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Abstract 

     A fuzzy valued diffusion term, which in a fuzzy stochastic differential equation 

refers to one-dimensional Brownian motion, is defined by the meaning of the 

stochastic integral of a fuzzy process. In this paper, the existence and uniqueness 

theorem of fuzzy stochastic ordinary differential equations, based on the mean 

square convergence of the mathematical induction approximations to the associated 

stochastic integral equation, are stated and demonstrated. 
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 الوجود والوحدانية للمعادلات التفاضلية التصادفية الضبابية الاعتياديةمبرهنة 
 

 1، صادق ناجي ناصر2، فاضل صبحي فاضل،*1نبأ رحيم كريم
 العلومقسم الرياضيات, كلية  ,جامعة بغداد, بغداد,العراق1

 قسم الرياضيات وتطبيقات الحاسوب, كلية العلوم ,جامعة النهرين, بغداد,العراق2
 

 الخلاصة
تتكون المعادلة التفاضلية التصادفية الضبابية من مصطلح انتشار ذو قيمة غامضة والذي يتم تعريفة من      

يتم خلال معنى التكامل العشوائي لعملية ضبابية فيما يتعلق بالحركة البراونية احادية البعد. في هذا البحث, 
لضبابية الاعتيادية واثبات انها تستند على ذكر مبرهنة الوجود والوحدانية للمعادلات التفاضلية العشوائية ا

  .متوسط التقارب للمعادلة التكاملية الضبابية
 

1. Introduction 

     In recent years, the theory of Fuzzy Stochastic Ordinary Differential Equations (FSODE's) 

has been extensively developed in conjunction with fuzzy valued mappings [1,2]. The 

FSODEs are employed in several real-world systems, such as economics, and consisting 

phenomenas elated to fuzziness and types of uncertainty [2]. 

 

     There are a variety of papers that are concerned with FSODE's [3]. An explanation of the 

fuzzy stochastic Itô integral was provided by Kim in [3,4-7]. The authors drove up the fuzzy 
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Itô stochastic integral using the Brownian motion and fuzzy non-anticipating stochastic 

processes in order to create a fuzzy random variable, the procedure entails embedding a crisp 

Itô stochastic integral into fuzzy space. In this work, the existence and uniqueness theorem of 

the solution to such system are stated and proved [7]. 

 

     Also, it is notable that fuzzy set theory is a generalization of abstract set theory and it has a 

wide scope of applications than abstract or crisp set theory in solving problems that involve 

some degree of subjective evaluation [8]. In order to recall fuzzy sets, let X be a space of 

objects (called the universal set) and x be the generic element of X, a classical (nonfuzzy or 

crisp) set  ,    , is defined as a collection of elements or objects    , such that each 

element   can either belong or  can not to the set  . By defining a characteristic (or 

membership) function for each element    , one can represent a classical set   by a set of 

order pairs (x,0) or (x,1), which indicates that     or    , respectively. A fuzzy set  ̃ 

expresses the degree to which an element belongs to a set [9,10]. 

Hence, for simplicity, the membership function of a fuzzy set  ̃ is allowed to have values 

between 0 and 1, which reflects the degree of the membership of an element in  ̃. In 

mathematical symbols, the membership function is given by   ⃗        , and the fuzzy 

subset  ̃ of   is defined as a set of ordered pairs [11-13]: 

 ̃  {(    ̃(   |       ̃(        }   
Now, the general governing model of FSODEs is given in the following: 

  ̃ (       (   ̃ (          (   ̃ (          , t  I   , (1) 

with the initial condition: 

 ̃ (        ̃  , (2) 

 

     where       (     (  ,       (     (  , where   (   is the family of all 

fuzzy subset of   for which their level sets are non-empty closed convex subset of the reals  , 

and          are one-dimensional Brownian motion[14,15]. 

 

     The SFODE given in Eq.(1) may be written in an equivalent form as fuzzy integral 

equation: 

 ̃ (       ̃   ∫  
 

 
 (   ̃ (         ∫  

 

 
 (   ̃ (         . (3) 

 

     However, the second integral that is given in Eq.(3) cannot be defined in the usual integral 

meaning, where    is the Brownian motion or Wiener process. Then by using the concept of 

-levels or  -cuts of fuzzy sets and letting  ̃ (       
 (     ‾ 

 (    ,        , where   
  

and  ‾ 
  are the lower and upper bound solutions constituting the fuzzy function  ̃ , as a 

solution to Eq.(1) or Eq.(3), and hence Eq.(1) may be written in terms of its lower and upper 

solutions as follows:  

   
 (      (    

 (     ‾ 
 (   )     (    

 (     ‾ 
 (   )      (4) 

  ‾ 
 (      (    

 (     ‾ 
 (   )      (    

 (     ‾ 
 (   )     (5) 

with the initial conditions , respectively: 
   

    
  

 ‾  
   ‾ 

  
}  (6) 

Also, the fuzzy integral equations that related to Eqs.(4) and (5) are given by: 

  
 (       

  ∫  
 

  
   (    

 (     ‾ 
 (   )     ∫  

 

  
   (    

 (     ‾ 
 (   )        (7) 

 ‾ 
 (     ‾  

  ∫  
 

  
   (    

 (     ‾ 
 (   )     ∫  

 

  
   (    

 (     ‾ 
 (   )        (8) 
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2. Basic concepts 

     In this section, some basic concepts related to this work will be introduced. We start by 

recalling the concept of the probability space (      , which comprises the sample space  , 

a -algebra   of subsets of   (called events) and a probability measure   of  . 

 

Definition 1 [16,17]. A collection of random variables   (   (or briefly   ) on probability 

space (       is known as a stochastic process, which assumes real values and p-measurable 

as a function of     for every fixed t  [t0,T]  [0,). The time is considered to be the 

parameter t, and   (   represents a random variable on the above probability space  , while 

  (   is a known trajectory or sample path of the stochastic process. 

 

Definition 2 [18]. A stochastic process           , is said to be a Wiener process or a 

Brownian motion if: 

1.  ({   |  (    }   . 

2. For             , the increments                            
 are 

independent. 

3. For     and an arbitrary  ,         has a Gaussian distribution with mean 0 and 

variance h. 

Sequence of stochastic process may have different meaning of convergence, as it is seen in 

the next three definitions: 

 

Definition 3 [18,19]. A sequence of random variables {  (  }}, n  1, 2, … is said to be 

converge with probability one (denoted by p-w.p.1 or w.p.1) to  (   if   ({  
           (    (  }   . 

Another name for this type of convergence is called almost sure (denoted by a.s.) 

convergence. 

 

Definition 4 [20]. A sequence of random variables {  (  }}, n  1, 2, … such that  (  
   

 , for all    , is said to be converge in the mean square to  (   if         (|    |   
 ,      , where E stands for the mathematical expectation. 

 

Definition 5 [21]. A sequence of random variables {  (  }}, n  1, 2, … is said to be 

converge in probability or stochastically to  (  , if: 

       ({      (    (     }   ,      .  

Several results are needed for this work,we will start with the next two theorems: 

 

Theorem 1 [22]. If   is step function in    

      , where    

       is the set of measurable 

functions, which are square integrable over       and    is a Brownian motion, then: 

 ∫
 

 
  (           

 |∫
 

 
  (      |

 

  ∫
 

 
     . 

 

Theorem 2 [22]. Let f     

      , then: 

 {        |∫
 

 
  (      |

 

}    |∫
 

 
  (      |

 

  

   ∫
 

 
 | (  |    . 

 

3. Existence and uniqueness theorem of stochastic differential equations 
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Consider the FSODE of the lower-case solution given by Eq. (4), which is: 

   
 (      (    

 (     ‾ 
 (   )     (    

 (     ‾ 
 (   )      

with initial conditions    
     

 ,  ‾  
   ‾ 

 . 

 

     Hence, to find the equivalent stochastic integral equation, integrate both sides of Eq.(4) 

and using the initial condition, we get: 

∫  
 

 
   

 (       ∫  
 

 
 (    

 (     ‾ 
 (   )    ∫  

 

 
 (    

 (     ‾ 
 (   )    . 

Therefore: 

  
 (      

  ∫  
 

 

 (    
 (     ‾ 

 (   )    ∫  
 

 

 (    
 (     ‾ 

 (   )      

and then an iterated sequence of solutions of the resulting integral equation may be evaluated 

as follows: 

   

 (      
  ∫  

 

 
 (     

 (     ‾  

 (   )   ∫  
 

 
 (     

 (     ‾  

 (   )             

   

 (      
  ∫  

 

 
 (     

 (     ‾  

 (   )   ∫  
 

 
 (     

 (     ‾  

 (   )              

                                                                                                                        

     

 (      
  ∫  

 

 
 (     

 (     ‾  
 (   )   ∫  

 

 
 (     

 (     ‾  
 (   )    }

 
 

 
 

 (9) 

 

Theorem 3 (Existence Theorem). Suppose  (    
 (     ‾ 

 (   ),  (    
 (     ‾ 

 (   ) are 

measurable functions in            , which satisfies: 
| (    

 (     ‾ 
 (   )   (     

 (     ‾  
 (   )|    (|  

 (       
 (   |  | ‾ 

 (     ‾  
 (   |) 

| (    
 (     ‾ 

 (   )   (     
 (     ‾  

 (   )|    (|  
 (       

 (   |  | ‾ 
 (     ‾  

 (   |) 
}     (10) 

| (    
 (     ‾ 

 (   )|   (  |  
 (   |  | ‾ 

 (   |) 

| (    
 (     ‾ 

 (   )|   (  |  
 (   |  | ‾ 

 (   |) 
}  (11) 

 

     where   and    are the Lipschitz constants. Let   
  be any  -dimensional random vector 

independent of  (    
 (     ‾ 

 (   ), 0  t  T, such that  |  
 |   . Then there exists a 

solution of Eqs. (4) and (6) in   
      , where   

       is the space of measurable functions 

which are square integrable over      .  
 

Proof. Since the iterated sequence of solutions of the integral equation may be given as: 

     

 (      
  ∫  

 

 
 (     

 (     ‾  
 (   )    ∫  

 

 
 (     

 (     ‾  
 (   )       

 (12) 

for all       .  

The proof will proceed by induction on the sequence of solutions    
    

      . 

If    , then: 

|   

 (       

 (   |  

|  
  ∫  (     

 (     ‾  

 (   )  
 

 
   ∫  (     

 (     ‾  

 (   )   
 

 
   

 |  

 |∫  (     

 (     ‾  

 (   )  
 

 
   ∫  (     

 (     ‾  

 (   )   
 

 
|  

 |∫  (     

 (     ‾  

 (   )  
 

 
 |  | ∫  (     

 (     ‾  

 (   )   
 

 
|.  

Taking the expectation on both sides and using Eq.(11), give: 

 |   

 (       

 (   |  

 |∫  (     

 (     ‾  

 (   )  
 

 
 |   | ∫  (     

 (     ‾  

 (   )   
 

 
|.  

Using the following inequality (                          , then: 
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 |   

 (       

 (   |
 

 

  |∫  (     

 (     ‾  

 (   )  
 

 
 |
 

   | ∫  (     

 (     ‾  

 (   )   
 

 
|
 

.  

The Cauchy-Schwarz inequality implies that: 

|∫
 

 
  (     

 (     ‾  

 (   )  |
 

  ∫
 

 
 | (     

 (     ‾  

 (   )|
   , for any    . 

Now, from Theorem 1, we have: 

 |   

 (       

 (   |
 

    ∫ | (     

 (     ‾  

 (   )|
 
  

 

 
  

  ∫ | (     

 (     ‾  

 (   )|
 
  

 

 
 

 (         (   |   

 (   |
 
  | ‾  

 (   |
 
)    

    
  

  
,  

where   (         (   |   

 (   |
 
  | ‾  

 (   |
 
). 

If    , then: 

|   

 (       

 (   |  

|  
  ∫  (     

 (     ‾  

 (   )  
 

 
   ∫  (     

 (     ‾  

 (   )   
 

 
 

[  
  ∫  (     

 (     ‾  

 (   )  
 

 
   ∫  (     

 (     ‾  

 (   )   
 

 
]|  

 

|∫  (     

 (     ‾  

 (   )  
 

 
 ∫  (     

 (     ‾  

 (   )  
 

 
  

 ∫  (     

 (     ‾  

 (   )   
 

 
 ∫  (     

 (     ‾  

 (   )   
 

 
|  

 

|∫  (     

 (     ‾  

 (   )  
 

 
 ∫  (     

 (     ‾  

 (   )  
 

 
 |  

| ∫  (     

 (     ‾  

 (   )   
 

 
 ∫  (     

 (     ‾  

 (   )   
 

 
|. 

Taking the expectation on both sides and using Eq.(10), yields to: 

 |   

 (       

 (   |
 

   |∫ [ (     

 (     ‾  

 (   )   (     

 (     ‾  

 (   )]  
 

 
 |
 

 

   |∫ [ (     

 (     ‾  

 (   )   (     

 (     ‾  

 (   )]  
 

 
 |
 

 

 

  ∫ | (     

 (     ‾  

 (   )   (     

 (     ‾  

 (   )|
 
  

 

 
 

  ∫ | (     

 (     ‾  

 (   )   (     

 (     ‾  

 (   )|
 
  

 

 
  

    
  ∫  (|   

 (       

 (   |
 
 |   

 (     ‾  

 (   |
 
)  

 

 
    

  ∫  (|   

 (    
 

 

   

 (   |
 
 |   

 (     ‾  

 (   |
 
)    

 (   
     

   [|   

 (       

 (   |
 
 |   

 (     ‾  

 (   |
 
]    

(    

  
. 

So on, one may proceed similarly until    , then we have: 

 |     

 (       

 (   |
 

 

  |∫ [ (     

 (     ‾  

 (   )   (   (     
 (     ‾(     

 (   )]  
 

 
 |
 

 

  |∫ [ (     

 (     ‾  

 (   )   (   (     
 (     ‾(     

 (   )]  
 

 
 |
 

  (13) 
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  ∫ | (     

 (     ‾  

 (   )   (   (     
 (     ‾(     

 (   )|
 
  

 

 
 

  ∫ | (     

 (     ‾  

 (   )   (   (     
 (     ‾(     

 (   )|
 
  

 

 
  

 

   
  ∫  (|   

 (     (     
 (   |

 
 |   

 (     ‾(     
 (   |

 
)  

 

 
 

   
 ∫  (|   

 (     (     
 (   |

 
 |   

 (     ‾(     
 (   |

 
)  

 

 
  

 (   
      

   [|   

 (     (     
 (   |

 
 |   

 (     ‾(     
 (   |

 
]     

 
(      

(     
, for        . 

This implies that      

 (      
       and hence the proof of inductive assumption for 

    is complete.  

Now, from inequality (13), we have also: 

 |     

 (       
 (   |

 
 

  |∫ [ (     
 (     ‾  

 (   )   (       

 (     ‾    

 (   )]  
 

 
 |
 

 

  |∫ [ (     
 (     ‾  

 (   )   (       

 (     ‾    

 (   )]  
 

 
 |
 

. 

Hence: 

          |     

 (       
 (   |

 
     (|   

 (         

 (   |
 
 | ‾  

 (    

 ‾    

 (   |
 
 

         |∫ [ (     
 (     ‾  

 (   )   (       

 (     ‾    

 (   )]   
 

 
|
 

)   

using Theorem 2: 

          |     

 (       
 (   |

 
    

 ∫ ( |   
 (         

 (   |
 
  | ‾  

 (    
 

 

 ‾    

 (   |
 
)      

 ∫ ( |   
 (         

 (   |
 
  | ‾  

 (     ‾    

 (   |
 
)  

 

 
  

 (    
     

      
Therefore: 

 |     

 (       
 (   |

 
 

 (    

  
. 

Now, to prove the convergence of the sequence {   
 }

   

 
 uniformly in        , which 

means that to prove the following sequence of partial sums must also be converge uniformly: 

   

 (      
  ∑     

    (     

 (       
 (   )            

   
  (   

 (       

 (   )    (   

 (         

 (   ).  

From (4), we have: 

 |     

 (   |
 

  |  
  ∫  (     

 (     ‾  
 (   )  

 

 
   ∫  (     

 (     ‾  
 (   )   

 

 
|
 

  

  |  
 |

 
  |∫  (     

 (     ‾  
 (   )  

 

 
|
 

  |∫  (     
 (     ‾  

 (   )   
 

 
|
 

  

  |  
 |

 
    ∫ ((    |   

 (   |
 
  | ‾  

 (   |
 
)  

 

 
   ∫ (   |   

 (   |
 
 

 

 

 | ‾  
 (   |

 
)    

  |  
 |

 
 (       ∫ ( |   

 (   |
 
  | ‾  

 (   |
 
)  

 

 
  

  (   |  
 |

 
)   ∫ ( |   

 (   |
 
  | ‾  

 (   |
 
)  

 

 
.  

Now, carrying the last inequality recursively, yields to: 
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 |     

 (   |
 

  (   |  
 |

 
)    [ (   |  

 |
 
     (   |  

 |
 
)  

 ∫ ( |     

 (   |
 
  | ‾    

 (   |
 
)   ]

 

 
. 

So, carrying the last inequality m-times will produce: 

 |     

 (   |
 

 (              

  
  )(   |  

 |
 
)  

    (   |  
 |

 
).  

Therefore, 

 |     

 (   |
 

  (   |  
 |

 
)    .  

To prove    

 (    converge to   
 (    as    , for each Weiner process   , i.e., to prove 

          

 (       
 (   , given any    , there exists    , such that: 

|   

 (      
 (   |          ,  

and so: 

|  
  ∑     

    (     

 (       
 (   )    

 (   |  |  
  (   

 (       

 (   )  

(   

 (       

 (   )    (   
 (         

 (   )|   ,  

which implies: 

|   

 (      
 (   |   .  

Since    

 (      
  ∑     

    (     

 (       
 (   ), for all         converges on a 

compact interval [0,T], then the sequence converges uniformly. 

Now, to prove   
 (    is continuous, that means we have to prove             

 (    

  
 (   . Since: 

|    
 (      

 (   |  |    
 (         

 (         

 (       

 (       

 (    

  
 (   |  

 |    
 (         

 (   |  |     

 (       

 (   |  |   

 (      
 (   |  

 
 

 
 

 

 
 

 

 
  .  

Therefore,             
 (      

 (    and therefore   
 (    is continuous. 

To prove   
 (    is a solution, that means to show that   

 (    satisfies the stochastic 

integral equation: 

  
 (      

  ∫  
 

 
 (    

 (     ‾ 
 (   )    ∫  

 

 
 (    

 (     ‾ 
 (   )    ,  

and since: 

     

 (      
  ∫  

 

 
 (     

 (     ‾  
 (   )    ∫  

 

 
 (     

 (     ‾  
 (   )    ,  

and, as    , then: 

  
 (    

  
        ∫  

 

 
 (     

 (     ‾  
 (   )          ∫  

 

 
 (     

 (     ‾  
 (   )    .  

Therefore, it is enough to prove the following: 

      ∫  
 

 
 (     

 (     ‾  
 (   )    ∫  

 

 
 (    

 (     ‾ 
 (   )   ,  

      ∫  
 

 
 (     

 (     ‾  
 (   )     ∫  

 

 
 (    

 (     ‾ 
 (   )    .  

Now: 

 |∫  
 

 
[ (    

 (     ‾ 
 (   )   (     

 (     ‾  
 (   )]   |

 

 

 |∫  
 

 
[ (    

 (     ‾ 
 (   )   (     

 (     ‾  
 (   )]   |

 

    
   ∫  

 

 
(|  

 (    

   
 (   |

 
 | ‾ 

 (     ‾  
 (   |

 
)      

   ∫  
 

 
(|  

 (       
 (   |

 
 | ‾ 

 (    

 ‾  
 (   |

 
)  ,  
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and taking     and using Fatou's lemma     , we conclude that: 

 |  
 (   |

 
  (   |  

 |
 
).  

Thus   
 (    is a solution of the integral equations (6) and hence it is asolution of differential 

equations (4).    

 

Theorem 4 (Uniqueness Theorem). Under the same hypotheses of Theorem 3, there exists a 

unique solution of Eqs. (4) and (6). 

Proof. Suppose that    

 (    and    

 (    are any two solutions which belonging to   
       

of Eqs.(4) and (6). Hence: 

   

 (      
  ∫  

 

 
 (     

 (     ‾  

 (   )    ∫  
 

 
 (     

 (     ‾  

 (   )       

   

 (      
  ∫  

 

 
 (     

 (     ‾  

 (   )    ∫  
 

 
 (     

 (     ‾  

 (   )    .  

Therefore, 

|   

 (       

 (   |  |∫  
 

 
[ (     

 (     ‾  

 (   )   (     

 (     ‾  

 (   )]    

∫  
 

 
[ (     

 (     ‾  

 (   )   (     

 (     ‾  

 (   )]    |.  

Taking the expectation and using inequalities (10), we get: 

 |   

 (       

 (   |   |∫  
 

 
[ (     

 (     ‾  

 (   )   (     

 (     ‾  

 (   )]   |  

 |∫  
 

 
[ (     

 (     ‾  

 (   )   (     

 (     ‾  

 (   )]    |.  

Hence, 

 |   

 (       

 (   |
 

   |∫  
 

 
[ (     

 (     ‾  

 (   )   (     

 (     ‾  

 (   )]   |
 

 

   |∫  
 

 
[ (     

 (     ‾  

 (   )   (     

 (     ‾  

 (   )]    |
 

 

    
  ∫  

 

 
 [|   

 (       

 (   |
 
 | ‾  

 (     ‾  

 (   |
 
]       

  ∫  
 

 
 [|   

 (    

   

 (   |
 
 | ‾  

 (     ‾  

 (   |
 
]     

 (   
      

   ∫  
 

 
 [|   

 (       

 (   |
 
 | ‾  

 (     ‾  

 (   |
 
]   .  

and using Gronwall's inequality, thus the function: 

  
 (     [|   

 (       

 (   |
 
 | ‾  

 (     ‾  

 (   |
 
]   

will satisfies: 

  
 (    (   

      
   (∫  

 

 
  

 (     )   

i.e., 

  
 (     (∫  

 

 
  

 (     )   

and hence 

  
 (     (∫  

 

 
  

 (     )      

which means that   
 (     , for every Brownian motion   . 

Therefore,   
 (     , for all         and every Brownian motion    and so: 

 [|   

 (       

 (   |
 
 | ‾  

 (     ‾  

 (   |
 
]      

i.e.,    

 (       

 (    and  ‾  

 (     ‾  

 (   , for every Brownian motion    and for all 

       , i.e., the solution of Eqs.(4) and (6) is unique.    

 

4. Conclusions 

     Among the most important tasks in solving fuzzy stochastic ordinary differential 

equations, is the need to investigate before that the existence and uniqueness theorems for the 
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solutions obtained. Also, since the main difficulty in studying differential equations with 

fuzzy logic is how to deal with such equations, which contains uncertainity in their nature. 

Thus this uncertinity or vaguness may be overcome by using the concept of -level sets, 

which proved to be effective and reliable in studying the existence and uniqueness theorems 

of fuzzy stochastic ordinary differential equations, because it will transform the differential 

equation into crisp space and using the mean square convergence of the Picard successive 

approximations to the related stochastic integral equation, where the critical discussions 

regarding these theorems for the solutions of fuzzy stochastic ordinary differential equations 

are given in Theorems 3 and 4, respectively. 
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