)^{\frac{n+2\lambda+1}{2}} \ln \left(\frac{2}{\beta} \right) \Gamma \left(\frac{n+2\lambda+1}{2} \right) + e^{-\frac{\alpha}{2}} \left(\frac{2}{\beta} \right)^{\frac{n+2\lambda+1}{2}} \Gamma \left(\frac{n+1}{2} + \lambda \right) \right)
\]
\[
f(\lambda) = e^{-\frac{\alpha}{2}} \left(\frac{\alpha}{2} \cdot \left(\frac{2}{\beta} \right)^{\frac{n+3\lambda+1}{2}} \ln \left(\frac{2}{\beta} \right) \Gamma \left(\frac{n+3\lambda+1}{2} \right) + e^{-\frac{\alpha}{2}} \left(\frac{2}{\beta} \right)^{\frac{n+3\lambda+1}{2}} \Gamma \left(\frac{n+1}{2} + \lambda \right) \right)
\]
\[\frac{f(\lambda)}{\alpha} = 2 \cdot \left(\frac{\alpha}{2} \cdot \left(\frac{2}{\beta} \right)^{\frac{n+3\lambda+1}{2}} \ln \left(\frac{2}{\beta} \right) \Gamma \left(\frac{n+3\lambda+1}{2} \right) + e^{-\frac{\alpha}{2}} \left(\frac{2}{\beta} \right)^{\frac{n+3\lambda+1}{2}} \Gamma \left(\frac{n+1}{2} + \lambda \right) \right)
\]
\[
f(\lambda) = e^{-\frac{\alpha}{2}} \left(\frac{\alpha}{2} \cdot \left(\frac{2}{\beta} \right)^{\frac{n+3\lambda+1}{2}} \ln \left(\frac{2}{\beta} \right) \Gamma \left(\frac{n+3\lambda+1}{2} \right) + e^{-\frac{\alpha}{2}} \left(\frac{2}{\beta} \right)^{\frac{n+3\lambda+1}{2}} \Gamma \left(\frac{n+1}{2} + \lambda \right) \right)
\]
\[\frac{f(\lambda)}{\beta} = e^{-\frac{\alpha}{2}} \left(\frac{\alpha}{2} \cdot \left(\frac{2}{\beta} \right)^{\frac{n+3\lambda+1}{2}} \ln \left(\frac{2}{\beta} \right) \Gamma \left(\frac{n+3\lambda+1}{2} \right) + e^{-\frac{\alpha}{2}} \left(\frac{2}{\beta} \right)^{\frac{n+3\lambda+1}{2}} \Gamma \left(\frac{n+1}{2} + \lambda \right) \right)
\]
\[+ e^{-\frac{\alpha}{2}} \left(\frac{\alpha}{2} \cdot \left(\frac{2}{\beta} \right)^{\frac{n+3\lambda+1}{2}} \ln \left(\frac{2}{\beta} \right) \Gamma \left(\frac{n+3\lambda+1}{2} \right) + e^{-\frac{\alpha}{2}} \left(\frac{2}{\beta} \right)^{\frac{n+3\lambda+1}{2}} \Gamma \left(\frac{n+1}{2} + \lambda \right) \right)
\]

3.2 The Ordinary Least Squares Estimation Method (OLSEM):

The ordinary least squares method is one of the most popular procedures in estimating the parameters when the model is linear or nonlinear in variables.

The idea of this method is to minimize the sum of squared differences between the observed sample value and the estimated expected value by linear approximation:

\[
\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - E(Y_i))^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
\]

\[
\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [\hat{f}(X_i) - F(X_i)]^2
\]

The empirical cdf is \(F(X_i) = i - 0.5 \).

\[
\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} \left[\frac{1}{n} e^{-\left(\frac{\alpha x_i^{0.5}}{2} x_i^2 \right)} - i - 0.5 \right]^2
\]

\[
\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} \left[\frac{n-i+0.5}{n} e^{-\left(\frac{\alpha x_i^{0.5}}{2} x_i^2 \right)} \right]^2
\]

\[
\frac{\partial \sum e_i^2}{\partial \alpha} = \sum_{i=1}^{n} \frac{n-i+0.5}{n} x_i^2 e^{-\left(\frac{\alpha x_i^{0.5}}{2} x_i^2 \right)} = f(\alpha) \quad (3.2.1)
\]

\[
\frac{\partial \sum e_i^2}{\partial \beta} = \frac{1}{4} \sum_{i=1}^{n} \frac{n-i+0.5}{n} x_i^2 e^{-\left(\frac{\beta x_i^{0.5}}{2} x_i^2 \right)} = g(\beta) \quad (3.2.2)
\]

\[
\frac{\partial \sum e_i^2}{\partial \lambda} = \sum_{i=1}^{n} \frac{n-i+0.5}{n} x_i^2 e^{-\left(\frac{\alpha x_i^{0.5}}{2} x_i^2 \right)} + \sum_{i=1}^{n} \frac{\beta x_i^{0.5}}{2} x_i^2 e^{-\left(\frac{\beta x_i^{0.5}}{2} x_i^2 \right)}
\]

\[
- \frac{n-i+0.5}{n} \left(\frac{\beta x_i^{0.5}}{2} x_i^2 \right) + \sum_{i=1}^{n} \frac{\beta x_i^{0.5}}{2} x_i^2 e^{-\left(\frac{\beta x_i^{0.5}}{2} x_i^2 \right)} = L(\lambda) \quad (3.2.3)
\]
\[
\frac{\partial f(\alpha)}{\partial \alpha} = -\sum_{i=1}^{n} \frac{n-i+0.5}{n} x_i^\lambda e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)} + 2 \sum_{i=1}^{n} \frac{x_i^\lambda e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)}}{x_i^\lambda e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)}}
\]

\[
\frac{\partial g(\beta)}{\partial \beta} = -\frac{1}{4} \sum_{i=1}^{n} \frac{n-i+0.5}{n} x_i^\lambda e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)} + \frac{1}{2} \sum_{i=1}^{n} \frac{x_i^\lambda e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)}}{x_i^\lambda e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)}}
\]

\[
\frac{\partial \ln(\lambda)}{\partial \lambda} = \sum_{i=1}^{n} 2\alpha x_i^\lambda - \sum_{i=1}^{n} \frac{\alpha}{\lambda^4} x_i^\lambda \left(\ln x_i\right) e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)} + \sum_{i=1}^{n} \frac{\beta^2}{\lambda^4} x_i^\lambda \left(\ln x_i\right) e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)} - \sum_{i=1}^{n} \frac{2\beta x_i^\lambda}{\lambda^4} \left(\ln x_i\right) e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)} - \sum_{i=1}^{n} \frac{\beta^2 x_i^\lambda}{\lambda^4} \left(\ln x_i\right) e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)}
\]

\[
\frac{\partial g(\beta)}{\partial \beta} = \frac{1}{2} \sum_{i=1}^{n} \frac{\alpha}{\lambda^2} x_i^\lambda \ln x_i e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)} + \frac{1}{2} \sum_{i=1}^{n} \frac{\beta x_i^\lambda}{\lambda^2} \ln x_i e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)} - \frac{1}{2} \sum_{i=1}^{n} \frac{x_i^\lambda}{\lambda^2} \ln x_i e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)}
\]

\[
\frac{\partial L(\lambda)}{\partial \beta} = -\sum_{i=1}^{n} \frac{\alpha}{\lambda^2} x_i^\lambda \ln x_i e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)} - \sum_{i=1}^{n} \frac{x_i^\lambda}{\lambda^2} \ln x_i e^{-\left(ax_i + \frac{\beta}{2}x_i^2\right)}
\]
\[
\frac{\partial L(\lambda)}{\partial \beta} = -\sum_{i=1}^{n} 2 \alpha x_i^2 + 3 ln x_i e^{-2\left(\frac{1}{\lambda} + \frac{\beta}{2} x_i^2\right)} - \sum_{i=1}^{n} \beta x_i^2 + 3 ln x_i e^{-2\left(\frac{1}{\lambda} + \frac{\beta}{2} x_i^2\right)} + \frac{1}{2} \sum_{i=1}^{n} \frac{\beta}{\lambda^2} x_i^4 \ln x_i e^{-2\left(\frac{1}{\lambda} + \frac{\beta}{2} x_i^2\right)} + \frac{1}{2} \sum_{i=1}^{n} \frac{\alpha}{\lambda^2} x_i^4 \ln x_i e^{-2\left(\frac{1}{\lambda} + \frac{\beta}{2} x_i^2\right)} \\
+ \frac{1}{2} \sum_{i=1}^{n} \frac{\beta}{\lambda^2} x_i^4 \ln x_i e^{-2\left(\frac{1}{\lambda} + \frac{\beta}{2} x_i^2\right)} + \frac{1}{2} \sum_{i=1}^{n} \frac{\alpha}{\lambda^2} x_i^4 \ln x_i e^{-2\left(\frac{1}{\lambda} + \frac{\beta}{2} x_i^2\right)} \\
= \frac{\partial L(\lambda)}{\partial \alpha} = -\sum_{i=1}^{n} \frac{2\alpha}{\lambda^2} x_i^2 \ln x_i e^{-2\left(\frac{1}{\lambda} + \frac{\beta}{2} x_i^2\right)} + \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\lambda^2} x_i^4 \ln x_i e^{-2\left(\frac{1}{\lambda} + \frac{\beta}{2} x_i^2\right)} + \frac{1}{n} \sum_{i=1}^{n} \frac{\beta}{\lambda^2} x_i^4 \ln x_i e^{-2\left(\frac{1}{\lambda} + \frac{\beta}{2} x_i^2\right)}
\]

3.3 The Maximum Entropy Estimation Method (MEE)

The entropy of statistics deals with a gauge of uncertainty or imbalance companion with probability function.

The idea of the maximum entropy estimation is a tool for inference under uncertainty. This technique produces the most convenient probability density function that gives the present information as seeking of the probability density function which maximizes the entropy information subject to the constraints of information that is denoted by the Lagrange multipliers method.

Finally, the outcome is probability density function which is consistent with the known constraints formulated as averages or expected values of one or more quantities. Otherwise, we obtain the least biased estimate possible on the given information [7, 8]

There are four steps in the maximum entropy estimation method to estimate the three parameters of generalized exponential- Rayleigh distribution which is as follows.

2. Construction of the Lagrange multipliers.
3. Derivation of the entropy function of the distribution.
4. Derivation of the relation between the Lagrange multiplier and the constraints.

Step1

\[f(t; \alpha, \beta, \lambda) = \left(\frac{1}{\lambda} t^{\frac{1}{\lambda} - 1} + \frac{\beta}{\lambda} t^{\frac{2}{\lambda} - 1} \right) e^{-\left(\alpha t^{\frac{1}{\lambda} + \frac{\beta}{2} t^{\frac{2}{\lambda}} } \right)} \]

(3.3.1)

\[\Omega = \{ \alpha, \beta, \lambda; \alpha > 0, \beta > 0, \lambda > 0 \} \]

The Boltzmann- Gibbs- Shannon entropy is:

\[\delta = - \int_{0}^{\infty} f(t) \ln f(t) dt \]

(3.3.2)

Where \(t \) is the random variable of a non – negative continuous, \(f(t) \) is the probability density function of \(t \).

Now, taking the natural algorithm, then we get

\[\ln f(t) = \ln \left(\left(\frac{1}{\lambda} t^{\frac{1}{\lambda} - 1} + \frac{\beta}{\lambda} t^{\frac{2}{\lambda} - 1} \right) e^{-\left(\alpha t^{\frac{1}{\lambda} + \frac{\beta}{2} t^{\frac{2}{\lambda}} } \right)} \right) \]

\[\ln f(t) = \ln \left(\frac{1}{\lambda} t^{\frac{1}{\lambda} - 1} + \frac{\beta}{\lambda} t^{\frac{2}{\lambda} - 1} \right) - \left(\alpha t^{\frac{1}{\lambda} + \frac{\beta}{2} t^{\frac{2}{\lambda}} } \right) \]

By substituting in equation (3.2) we get:

\[\delta = - \int_{0}^{\infty} \left[\ln \left(\frac{1}{\lambda} t^{\frac{1}{\lambda} - 1} + \frac{\beta}{\lambda} t^{\frac{2}{\lambda} - 1} \right) - \left(\alpha t^{\frac{1}{\lambda} + \frac{\beta}{2} t^{\frac{2}{\lambda}} } \right) \right] f(t) \]

(3.3.3)

The given information that is used in the fundamentals of maximum entropy is formulated as many constraints representing the expectations of function gi (t).

\[E[g_i(t)] = \int_{0}^{\infty} g_i(t) f(t) dt = C_i \]

(3.3.4)

\[\int_{0}^{\infty} \ln \left(\frac{1}{\lambda} t^{\frac{1}{\lambda} - 1} + \frac{\beta}{\lambda} t^{\frac{2}{\lambda} - 1} \right) f(t) dt = E \left[\ln \left(\frac{1}{\lambda} t^{\frac{1}{\lambda} - 1} + \frac{\beta}{\lambda} t^{\frac{2}{\lambda} - 1} \right) \right] = C_2 \]

\[\int_{0}^{\infty} \left(\alpha t^{\frac{1}{\lambda} + \frac{\beta}{2} t^{\frac{2}{\lambda}} } \right) f(t) dt = E \left[\left(\alpha t^{\frac{1}{\lambda} + \frac{\beta}{2} t^{\frac{2}{\lambda}} } \right) \right] = C_3 \]

\[\int_{0}^{\infty} f(t), \alpha, \beta, \lambda) dt = 1 = C_1 \]

(3.3.5)

Where \(C_i, i = 1, 2, 3 \) are constraints

Step2

The maximization is supplementary via to the Lagrange multipliers method. Then the solution form of the maximum entropy from maximizing the Boltzmann.

Gibbs – Shannon entropy (BGS) equation (3.3.2) is given by:

\[f(t) = \exp \left[-\lambda_0 - \sum_{i=1}^{n} \lambda_i g_i(t) \right] \]

(3.3.6)

Where \(\lambda_1, i = 1, 2, ..., n \) are the Lagrange multipliers linked to the constraints in equation (3.3.4) and \(\lambda_0 \) is the multiplier linked to the additional constraint equation (3.3.5). Thus the method yields:

\[f(t) = \exp \left[-\lambda_0 - \left(\lambda_1 \ln \left(\frac{1}{\lambda} t^{\frac{1}{\lambda} - 1} + \frac{\beta}{\lambda} t^{\frac{2}{\lambda} - 1} \right) - \lambda_2 \left(\alpha t^{\frac{1}{\lambda} + \frac{\beta}{2} t^{\frac{2}{\lambda}} } \right) \right) \right] \]

(3.3.7)

Where \(\lambda_0, \lambda_1, \lambda_2 \) are the lagrange multipliers substituting equation (3.3.7) into equation (3.3.5) then we get:

\[\int_{0}^{\infty} f(t) dt = \int_{0}^{\infty} \exp \left[-\lambda_0 - \left(\lambda_1 \ln \left(\frac{1}{\lambda} t^{\frac{1}{\lambda} - 1} + \frac{\beta}{\lambda} t^{\frac{2}{\lambda} - 1} \right) - \lambda_2 \left(\alpha t^{\frac{1}{\lambda} + \frac{\beta}{2} t^{\frac{2}{\lambda}} } \right) \right) \right] dt = 1 \]

\[\int_{0}^{\infty} \exp \left(-\lambda_0 \right) \exp \left[-\lambda_1 \left(\frac{1}{\lambda} t^{\frac{1}{\lambda} - 1} + \frac{\beta}{\lambda} t^{\frac{2}{\lambda} - 1} \right) \right] + \lambda_2 \left(\alpha t^{\frac{1}{\lambda} + \frac{\beta}{2} t^{\frac{2}{\lambda}} } \right) \right] dt = 1 \]

\[e^{-\lambda_0} \int_{0}^{\infty} \exp \left[-\lambda_1 \left(\frac{1}{\lambda} t^{\frac{1}{\lambda} - 1} + \frac{\beta}{\lambda} t^{\frac{2}{\lambda} - 1} \right) \exp \left(\lambda_2 \left(\alpha t^{\frac{1}{\lambda} + \frac{\beta}{2} t^{\frac{2}{\lambda}} } \right) \right) \right] dt = 1 \]
\[\int_0^\infty e^{-\left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)} \cdot e^{-\left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)} dt = e^{\lambda_0} \]

\[\int_0^\infty e^{\lambda_2 \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)} \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right) dt = e^{\lambda_0} \]
(3.3.8)

Recall that
\[(a + b)^n = \sum_{j=0}^{n} C_j^n a^j b^{n-j} \]

\[\left(\frac{\alpha}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)^{\lambda_1} = \sum_{j=0}^{\lambda_1} C_j^{\lambda_1} \left(\frac{\alpha}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)^{j-\lambda_1} \]

\[= \sum_{j=0}^{\lambda_1} C_j^{\lambda_1} \left(\frac{\alpha}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)^j \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)^{\lambda_1-j} \]

\[= \sum_{j=0}^{\lambda_1} C_j^{\lambda_1} \left(\frac{\alpha}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)^j \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)^{\lambda_1-j} \]

\[\left(\frac{\alpha}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)^{\lambda_1} = \sum_{j=0}^{\lambda_1} C_j^{\lambda_1} \left(\frac{\alpha}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)^j \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{lambda}}\right) \]

By substituting this formula in equation (3.3.8), we have
\[\int_0^\infty e^{\lambda_2 \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)} \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right) dt = e^{\lambda_0} \]

\[\int_0^\infty e^{\lambda_2 \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)} \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right) dt = e^{\lambda_0} \]

Recall that
\[e^x = \sum_{r=0}^{\infty} \frac{x^r}{r!} \]

Then,
\[e^{\lambda_2 \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)} = \sum_{r=0}^{\infty} \frac{(\lambda_2 \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right))^r}{r!} = \sum_{r=0}^{\infty} \frac{(\lambda_2 \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{lambda}}\right))^r}{r!} \]

By substituting this formula in equation (3.3.9), we get:
\[\frac{1}{(\alpha + \beta)^{\lambda_1}} \int_0^\infty \sum_{r=0}^{\infty} \frac{(\alpha \lambda_2)^r}{r!} t^\lambda \lambda_1^{(2-\lambda)} \frac{\beta \lambda_2}{t^\lambda} dt = e^{\lambda_0} \]

\[\sum_{r=0}^{\infty} \frac{(\alpha \lambda_2)^r}{r!} \left(\frac{\alpha}{\lambda} + \beta\right)^{\lambda_1} \int_0^\infty t^\lambda \lambda_1^{(2-\lambda)} \frac{\beta \lambda_2}{t^\lambda} e^{\lambda_2 \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{lambda}}\right)} dt = e^{\lambda_0} \]

\[e^{\lambda_2 \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)} \int_0^\infty t^\lambda \lambda_1^{(2-\lambda)} \frac{\beta \lambda_2}{t^\lambda} e^{\lambda_2 \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{lambda}}\right)} dt = e^{\lambda_0} \]
(3.3.10)

Let \(z = \frac{t^2}{\lambda} \Rightarrow z^2 = t \Rightarrow dt = \frac{\lambda}{2} z^2 \frac{dz}{z} \)

By substituting in equation (3.3.10), we have
\[e^{\lambda_2 \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)} \int_0^\infty \frac{r+j}{2} \frac{\lambda_1^{(2-\lambda)}}{2} \frac{\beta \lambda_2}{z^2} \frac{\lambda}{2} \frac{1}{z^2 - 1} dz = e^{\lambda_0} \]

\[e^{\lambda_2 \left(\frac{1}{\lambda} t^{\frac{2}{\lambda}} + \frac{\beta}{\lambda} t^{\frac{1}{\lambda}}\right)} \int_0^\infty \frac{r+j}{2} \frac{\lambda_1^{(2-\lambda)}}{2} \frac{\beta \lambda_2}{z^2} \frac{\lambda}{2} \frac{1}{z^2 - 1} dz = e^{\lambda_0} \]

\[\alpha - 1 = \frac{r+j}{2} - \frac{\lambda_1^{(2-\lambda)}}{2} + \frac{1}{2} = \frac{r+j}{2} - \frac{\lambda_1^{(2-\lambda)}}{2} + \frac{1}{2}, \quad \alpha = \frac{r+j}{2} - \frac{\lambda_1^{(2-\lambda)}}{2} + \frac{1}{2}, \quad \beta = -\frac{\beta \lambda_2}{2} \]
\[e^{\alpha \lambda_2} \left(\frac{\alpha + \beta}{\lambda} \right)^{-\lambda_1} \left(\frac{\lambda}{2} \right)^{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}} \left(-\frac{\beta \lambda_2}{2}\right)^{\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2}} = e^{\lambda_0} \]

\[e^{\alpha \lambda_2} \left(\frac{\alpha + \beta}{\lambda} \right)^{-\lambda_1} \left(\frac{\lambda}{2} \right)^{\int_0^{\infty} \frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2} - 1}{e^{-\frac{\beta \lambda_2}{2} z}}} dz = e^{\lambda_0} \]

The border between integral is negative gamma distribution, then we must multiply and divided by

\[\frac{\lambda e^{\alpha \lambda_2} \left(\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2} \right)}{2 \left(\frac{\alpha + \beta}{\lambda} \right)^{-\lambda_1} \left(\frac{\lambda}{2} \right)^{\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2}}} = e^{\lambda_0}. \]

Equation (3.3.11) expresses the zeroth Lagrange \(\lambda_0 \) multiplier as a function of Lagrange multipliers \(\lambda_1 \) and \(\lambda_2 \).

Step 3: Derivation of the entropy function of the distribution. Substituting equation (3.3.11) into equation (3.2.7) we have

\[f(t) = \exp\left[-\lambda_0 - \left\{ \lambda_1 \ln \left(\frac{\alpha}{\lambda} \right) \frac{1}{t^\lambda} + \frac{\beta}{\lambda} \frac{t^{2 - \lambda}}{t^{\lambda - 1}} - \lambda_2 \left(\alpha \frac{1}{t^\lambda} + \frac{\beta}{\lambda} \frac{t^{2 - \lambda}}{t^{\lambda - 1}} \right) \right\} \right] \]

\[f(t) = e^{-\lambda_0} e^{\lambda_2 \left(\frac{\alpha}{t^\lambda} + \frac{\beta}{\lambda} \frac{t^{2 - \lambda}}{t^{\lambda - 1}} \right)} \cdot \frac{\left(\frac{\alpha}{t^\lambda} + \frac{\beta}{\lambda} \frac{t^{2 - \lambda}}{t^{\lambda - 1}} \right)^{\lambda_2}}{\lambda e^{\alpha \lambda_2} \left(\frac{\alpha + \beta}{\lambda} \right)^{\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2}}} \]

By taking the natural logarithms, then we get

\[\ln f(t) = \ln \left[\frac{2 \left(\frac{\alpha + \beta}{\lambda} \right)^{\lambda_1} \left(\frac{\lambda}{2} \right)^{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}} \left(\frac{\alpha}{t^\lambda} + \frac{\beta}{\lambda} \frac{t^{2 - \lambda}}{t^{\lambda - 1}} \right)^{\lambda_2}}{\lambda e^{\alpha \lambda_2} \left(\frac{\alpha + \beta}{\lambda} \right)^{\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2}}} \right] \]

\[\ln f(t) = \ln 2 + \lambda_1 \ln \left(\frac{\alpha + \beta}{\lambda} \right) + \left(\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2} \right) \ln \left(\frac{-\beta \lambda_2}{2} \right) \]

\[+ \lambda_2 \left(\alpha \frac{1}{t^\lambda} + \frac{\beta}{\lambda} \frac{t^{2 - \lambda}}{t^{\lambda - 1}} \right) - \ln \alpha - \lambda_2 - \ln \left(\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2} \right) - \lambda_1 \ln \left(\frac{\alpha}{t^\lambda} + \frac{\beta}{\lambda} \frac{t^{2 - \lambda}}{t^{\lambda - 1}} \right) \]

Hence, from the definition of entropy, equation (3.3.2)

\[s = -\ln 2 - \lambda_1 \ln \left(\frac{\alpha + \beta}{\lambda} \right) - \left(\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2} \right) \ln \left(\frac{-\beta \lambda_2}{2} \right) - \lambda_2 \left(\alpha \frac{1}{t^\lambda} + \frac{\beta}{\lambda} \frac{t^{2 - \lambda}}{t^{\lambda - 1}} \right) + \ln \lambda + \alpha \lambda_2 \]

\[+ \ln \left(\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2} \right) + \lambda_1 \ln \left(\frac{\alpha}{t^\lambda} + \frac{\beta}{\lambda} \frac{t^{2 - \lambda}}{t^{\lambda - 1}} \right) \]

\[s = -\ln 2 - \lambda_1 \ln \left(\frac{\alpha + \beta}{\lambda} \right) - \left(\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2} \right) \ln \left(\frac{-\beta \lambda_2}{2} \right) \]

\[- \lambda_2 \left(\alpha \frac{1}{t^\lambda} + \frac{\beta}{\lambda} \frac{t^{2 - \lambda}}{t^{\lambda - 1}} \right) + \ln \lambda + \alpha \lambda_2 + \ln \left(\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2} \right) \]

\[+ \lambda_1 \left[\ln \left(\frac{\alpha}{t^\lambda} + \frac{\beta}{\lambda} \frac{t^{2 - \lambda}}{t^{\lambda - 1}} \right) \right] \quad (3.3.12) \]

Step 4: Derivation of the relation between the Lagrange multipliers and constraints

Let \(a = \frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2} = \frac{\lambda}{2} + \frac{j}{2} - \lambda_1 + \frac{\lambda_1 \lambda}{2} + \frac{\lambda}{2} \),

\[da = \left(\frac{\lambda_1}{2} + \frac{1}{2} \right) d\lambda \]

Since \(\frac{\partial}{\partial \lambda} \ln \Gamma (t) = \psi(t) \) is the digamma function, it follow that

\[\frac{da}{d\lambda} = \ln \Gamma \left(\frac{r + j - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2}}{2} \right) = \left(\frac{\lambda _1}{2} + \frac{1}{2} \right) \psi(a) \]

There are five parameters in equation (3.3.12) which are \(\alpha, \beta, \lambda, \lambda_1, \) and \(\lambda_2 \). To maximize equation (3.3.12), we need to set the following partial derivative as follows:
\[
\frac{\partial s}{\partial \alpha} = -\frac{\lambda_1}{\alpha + \beta} + \lambda_2 E \left(\frac{1}{t^\lambda} \right) + \lambda_2 + \lambda_1 E \left[\frac{1}{\lambda^2} \left(\alpha t^\lambda \ln t + \beta t^2 \ln t \right) \right]
\]

\[
\frac{\partial s}{\partial \lambda} = \frac{\lambda_1}{\lambda} - \left(\frac{\lambda_1}{2} + \frac{1}{2} \right) \ln \left(\frac{\beta \lambda_2}{2} \right) + \frac{1}{\lambda} + \left(\frac{\lambda_1}{2} + \frac{1}{2} \right) \psi(a) + \lambda_2 E \left[\frac{1}{\lambda^2} \left(\alpha t^\lambda \ln t + \beta t^2 \ln t \right) \right] - \lambda_1 E \left[\frac{1}{\lambda^3} \left(\alpha t^\lambda \ln t + 2\beta t^2 \ln t \right) \right] + \frac{1}{\lambda^2}
\]

\[
\frac{\partial s}{\partial \beta} = \frac{\lambda_1}{\alpha + \beta} - \frac{1}{\beta} \left(\frac{r + j}{2} + \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2} \right) E \left(\frac{2}{t^\lambda} \right) + \lambda_1 E \left[\frac{2}{\lambda^2} \left(\alpha t^\lambda \ln t + \beta t^2 \ln t \right) \right]
\]

\[
b = \frac{r + j - \lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2} = \frac{r + j}{2} - \lambda_1 + \frac{\lambda_1 \lambda}{2} + \frac{\lambda}{2}, \quad db = \left(-1 + \frac{\lambda}{2} \right) d\lambda_1
\]

Since \(\frac{\partial}{\partial \ln \Gamma(t)} = \psi(t) \) is the digamma function, it is follow that

\[
\frac{db}{d\ln \lambda_1} = \left(-1 + \frac{\lambda}{2} \right) \psi(b) = \left(\frac{\lambda}{2} - 1 \right) \psi(b)
\]

The values of parameters are \(\alpha > 0, \beta > 0, \lambda > 0, \lambda_2 < 0, 0 < \lambda_1 < \infty \) By the definition of expectation of the random variable

\[
E(Y) = \sum_{a, b, y} p(Y = y). \text{ Assume that } p(Y = y) = 1. \text{Then the equations become as follows:}
\]

\[
E \left(\frac{1}{t^\lambda} \right) \approx \sum_{i=1}^{n} t_i^{-\lambda}
\]

\[
E \left[\frac{1}{\lambda^2} \left(\alpha t^\lambda \ln t + \beta t^2 \ln t \right) \right] \approx \sum_{i=1}^{n} \left[\frac{1}{\lambda^2} \left(\alpha t_i^{\lambda} \ln t_i + \beta t_i^2 \ln t_i \right) \right]
\]

\[
E \left[\frac{1}{\lambda^2} \left(\alpha t_i^{\lambda} \ln t_i + \beta t_i^2 \ln t_i \right) \right] \approx \sum_{i=1}^{n} \frac{t_i^{-\lambda}}{\alpha t_i^{\lambda} + \beta t_i^2}
\]

\[
E \left[\frac{1}{\lambda^2} \right] \approx \sum_{i=1}^{n} \frac{2}{\lambda_i^2}
\]

\[
f(\alpha) = \frac{\partial s}{\partial \alpha} = -\frac{\lambda_1}{\alpha + \beta} + \lambda_2 \sum_{i=1}^{n} t_i^{-\lambda} + \lambda_2 + \lambda_1 \sum_{i=1}^{n} \left[\frac{t_i^{-\lambda}}{\alpha t_i^{\lambda} + \beta t_i^2} \right]
\]

\[
f(\lambda) = \frac{\partial s}{\partial \lambda} = \frac{\lambda_1}{\lambda} - \left(\frac{\lambda_1}{2} + \frac{1}{2} \right) \ln \left(\frac{\beta \lambda_2}{2} \right) + \frac{1}{\lambda} + \left(\frac{\lambda_1}{2} + \frac{1}{2} \right) \psi(a) + \lambda_2 \sum_{i=1}^{n} \left[\frac{2}{\alpha t_i^{\lambda} + \beta t_i^2} \right] - \lambda_1 \sum_{i=1}^{n} \left[\frac{2}{\alpha t_i^{\lambda} + \beta t_i^2} \right] + \frac{1}{\lambda^2}
\]

\[
f(\beta) = -\frac{\lambda_1}{\alpha + \beta} - \frac{1}{\beta} \left(\frac{r + j}{2} - \frac{\lambda_1(2 - \lambda)}{2} + \frac{\lambda}{2} \right) - \lambda_2 \sum_{i=1}^{n} \frac{2}{\alpha t_i^{\lambda} + \beta t_i^2} + \lambda_1 \sum_{i=1}^{n} \left[\frac{2}{\alpha t_i^{\lambda} + \beta t_i^2} \right]
\]
\[
\frac{\partial f(\alpha)}{\partial \alpha} = \frac{\lambda_1(1)}{(\alpha+\beta)^2} - \frac{1}{(\alpha+\beta)^2} \sum_{i=1}^{n} \frac{t_i^{\frac{1}{\alpha}} \cdot t_i^{\frac{1}{\beta}}}{(\alpha t_i^{\frac{1}{\alpha}} + \beta t_i^{\frac{1}{\beta}})^2} = \frac{\lambda_1}{(\alpha+\beta)^2} - \frac{1}{(\alpha+\beta)^2} \sum_{i=1}^{n} \frac{1}{(\alpha t_i^{\frac{1}{\alpha}} + \beta t_i^{\frac{1}{\beta}})^2}
\]

\[
\frac{\partial f(\alpha)}{\partial \beta} = \frac{\lambda_1(1)}{(\alpha+\beta)^2} - \frac{1}{(\alpha+\beta)^2} \sum_{i=1}^{n} \frac{t_i^{\frac{1}{\alpha}} \cdot t_i^{\frac{1}{\beta}}}{(\alpha t_i^{\frac{1}{\alpha}} + \beta t_i^{\frac{1}{\beta}})^2} = \frac{\lambda_1}{(\alpha+\beta)^2} - \frac{1}{(\alpha+\beta)^2} \sum_{i=1}^{n} \frac{1}{(\alpha t_i^{\frac{1}{\alpha}} + \beta t_i^{\frac{1}{\beta}})^2}
\]

\[
\frac{\partial f(\alpha)}{\partial \lambda} = -\frac{\lambda_2}{\lambda^2} \sum_{i=1}^{n} \frac{1}{t_i^{\lambda}} \ln t_i - \frac{\lambda_2}{\lambda^2} \sum_{i=1}^{n} \frac{2}{t_i^{\lambda}} \ln t_i - \frac{\lambda_2}{\lambda^2} \sum_{i=1}^{n} \frac{3}{t_i^{\lambda}} \ln t_i + \frac{\lambda_2}{\lambda^2} \sum_{i=1}^{n} \frac{4}{t_i^{\lambda}} \ln t_i
\]

\[
\frac{\partial f(\lambda)}{\partial \alpha} = -\frac{(\lambda_1+1)}{\lambda^2} + \frac{\lambda_1}{2} + \frac{\lambda_2}{\lambda^2} \sum_{i=1}^{n} \left(\alpha t_i^{\frac{1}{\alpha}} + \beta t_i^{\frac{1}{\beta}} \right) - \frac{\lambda_2}{\lambda^2} \sum_{i=1}^{n} \left(\frac{1}{(\alpha t_i^{\frac{1}{\alpha}} + \beta t_i^{\frac{1}{\beta}})^2} \right)
\]

\[
\frac{\partial f(\lambda)}{\partial \beta} = \frac{\lambda_2}{\lambda^2} \sum_{i=1}^{n} \left(\alpha t_i^{\frac{1}{\alpha}} + \beta t_i^{\frac{1}{\beta}} \right) - \frac{\lambda_2}{\lambda^2} \sum_{i=1}^{n} \left(\frac{1}{(\alpha t_i^{\frac{1}{\alpha}} + \beta t_i^{\frac{1}{\beta}})^2} \right)
\]

\[
\frac{\partial f(\lambda)}{\partial \lambda} = -\frac{(\lambda_1+1)}{\lambda^2} + \frac{\lambda_1}{2} + \frac{\lambda_2}{\lambda^2} \sum_{i=1}^{n} \left(\alpha t_i^{\frac{1}{\alpha}} + \beta t_i^{\frac{1}{\beta}} \right) - \frac{\lambda_2}{\lambda^2} \sum_{i=1}^{n} \left(\frac{1}{(\alpha t_i^{\frac{1}{\alpha}} + \beta t_i^{\frac{1}{\beta}})^2} \right)
\]
\[+ \frac{\lambda_1}{\lambda^2} \sum_{i=1}^{n} \left(\frac{1}{a t_i^{-1} + \beta t_i^{-1}} \right) \left[\frac{1}{a t_i^{-1} + \beta t_i^{-1}} \left(\ln t_i \right)^2 + \frac{\lambda}{\lambda^2} \right] \]

\[+ \frac{3\lambda_1}{\lambda^2} \sum_{i=1}^{n} \left(\frac{1}{a t_i^{-1} + \beta t_i^{-1}} \right) \left(\frac{1}{a t_i^{-1} + \beta t_i^{-1}} \ln t_i \right) \]

\[- \frac{\lambda_1}{\lambda^2} \sum_{i=1}^{n} \left(\frac{1}{a t_i^{-1} + \beta t_i^{-1}} \right)^2 \]

\[, \quad j = 1, r = 1, \lambda_1 = 1, \lambda_2 = 1 \]

\[\frac{\partial f(\beta)}{\partial \alpha} = \frac{\lambda_1}{(\alpha+\beta)^2} - \frac{1}{\beta^2} \left(\frac{r+j}{2} - \frac{\lambda_1(2-\lambda)}{2} + \frac{\lambda}{2} \right) - \frac{\lambda_1}{\lambda^2} \sum_{i=1}^{n} \left(\frac{t_i^{-1}}{a t_i^{-1} + \beta t_i^{-1}} \right)^2 \]

\[\frac{\partial f(\beta)}{\partial \beta} = \frac{\lambda_1}{(\alpha+\beta)^2} + \frac{1}{\beta^2} \left(\frac{r+j}{2} - \frac{\lambda_1(2-\lambda)}{2} + \frac{\lambda}{2} \right) - \frac{\lambda_1}{\lambda^2} \sum_{i=1}^{n} \left(\frac{t_i^{-1} + \beta t_i^{-1}}{a t_i^{-1} + \beta t_i^{-1}} \right)^2 \]

\[\frac{\partial \beta}{\partial \lambda} = -\frac{1}{\beta} \left(\frac{\lambda_1}{2} + \frac{1}{2} \right) + \frac{\lambda_2}{\lambda^2} \sum_{i=1}^{n} \frac{t_i^{-2} \ln t_i}{a t_i^{-1} + \beta t_i^{-1}} \]

\[+ \frac{\lambda_1}{\lambda^2} \sum_{i=1}^{n} \left(\frac{a t_i^{-2} \ln t_i + \beta t_i^{-2} \ln t_i}{a t_i^{-1} + \beta t_i^{-1}} \right) \]

4. Simulation results technique:

It has been highlighted that the Monte Carlo approach is the most general and widely used method in simulation techniques for generating data (samples) for any distribution. This approach (the simulation process) is adaptable, allowing for several tests and experiments. To apply the Monte Carlo approach to the generalized exponential Rayleigh distribution [5,9], we employ the cumulative distribution function as shown below:

\[F(x; \alpha, \beta, \lambda) = 1 - e^{-\left(\frac{1}{a x^{\alpha} + \beta x^{\beta}} \right)^2} \]

Then \[u = 1 - e^{-\left(\frac{1}{a x^{\alpha} + \beta x^{\beta}} \right)^2} \].

Because \(x \) is positive, the negative values resulting from this generation are ignored. According to above equation, different sizes of samples \(n=15,25, 50,75, 100 \) are generated and the unknown parameters are estimated by using ME, OLSE, and MEE methods. Therefore, we
calculate the value of the mean square error for each method. \(MSE = \frac{\sum_{i=1}^{L} (\hat{\theta} - \theta)^2}{L} \), where \(n \) is the size of sample and \(L \) is the number of repeating the experiments, \(L=1000, \ n=15, 25, 50, 75, 100 \).

5. Numerical results:

In this section, a simulation technique is used, namely the Monte-Carlo approach to finding the mean squares error for all methods that are used in this research.

Table 1: Represent the value of the estimator and mean squares error for all estimation methods with \((\alpha=0.25)\)

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(\lambda)</th>
<th>(n)</th>
<th>MEM</th>
<th>OLSEM</th>
<th>MEEM</th>
<th>best</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.5)</td>
<td>1</td>
<td>15</td>
<td>0.258324</td>
<td>2.90E-04</td>
<td>0.238545</td>
<td>1.67E-03</td>
</tr>
<tr>
<td>25</td>
<td>0.251484</td>
<td>9.37E-06</td>
<td>0.404535</td>
<td>4.76E-02</td>
<td>0.39999</td>
<td>4.52E-02</td>
</tr>
<tr>
<td>50</td>
<td>0.24988</td>
<td>5.29E-08</td>
<td>0.250115</td>
<td>2.35E-07</td>
<td>0.250449</td>
<td>2.06E-07</td>
</tr>
<tr>
<td>75</td>
<td>0.250013</td>
<td>1.70E-10</td>
<td>0.249924</td>
<td>5.87E-09</td>
<td>0.250001</td>
<td>5.01E-10</td>
</tr>
<tr>
<td>100</td>
<td>0.250002</td>
<td>4.08E-11</td>
<td>0.249651</td>
<td>1.93E-07</td>
<td>0.249651</td>
<td>1.95E-07</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0.232904</td>
<td>1.90E-03</td>
<td>0.296521</td>
<td>1.24E-02</td>
<td>0.360122</td>
</tr>
<tr>
<td>25</td>
<td>0.248796</td>
<td>2.53E-06</td>
<td>0.250857</td>
<td>1.94E-06</td>
<td>0.249418</td>
<td>3.53E-05</td>
</tr>
<tr>
<td>50</td>
<td>0.249968</td>
<td>1.75E-07</td>
<td>0.250037</td>
<td>3.84E-07</td>
<td>0.249844</td>
<td>3.77E-08</td>
</tr>
<tr>
<td>75</td>
<td>0.249944</td>
<td>3.36E-09</td>
<td>0.249618</td>
<td>1.69E-07</td>
<td>0.249598</td>
<td>1.72E-07</td>
</tr>
<tr>
<td>100</td>
<td>0.249998</td>
<td>3.97E-12</td>
<td>0.27615</td>
<td>1.31E-03</td>
<td>0.276138</td>
<td>1.37E-03</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>0.276422</td>
<td>7.03E-04</td>
<td>0.538638</td>
<td>0.147788</td>
<td>0.456966</td>
</tr>
<tr>
<td>25</td>
<td>0.248133</td>
<td>3.98E-05</td>
<td>0.409786</td>
<td>4.87E-02</td>
<td>0.404728</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>50</td>
<td>0.249227</td>
<td>6.04E-07</td>
<td>0.351697</td>
<td>2.09E-02</td>
<td>0.351949</td>
<td>2.12E-02</td>
</tr>
<tr>
<td>75</td>
<td>0.249995</td>
<td>1.30E-10</td>
<td>0.251378</td>
<td>3.21E-05</td>
<td>0.251378</td>
<td>3.21E-05</td>
</tr>
<tr>
<td>100</td>
<td>0.250001</td>
<td>4.09E-11</td>
<td>0.257994</td>
<td>8.36E-05</td>
<td>0.257993</td>
<td>8.37E-05</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0.24759</td>
<td>7.13E-04</td>
<td>0.26327</td>
<td>2.47E-04</td>
<td>0.275899</td>
</tr>
<tr>
<td>25</td>
<td>0.248801</td>
<td>6.47E-06</td>
<td>0.222289</td>
<td>1.06E-03</td>
<td>0.226468</td>
<td>1.15E-03</td>
</tr>
<tr>
<td>50</td>
<td>0.249781</td>
<td>7.54E-08</td>
<td>0.248545</td>
<td>2.30E-06</td>
<td>0.247878</td>
<td>5.30E-06</td>
</tr>
<tr>
<td>75</td>
<td>0.250022</td>
<td>9.44E-10</td>
<td>0.263944</td>
<td>4.78E-04</td>
<td>0.263944</td>
<td>4.77E-04</td>
</tr>
<tr>
<td>100</td>
<td>0.249999</td>
<td>2.16E-11</td>
<td>0.249731</td>
<td>1.01E-07</td>
<td>0.249736</td>
<td>9.97E-08</td>
</tr>
<tr>
<td>1.5</td>
<td>15</td>
<td>0.261887</td>
<td>2.86E-03</td>
<td>0.286884</td>
<td>1.31E-02</td>
<td>0.301585</td>
</tr>
<tr>
<td>25</td>
<td>0.249314</td>
<td>1.83E-06</td>
<td>0.268849</td>
<td>3.62E-04</td>
<td>0.271853</td>
<td>4.85E-04</td>
</tr>
<tr>
<td>50</td>
<td>0.249688</td>
<td>1.21E-07</td>
<td>0.25425</td>
<td>1.06E-04</td>
<td>0.254321</td>
<td>1.10E-04</td>
</tr>
<tr>
<td>75</td>
<td>0.25001</td>
<td>1.14E-09</td>
<td>0.270253</td>
<td>6.68E-04</td>
<td>0.27027</td>
<td>6.71E-04</td>
</tr>
<tr>
<td>100</td>
<td>0.249998</td>
<td>5.18E-12</td>
<td>0.266484</td>
<td>2.70E-04</td>
<td>0.266477</td>
<td>2.75E-04</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0.300486</td>
<td>3.85E-03</td>
<td>0.292259</td>
<td>4.50E-03</td>
<td>0.362519</td>
</tr>
<tr>
<td>25</td>
<td>0.251763</td>
<td>4.91E-06</td>
<td>0.289972</td>
<td>2.20E-03</td>
<td>0.291296</td>
<td>2.13E-03</td>
</tr>
<tr>
<td>50</td>
<td>0.250015</td>
<td>1.12E-08</td>
<td>0.260471</td>
<td>2.36E-04</td>
<td>0.260345</td>
<td>2.23E-04</td>
</tr>
<tr>
<td>75</td>
<td>0.249996</td>
<td>1.44E-09</td>
<td>0.261229</td>
<td>2.87E-04</td>
<td>0.261224</td>
<td>2.86E-04</td>
</tr>
<tr>
<td>100</td>
<td>0.250001</td>
<td>2.58E-11</td>
<td>0.254817</td>
<td>7.35E-05</td>
<td>0.254816</td>
<td>7.35E-05</td>
</tr>
</tbody>
</table>

Note that the mean square error for the moment estimation method is the best estimation from the other methods indicating that \(\frac{27}{30} \times 100 = 90 \).

1514
Table 2: Represent the value of the estimator and mean squares error for all estimation methods with ($\alpha=0.5$).

<table>
<thead>
<tr>
<th>β</th>
<th>λ</th>
<th>n</th>
<th>MEM $\hat{\alpha}$</th>
<th>Mae</th>
<th>OLSEM $\hat{\alpha}$</th>
<th>Mae</th>
<th>MEEM $\hat{\alpha}$</th>
<th>Mae</th>
<th>best</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1</td>
<td>15</td>
<td>0.471463</td>
<td>3.51E-03</td>
<td>1.709969</td>
<td>2.501662</td>
<td>1.709123</td>
<td>2.632765</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0.49674</td>
<td>1.22E-05</td>
<td>0.502448</td>
<td>1.18E-05</td>
<td>0.504834</td>
<td>2.54E-05</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0.500053</td>
<td>6.16E-07</td>
<td>0.517912</td>
<td>6.51E-04</td>
<td>0.518218</td>
<td>6.56E-04</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>0.499971</td>
<td>8.62E-10</td>
<td>0.532651</td>
<td>2.11E-03</td>
<td>0.532678</td>
<td>2.14E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.500003</td>
<td>1.75E-11</td>
<td>0.4999</td>
<td>3.73E-12</td>
<td>0.500001</td>
<td>6.63E-12</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
<td>0.541988</td>
<td>2.15E-03</td>
<td>0.620726</td>
<td>3.83E-02</td>
<td>0.623052</td>
<td>3.18E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0.494823</td>
<td>2.68E-05</td>
<td>0.755702</td>
<td>0.129802</td>
<td>0.760201</td>
<td>0.135574</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0.499973</td>
<td>8.44E-08</td>
<td>0.524439</td>
<td>1.18E-03</td>
<td>0.52492</td>
<td>1.24E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>0.499993</td>
<td>3.79E-09</td>
<td>0.499968</td>
<td>1.12E-09</td>
<td>0.499969</td>
<td>2.70E-09</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.499997</td>
<td>1.88E-11</td>
<td>0.513907</td>
<td>3.80E-04</td>
<td>0.513915</td>
<td>3.86E-04</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15</td>
<td>0.522962</td>
<td>9.82E-04</td>
<td>0.753422</td>
<td>6.60E-02</td>
<td>0.794002</td>
<td>8.79E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0.502799</td>
<td>2.19E-05</td>
<td>0.520574</td>
<td>1.03E-03</td>
<td>0.518754</td>
<td>9.20E-04</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0.500024</td>
<td>2.61E-07</td>
<td>0.57714</td>
<td>1.10E-02</td>
<td>0.576853</td>
<td>1.19E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>0.499943</td>
<td>3.39E-09</td>
<td>0.56108</td>
<td>6.82E-03</td>
<td>0.56111</td>
<td>6.85E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.500001</td>
<td>3.34E-11</td>
<td>0.506756</td>
<td>9.19E-05</td>
<td>0.506754</td>
<td>9.18E-05</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
<td>0.521279</td>
<td>5.61E-04</td>
<td>0.618132</td>
<td>4.44E-02</td>
<td>0.648695</td>
<td>0.045076</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0.500872</td>
<td>2.20E-06</td>
<td>0.531316</td>
<td>9.71E-03</td>
<td>0.532465</td>
<td>9.30E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0.499857</td>
<td>7.08E-07</td>
<td>0.533912</td>
<td>1.24E-03</td>
<td>0.533869</td>
<td>1.28E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>0.499975</td>
<td>1.03E-09</td>
<td>0.504058</td>
<td>3.60E-05</td>
<td>0.503992</td>
<td>3.49E-05</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.499996</td>
<td>1.60E-11</td>
<td>0.583439</td>
<td>1.30E-02</td>
<td>0.583431</td>
<td>0.013169</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>1</td>
<td>15</td>
<td>0.502806</td>
<td>1.23E-04</td>
<td>0.882473</td>
<td>1.52273</td>
<td>0.949483</td>
<td>0.207236</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0.500774</td>
<td>4.14E-06</td>
<td>0.516089</td>
<td>1.35E-03</td>
<td>0.513475</td>
<td>9.77E-04</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0.499691</td>
<td>1.26E-07</td>
<td>0.545404</td>
<td>4.81E-03</td>
<td>0.545025</td>
<td>4.80E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>0.499985</td>
<td>4.49E-09</td>
<td>0.516768</td>
<td>6.15E-04</td>
<td>0.516846</td>
<td>6.20E-04</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.500001</td>
<td>1.03E-11</td>
<td>0.498253</td>
<td>9.60E-04</td>
<td>0.498256</td>
<td>9.60E-04</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
<td>0.475719</td>
<td>8.10E-04</td>
<td>0.490032</td>
<td>1.69E-04</td>
<td>0.490915</td>
<td>1.26E-04</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0.50049</td>
<td>2.68E-07</td>
<td>0.550634</td>
<td>4.18E-03</td>
<td>0.545988</td>
<td>3.26E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0.500079</td>
<td>1.91E-08</td>
<td>0.582901</td>
<td>6.97E-03</td>
<td>0.583011</td>
<td>6.98E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>0.499952</td>
<td>4.50E-09</td>
<td>0.505468</td>
<td>7.30E-04</td>
<td>0.505443</td>
<td>7.31E-04</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.500001</td>
<td>7.95E-13</td>
<td>0.512014</td>
<td>5.42E-04</td>
<td>0.512012</td>
<td>5.52E-04</td>
<td>1</td>
</tr>
</tbody>
</table>

Note that the mean square error for moment estimation method is the best estimation from the other methods indicating that $\frac{26}{30} \times 100 = 86.6$.

1515
Table 3: Represent the value of the estimator and mean squares error for all estimation methods with (\(\alpha=0.25\)).

| \(\beta\) | \(\lambda\) | \(n\) | MEM | |\(\hat{\beta}\)| |\(Mse_\alpha\)| | |\(\hat{\beta}\)| |\(Mse_\alpha\)| | |\(\hat{\beta}\)| |\(Mse_\alpha\)| |best |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.5 | 1 | 15 | 0.464726 | 2.13E-03 | 0.298903 | 4.65E-02 | 0.311585 | 4.57E-02 | 1 |
| | | 25 | 0.49602 | 1.71E-05 | 0.472943 | 1.00E-03 | 0.471556 | 1.12E-03 | 1 |
| | | 50 | 0.498986 | 1.32E-07 | 0.406926 | 8.68E-03 | 0.406937 | 8.68E-03 | 1 |
| | | 75 | 0.500021 | 5.23E-10 | 0.528865 | 1.69E-03 | 0.528839 | 1.69E-03 | 1 |
| | | 100 | 0.499999 | 1.60E-12 | 0.519604 | 9.39E-04 | 0.519611 | 9.39E-04 | 1 |
| 2 | | 15 | 0.503915 | 0.002633 | 0.493052 | 0.010819 | 0.429573 | 1.92E-02 | 3 |
| | | 25 | 0.497068 | 1.61E-05 | 0.456984 | 6.28E-03 | 0.459483 | 6.33E-03 | 1 |
| | | 50 | 0.499636 | 4.78E-07 | 0.537895 | 7.86E-03 | 0.537458 | 7.70E-03 | 1 |
| | | 75 | 0.499982 | 1.10E-09 | 0.521549 | 4.67E-04 | 0.52154 | 4.67E-04 | 1 |
| | | 100 | 0.499996 | 2.07E-11 | 0.495301 | 0.005176 | 0.495305 | 5.18E-03 | 1 |
| 1 | 1 | 15 | 1.000258 | 5.45E-05 | 1.000314 | 2.45E-04 | 0.935629 | 4.37E-03 | 1 |
| | | 25 | 1.00157 | 1.63E-05 | 0.849312 | 5.41E-02 | 0.849248 | 5.41E-02 | 1 |
| | | 50 | 0.999919 | 7.23E-09 | 0.831148 | 3.10E-02 | 0.831763 | 0.030859 | 1 |
| | | 75 | 1.000016 | 2.28E-09 | 1.10135 | 1.62E-02 | 1.101412 | 0.016195 | 1 |
| | | 100 | 1.000003 | 9.15E-12 | 0.964632 | 2.15E-03 | 0.964637 | 2.15E-03 | 1 |
| 2 | | 15 | 1.02124 | 7.32E-04 | 0.831074 | 6.41E-02 | 0.830722 | 6.04E-02 | 1 |
| | | 25 | 0.997192 | 1.76E-05 | 1.297131 | 0.164546 | 1.298636 | 0.166754 | 1 |
| | | 50 | 1.000228 | 6.03E-08 | 0.941784 | 3.69E-03 | 0.941795 | 3.70E-03 | 1 |
| | | 75 | 1.000026 | 1.23E-09 | 1.106374 | 1.15E-02 | 1.106303 | 1.15E-02 | 1 |
| | | 100 | 1.000002 | 4.93E-12 | 1.031293 | 1.43E-03 | 1.031295 | 1.43E-03 | 1 |
| 1.5 | 1 | 15 | 1.535848 | 2.07E-03 | 1.659731 | 0.357156 | 1.696778 | 0.358158 | 1 |
| | | 25 | 1.501646 | 3.21E-06 | 1.414983 | 2.38E-02 | 1.417792 | 2.57E-02 | 1 |
| | | 50 | 1.49972 | 1.82E-07 | 1.64324 | 2.05E-02 | 1.643706 | 2.07E-02 | 1 |
| | | 75 | 1.499987 | 1.04E-09 | 1.527833 | 8.33E-03 | 1.527801 | 8.34E-03 | 1 |
| | | 100 | 1.500001 | 3.60E-12 | 1.392978 | 1.57E-02 | 1.392976 | 1.57E-02 | 1 |
| 2 | | 15 | 1.513715 | 3.52E-04 | 1.317882 | 0.127016 | 1.351833 | 9.86E-02 | 1 |
| | | 25 | 1.502052 | 9.46E-06 | 1.601467 | 1.07E-02 | 1.603839 | 1.15E-02 | 1 |
| | | 50 | 1.50017 | 1.68E-07 | 1.729041 | 5.75E-02 | 1.729074 | 0.057522 | 1 |
| | | 75 | 1.500005 | 1.68E-09 | 1.504686 | 8.73E-03 | 1.504709 | 8.71E-03 | 1 |
| | | 100 | 1.500002 | 5.42E-12 | 1.4467 | 1.17E-02 | 1.446704 | 0.011732 | 1 |

Note that the mean square error for the moment estimation method is the best estimation from the other methods indicating that \(\frac{29}{30} \times 100 = 96.66\).
Table 4: Represent the value of the estimator and mean squares error for all estimation methods with ($\alpha=0.5$).

<table>
<thead>
<tr>
<th>$\hat{\beta}$</th>
<th>λ</th>
<th>n</th>
<th>MEM $\hat{\beta}$</th>
<th>MEM Mse_α</th>
<th>OLSEM $\hat{\beta}$</th>
<th>OLSEM Mse_α</th>
<th>MEEM $\hat{\beta}$</th>
<th>MEEM Mse_α</th>
<th>best</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1</td>
<td>15</td>
<td>0.494696</td>
<td>4.84E-04</td>
<td>0.611324</td>
<td>1.46E-02</td>
<td>0.630322</td>
<td>0.017983</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0.502311</td>
<td>2.13E-05</td>
<td>0.560568</td>
<td>1.27E-02</td>
<td>0.55937</td>
<td>0.014139</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0.500028</td>
<td>5.21E-08</td>
<td>0.547069</td>
<td>3.87E-03</td>
<td>0.547995</td>
<td>3.98E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>0.500003</td>
<td>2.73E-11</td>
<td>0.560517</td>
<td>5.60E-03</td>
<td>0.56056</td>
<td>5.71E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0.499995</td>
<td>2.63E-11</td>
<td>0.49098</td>
<td>1.10E-03</td>
<td>0.490982</td>
<td>1.00E-03</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
<td>0.466132</td>
<td>2.05E-03</td>
<td>0.483197</td>
<td>8.60E-03</td>
<td>0.39012</td>
<td>1.72E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td>0.495919</td>
<td>1.96E-05</td>
<td>0.542362</td>
<td>1.80E-03</td>
<td>0.544874</td>
<td>2.01E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>0.500254</td>
<td>2.29E-07</td>
<td>0.500213</td>
<td>4.51E-03</td>
<td>0.499865</td>
<td>4.47E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
<td>0.49995</td>
<td>2.55E-09</td>
<td>0.470616</td>
<td>1.62E-03</td>
<td>0.470629</td>
<td>1.62E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>0.499998</td>
<td>1.18E-11</td>
<td>0.467584</td>
<td>1.13E-03</td>
<td>0.46758</td>
<td>1.13E-03</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td></td>
<td>0.912091</td>
<td>7.75E-03</td>
<td>1.048313</td>
<td>3.10E-03</td>
<td>1.01827</td>
<td>9.50E-03</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td>0.994416</td>
<td>4.72E-05</td>
<td>1.120559</td>
<td>7.27E-02</td>
<td>1.11995</td>
<td>0.068775</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>0.999855</td>
<td>2.11E-08</td>
<td>0.860475</td>
<td>3.81E-02</td>
<td>0.8604</td>
<td>3.82E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
<td>0.99983</td>
<td>1.05E-09</td>
<td>0.914948</td>
<td>1.18E-02</td>
<td>0.914971</td>
<td>1.18E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>0.999994</td>
<td>4.35E-11</td>
<td>1.090971</td>
<td>1.45E-02</td>
<td>1.09097</td>
<td>1.45E-02</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
<td>1.027409</td>
<td>7.82E-04</td>
<td>1.130087</td>
<td>5.51E-02</td>
<td>1.056763</td>
<td>3.59E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td>0.999809</td>
<td>8.26E-06</td>
<td>1.113395</td>
<td>0.032839</td>
<td>1.114184</td>
<td>3.20E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>0.999732</td>
<td>7.19E-08</td>
<td>0.832589</td>
<td>5.92E-02</td>
<td>0.832622</td>
<td>5.94E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
<td>0.999991</td>
<td>2.99E-09</td>
<td>0.858467</td>
<td>2.00E-02</td>
<td>0.858469</td>
<td>2.00E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>1.000111</td>
<td>6.79E-12</td>
<td>0.931363</td>
<td>0.011595</td>
<td>0.931369</td>
<td>1.16E-02</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>15</td>
<td></td>
<td>1.534589</td>
<td>1.72E-03</td>
<td>1.394253</td>
<td>1.12E-02</td>
<td>1.417703</td>
<td>7.04E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td>1.49877</td>
<td>1.31E-05</td>
<td>1.747498</td>
<td>6.28E-02</td>
<td>1.7513</td>
<td>6.45E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>1.500254</td>
<td>1.76E-07</td>
<td>1.428695</td>
<td>2.66E-02</td>
<td>1.429198</td>
<td>2.64E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
<td>1.49987</td>
<td>1.93E-09</td>
<td>1.476898</td>
<td>3.17E-02</td>
<td>1.476922</td>
<td>3.17E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>1.499996</td>
<td>1.72E-11</td>
<td>1.478857</td>
<td>1.45E-03</td>
<td>1.478858</td>
<td>1.45E-03</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
<td>1.546281</td>
<td>2.55E-03</td>
<td>1.548145</td>
<td>1.66E-02</td>
<td>1.510827</td>
<td>8.71E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td>1.49895</td>
<td>1.40E-05</td>
<td>1.451667</td>
<td>4.63E-02</td>
<td>1.446869</td>
<td>4.7E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>1.500443</td>
<td>3.85E-07</td>
<td>1.640215</td>
<td>2.26E-02</td>
<td>1.640212</td>
<td>2.26E-02</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
<td>1.499934</td>
<td>4.86E-09</td>
<td>1.503022</td>
<td>3.70E-03</td>
<td>1.502982</td>
<td>3.71E-03</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>1.50001</td>
<td>7.55E-14</td>
<td>1.657452</td>
<td>2.58E-02</td>
<td>1.657447</td>
<td>2.58E-02</td>
<td>1</td>
</tr>
</tbody>
</table>

Note that the mean square error for the moment estimation method is the best estimation from the other methods indicating that $\frac{29}{30} \times 100 = 96.66$.

1517
Table 5: Represent the value of the estimator and mean squares error for all estimation methods with ($\alpha=0.25$).

<table>
<thead>
<tr>
<th>β</th>
<th>λ</th>
<th>n</th>
<th>MEM</th>
<th>OLSEM</th>
<th>MEEM</th>
<th>best</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\hat{\lambda}$</td>
<td>Mse_{λ}</td>
<td>$\hat{\lambda}$</td>
<td>Mse_{λ}</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>15</td>
<td>0.471463</td>
<td>1.63E-03</td>
<td>0.971701</td>
<td>1.49E-03</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>50</td>
<td>0.495674</td>
<td>4.96E-05</td>
<td>1.005886</td>
<td>5.54E-05</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>100</td>
<td>0.500053</td>
<td>1.14E-05</td>
<td>1.006218</td>
<td>4.19E-05</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0.541988</td>
<td>1.37E-03</td>
<td>2.026064</td>
<td>4.20E-03</td>
<td>1.983939</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.494823</td>
<td>1.98E-06</td>
<td>2.005134</td>
<td>3.66E-05</td>
<td>2.003713</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.499973</td>
<td>3.54E-05</td>
<td>2.009825</td>
<td>7.97E-05</td>
<td>2.006714</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.499993</td>
<td>7.56E-07</td>
<td>2.004103</td>
<td>1.83E-05</td>
<td>2.004741</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.499997</td>
<td>1.49E-05</td>
<td>2.002715</td>
<td>1.12E-05</td>
<td>2.005242</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>0.522962</td>
<td>2.20E-03</td>
<td>0.998096</td>
<td>1.76E-03</td>
<td>0.95081</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.502799</td>
<td>3.85E-05</td>
<td>0.998288</td>
<td>1.45E-05</td>
<td>1.007649</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.500024</td>
<td>5.72E-05</td>
<td>1.005456</td>
<td>2.98E-05</td>
<td>1.00459</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.499943</td>
<td>1.76E-05</td>
<td>1.0072</td>
<td>5.30E-05</td>
<td>1.006024</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.500001</td>
<td>3.64E-05</td>
<td>1.006704</td>
<td>4.63E-05</td>
<td>1.002972</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0.521279</td>
<td>1.64E-03</td>
<td>1.993994</td>
<td>6.00E-04</td>
<td>1.963324</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.500872</td>
<td>4.05E-05</td>
<td>2.002167</td>
<td>4.75E-06</td>
<td>1.999184</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.499857</td>
<td>2.93E-05</td>
<td>2.00441</td>
<td>2.32E-05</td>
<td>2.003151</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.499975</td>
<td>2.92E-05</td>
<td>2.007994</td>
<td>6.40E-05</td>
<td>2.005395</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.499996</td>
<td>1.81E-06</td>
<td>2.005752</td>
<td>3.70E-05</td>
<td>2.008047</td>
</tr>
<tr>
<td>1.5</td>
<td>15</td>
<td>0.502806</td>
<td>6.58E-04</td>
<td>0.961021</td>
<td>1.52E-03</td>
<td>1.03334</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.500774</td>
<td>1.80E-05</td>
<td>1.003783</td>
<td>4.02E-05</td>
<td>0.997744</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.499691</td>
<td>1.64E-05</td>
<td>1.004512</td>
<td>2.17E-05</td>
<td>1.003736</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.499985</td>
<td>5.61E-06</td>
<td>1.00879</td>
<td>7.73E-05</td>
<td>1.002577</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.50001</td>
<td>4.29E-05</td>
<td>1.004784</td>
<td>2.29E-05</td>
<td>1.004767</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0.475719</td>
<td>1.65E-04</td>
<td>2.028829</td>
<td>1.55E-03</td>
<td>2.050377</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.50049</td>
<td>5.60E-05</td>
<td>2.002742</td>
<td>1.10E-05</td>
<td>2.002885</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.500079</td>
<td>3.34E-05</td>
<td>2.00473</td>
<td>2.58E-05</td>
<td>2.004168</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.499952</td>
<td>4.47E-05</td>
<td>2.003139</td>
<td>1.47E-05</td>
<td>2.00455</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.50001</td>
<td>6.78E-06</td>
<td>2.004902</td>
<td>2.99E-05</td>
<td>2.001175</td>
</tr>
</tbody>
</table>

Note that the mean square error for the moment estimation method is the best estimation from the other methods indicating that $\frac{13}{30} \times 100 = 43.33$.
Table 6: Represent the value of the estimator and mean squares error for all estimation methods with (α=0.5).

<table>
<thead>
<tr>
<th>β</th>
<th>λ</th>
<th>n</th>
<th>MEM</th>
<th>OLESEM</th>
<th>MEEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>λ</td>
<td>Mse_α</td>
<td>λ̂</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>15</td>
<td>0.99244</td>
<td>4.25E-03</td>
<td>1.030723</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>100</td>
<td>1.004876</td>
<td>3.20E-05</td>
<td>1.010203</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>100</td>
<td>1.005147</td>
<td>2.69E-05</td>
<td>1.003068</td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>100</td>
<td>1.001836</td>
<td>3.41E-06</td>
<td>1.005125</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>100</td>
<td>1.004728</td>
<td>2.90E-05</td>
<td>1.006067</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>2</td>
<td>2.017247</td>
<td>2.27E-03</td>
<td>1.974458</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>15</td>
<td>2.000963</td>
<td>3.15E-05</td>
<td>2.005122</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>15</td>
<td>2.003722</td>
<td>1.50E-05</td>
<td>2.007404</td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>15</td>
<td>2.005732</td>
<td>3.49E-05</td>
<td>2.004408</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>15</td>
<td>2.003336</td>
<td>1.65E-05</td>
<td>2.006074</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15</td>
<td>0.990828</td>
<td>8.83E-05</td>
<td>0.995052</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>15</td>
<td>1.007518</td>
<td>6.11E-05</td>
<td>1.003496</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>15</td>
<td>1.006165</td>
<td>3.84E-05</td>
<td>1.00579</td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>15</td>
<td>1.002112</td>
<td>4.65E-06</td>
<td>1.007888</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>15</td>
<td>1.005808</td>
<td>3.44E-05</td>
<td>1.002082</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>2</td>
<td>2.044973</td>
<td>2.06E-03</td>
<td>2.056745</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>15</td>
<td>2.005273</td>
<td>2.94E-05</td>
<td>2.006248</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>15</td>
<td>2.005824</td>
<td>3.44E-05</td>
<td>2.005684</td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>15</td>
<td>2.000635</td>
<td>4.57E-07</td>
<td>2.007355</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>15</td>
<td>2.005714</td>
<td>3.37E-05</td>
<td>2.005462</td>
</tr>
<tr>
<td>1.5</td>
<td>1</td>
<td>15</td>
<td>1.023702</td>
<td>1.00E-03</td>
<td>0.979387</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>15</td>
<td>1.006682</td>
<td>4.47E-05</td>
<td>1.00733</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>15</td>
<td>1.004768</td>
<td>2.32E-05</td>
<td>1.002164</td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>15</td>
<td>1.004042</td>
<td>2.99E-05</td>
<td>1.006904</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>15</td>
<td>1.002447</td>
<td>1.12E-05</td>
<td>1.004981</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>2</td>
<td>2.0764</td>
<td>6.10E-03</td>
<td>1.980636</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>15</td>
<td>1.998982</td>
<td>3.05E-06</td>
<td>1.999427</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>15</td>
<td>2.00293</td>
<td>1.56E-05</td>
<td>2.003362</td>
</tr>
<tr>
<td>75</td>
<td>1</td>
<td>15</td>
<td>2.004249</td>
<td>2.93E-05</td>
<td>2.001503</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>15</td>
<td>2.007059</td>
<td>5.37E-05</td>
<td>2.00649</td>
</tr>
</tbody>
</table>

Note that the mean square error for the maximum entropy estimation method is the best estimation from the other methods indicating that \(\frac{11}{30} \times 100 = 36.66 \).
5. **Conclusion**: In this paper, we suggest a novel distribution. It studies characteristics. Classical estimating methods were investigated in order to estimate the three unknown parameters of the new distribution. A simulation study was also performed to produce alternative sample sizes. We compared the various estimation techniques using the mean squared error. It should be noted that the moment estimation approach is the best since it has the lowest error for all sample sizes.

References

