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Abstract

A fuzzy valued diffusion term, which in a fuzzy stochastic differential equation
refers to one-dimensional Brownian motion, is defined by the meaning of the
stochastic integral of a fuzzy process. In this paper, the existence and uniqueness
theorem of fuzzy stochastic ordinary differential equations, based on the mean
square convergence of the mathematical induction approximations to the associated
stochastic integral equation, are stated and demonstrated.
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1. Introduction

In recent years, the theory of Fuzzy Stochastic Ordinary Differential Equations (FSODE's)
has been extensively developed in conjunction with fuzzy valued mappings [1,2]. The
FSODEs are employed in several real-world systems, such as economics, and consisting
phenomenas elated to fuzziness and types of uncertainty [2].

There are a variety of papers that are concerned with FSODE's [3]. An explanation of the
fuzzy stochastic It integral was provided by Kim in [3,4-7]. The authors drove up the fuzzy

*Email: nabaa.raheem1103@sc.uobaghdad.edu.iq
5878



mailto:nabaa.raheem1103@sc.uobaghdad.edu.iq

Kareem et al. Iragi Journal of Science, 2023, Vol. 64, No. 11, pp: 5878- 5886

Itd stochastic integral using the Brownian motion and fuzzy non-anticipating stochastic
processes in order to create a fuzzy random variable, the procedure entails embedding a crisp
Itd stochastic integral into fuzzy space. In this work, the existence and uniqueness theorem of
the solution to such system are stated and proved [7].

Also, it is notable that fuzzy set theory is a generalization of abstract set theory and it has a
wide scope of applications than abstract or crisp set theory in solving problems that involve
some degree of subjective evaluation [8]. In order to recall fuzzy sets, let X be a space of
objects (called the universal set) and x be the generic element of X, a classical (nonfuzzy or
crisp) set A, A € X, is defined as a collection of elements or objects x € X, such that each
element x can either belong or can not to the set A. By defining a characteristic (or
membership) function for each element x € X, one can represent a classical set A by a set of
order pairs (x,0) or (x,1), which indicates that x & A or x € A, respectively. A fuzzy set A
expresses the degree to which an element belongs to a set [9,10].

Hence, for simplicity, the membership function of a fuzzy set 4 is allowed to have values
between 0 and 1, which reflects the degree of the membership of an element in A. In
mathematical symbols, the membership function is given by u;:X — [0,1], and the fuzzy
subset 4 of X is defined as a set of ordered pairs [11-13]:

A = {(x, uz(0))|x € X, pg(x) € [0,1]3.

Now, the general governing model of FSODEs is given in the following:

dfft(t, Wt) = f(t, ft(t, Wt))dt + g(t, .’)’Zt(t, Wt)) th, telc R, (1)
with the initial condition:
X (o, W) = ftoi 2

where f: 1 X F-(R) — F-(R), g: I X Fc(R) — F-(R), where F-(R) is the family of all
fuzzy subset of X for which their level sets are non-empty closed convex subset of the reals R,
and W;, v t > 0 are one-dimensional Brownian motion[14,15].

The SFODE given in Eg.(1) may be written in an equivalent form as fuzzy integral
equation:

B (W) = Ty + [, £(5,%s(5, W))ds + [ g(s, %5 (s, We))dWj. @3)

However, the second integral that is given in Eq.(3) cannot be defined in the usual integral
meaning, where W, is the Brownian motion or Wiener process. Then by using the concept of
a-levels or a-cuts of fuzzy sets and letting %, (W,) = [x{(Wy), & (Wy)], a € [0,1], where x/
and xZ are the lower and upper bound solutions constituting the fuzzy function %, as a
solution to Eq.(1) or Eq.(3), and hence Eq.(1) may be written in terms of its lower and upper
solutions as follows:

dxf (Wy) = f; (£, xF W), ZE W) ) dt + gy (£, 28 (W), TE(W,) ) AW, (4)
dzE(W,) = f, (6, xE (W), ZE W) ) dt + g, (£, xE (W), ZE(W,) ) AW, (5)
with the initial conditions , respectively:

Xfy = X0,

@ _ —a (6)
X, = X -

Also, the fuzzy integral equations that related to Egs.(4) and (5) are given by:

xE (W) = x8 + [1 fi (528 W), ZEW)) ds + [, g1 (s, x8We), 5 (Wy)) dW;,  (7)
FEW) = %8+ [L fo (528 W), ZEW)) ds + [, g2 (s, 28 (W), #E(WY)) W, (8)
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2. Basic concepts
In this section, some basic concepts related to this work will be introduced. We start by

recalling the concept of the probability space (Q, F, p), which comprises the sample space Q,
a o-algebra F of subsets of Q (called events) and a probability measure p of F.

Definition 1 [16,17]. A collection of random variables x;(w) (or briefly x;) on probability
space (Q, F,p) is known as a stochastic process, which assumes real values and p-measurable
as a function of w € Q for every fixed t € [t,,T] < [0,0). The time is considered to be the
parameter t, and x,(.) represents a random variable on the above probability space Q, while
x (w) is a known trajectory or sample path of the stochastic process.

Definition 2 [18]. A stochastic process W;,t € [0, ), is said to be a Wiener process or a
Brownian motion if:

L p({w € QIWp(w) =0}) = 1.

2. For 0 <ty<t; <--<ty the increments W, — W, ,W,, —W,,...W, —W,  are
independent.

3. For h > 0 and an arbitrary t, W,,, — W; has a Gaussian distribution with mean 0 and
variance h.

Sequence of stochastic process may have different meaning of convergence, as it is seen in
the next three definitions:

Definition 3 [18,19]. A sequence of random variables {x,(w)}}, n = 1, 2, ... is said to be
converge with probability one (denoted by p-w.p.1 or w.p.l) to x(w) if p({we
Q:lim,, 00 Xy (w) = x(w)}) = 1.

Another name for this type of convergence is called almost sure (denoted by a.s.)
convergence.

Definition 4 [20]. A sequence of random variables {x,(w)}}, n =1, 2, ... such that E(x2) <
oo, for all n € N, is said to be converge in the mean square to x(w) if lim,_,. E(|x,, — x|?) =
0,V w € Q, where E stands for the mathematical expectation.

Definition 5 [21]. A sequence of random variables {x,(w)}}, n = 1, 2, ... is said to be
converge in probability or stochastically to x(w), if:

lim,_op({w € Q| xp(w) —x(w)) =€} =0,Ve>0.

Several results are needed for this work,we will start with the next two theorems:

Theorem 1 [22]. If f is step function in ug, [a, B], where uj, [a, B] is the set of measurable
functions, which are square integrable over [0, T] and W, is a Brownian motion, then:

E[, f(£)dW, =0,
E|f Lo th|2 = eflp2ar.

Theorem 2 [22]. Let f € uf, [a, B], then:
T 2 T
E{Supoccr [y £G5) aws] | < 4E|f £(5) aw,
T
=4E[, |f(s)|* ds.

2

3. Existence and uniqueness theorem of stochastic differential equations
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Consider the FSODE of the lower-case solution given by Eq. (4), which is:
dxf (W) = fi (t, xi' (W), ¢ (Wt))dt + gl(t, xi' (W), ¢ (Wt))th'
with initial conditions xf = xg', X = X7

Hence, to find the equivalent stochastic integral equation, integrate both sides of Eq.(4)
and using the initial condition, we get:

[y dxgWe) ds = [} f((s,x§(We), B&(We)) ds + [, g(s, x§ (We), REWS)) dW.
Therefore:

t t
xF (W) = x§ + f f(s, xF(Wy), x&(W,)) ds + f g(s, xE(Wy), x&(Wy)) dW,
0 0

and then an iterated sequence of solutions of the resulting integral equation may be evaluated
as follows:

X (W) = x§ + [, £ (s, x8 (Wp), B (Wy))ds + [ (s, x& (We), B (W))W, )

x5, (Wo) = x§ + [y f (s, x5, (W), T8, (W3))ds + f; (s, x5 (W), 5, (W))W, L ©)
: |
X%y, (W) = x§ + [ f (5,25, (We), %o, (We))ds + [ g(s, 2%, (W), £, (Ws) ) dW;.)

Theorem 3 (Existence Theorem). Suppose f(t, xf(W,), x&(Wy)), g(t, x&(W,), ¥ (W,)) are
measurable functions in [0, T] X R™ x R™, which satisfies:

|f (& xF (W), W) = £ (& x5, (W), &5, (WD) | < K. (|2 (W) — x5t (W) + %8 (W) — &5, (W),
|9 (&, 2 W), TF (WD) = g(t, x5, We), %7, W) | < K.(|xf (W) — x5, W) + |22 (We) — %5, (Wh)]),
|f (6, xf W), xE (W) | < K(1 + [xf (W] + |f?(wt)|),}

|9(t, & W), xEW)| < K(1+ |xf W] + 18 WI),

| o

(11)

where K and K, are the Lipschitz constants. Let x§ be any n-dimensional random vector
independent of f(t, xf(W,),x&(W,)), 0 <t < T, such that E|x§| < oo. Then there exists a
solution of Egs. (4) and (6) in u2[0,T], where u2[0,T] is the space of measurable functions
which are square integrable over [0, T].

Proof. Since the iterated sequence of solutions of the integral equation may be given as:

t _ t _
X1, (W) = x§ + [ f(s, x5 (Wo), X (W) ds + [ g(s, xih (Wy), X5 (Ws)) dW,

(12)

forallm=0,1....
The proof will proceed by induction on the sequence of solutions x/ € uZ[0,T].
If m = 0, then:
|xf (W) — x5, (We)| =

|8 + J f (5,26 (W), 2 (W) )ds + [ (s, x5 (W), 26, (We) ) AW — x|
= |5 £ (s x8 (W), 78, (W) )ds + [, g((s, x§, (We), & (Ws) ) AW,

t — t _
< |fy £ (s x8. (W), %6 W) )ds | + | [, 9(s, x8 (We), %6, (We) ) dw;
Taking the expectation on both sides and using Eq.(11), give:
E|xf, (W) — x8,(Wo)| <

t a v 104 t [24 -
E|fy £(s x8, (W), %8, (W))ds| + E | [} (s, x5 (W), %5, (W))W,
Using the following inequality (a + b)? < 2a? + 2b% where a,b € R, then:
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2
E|xf (W) — x§.(Wo)|” <

26 |[1 £ (5,25 (W), %5 (W) )ds |+ 2E |1 g (5, 28 (Wo), %6, (W))W,
The Cauchy-Schwarz inequality implies that:

15 £ (5,8 (W, 5. W) dis| < £ {1 (5, 28 (Wo), %6, (W) [2ds, Tor any ¢ > 0,
Now, from Theorem 1, we have:

E|xf, (W) — x§ W) < 2Et [ (s, x§ (W), 2, (Wy)|“dis +

2E [1]9(s, 2§, (W), Z& (W) | ds

< (2K?t +2K?) (1+ E|x§ W] + E|78 wo)|*) ¢

=Mt =",

where M = (2K2t + 2Kk?) (1+ E|x& Wo)|” + E|z& W)|°).

If m = 1, then:

x5, (W,) — xf (W) | =

x8 + [y f (5,28 (W), 28 (We))ds + [ g(s, x5 (W), %L (Ws) ) d W —

38 + J, f (528 (We), %5 (Wy))ds + [ g (s, x§ (W), 2§ (W))W

2

Jy £ (s, x5 (W), T (Wy))ds — [ f (s, x&. (Wy), & (We) )dss +

[y (s, 28 (We), T (W) dW; — [ g (s, x8 (W), T8 (We) ) dW,
<

|Jy £ (s, x5 (Wi, 25 (W) )ds — [ £ (5, 28 (We), %6 (W) )ds | +
|5 9 (s, 28 (o), %2 (W) dW, — [ g (s, x§ (W5, 26, (We) ) AW
Taking the expectation on both sides and using Eq.(10), yields to:

2 _ _
E|xg (W) — xf (Wo)|” < 2 | [ [f (s, 28 (We), £ (Wy) — £ (s, %6 (We), & (Wa))]dis

2 [ [ (s, x5 (W), %8 (W) — (s, x5 (We), 5. (W) s |
<

2E [{|f (s, X (We), BE (We)) — £ (5, 28 (Wo), T (W) dls +
2
2E [1|g(s, x5 (Wy), T (We)) — g (s, x5 (We), 5. (Wy))|“dss
< 2K2¢ [ B (|28 (W) — x& W)|” + |8 (Wa) — 2§ (Wo)|*) ds + 2K f, E (| (W) -
X W + |2 We) — 2§ (Wy)|*) ds

|2

(Mt)?

< (2K? + 2K2)E |[x8 (Wy) — x& W) |” + & (W3) — 2§ (W) || £ < =

So on, one may proceed similarly until m = k, then we have:
2
E|£I?+1t(Wt) - Elgt(Wt)l <

2E [ [ (5, 28 (We), % (W) = £(5, X851y, (We), By, (W) ds
2E | [ 9 (5, 2 (We), £ (We)) = 9 (5, 285y, (We), K1y (W5))]ds

2
|+
|2

(13)
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<
ZEf |f(5 xje, (W), ka(W)) f(S x(k 1)s(Ws), X1y, (W))| ds +

2E fo |g(5» _kS(VVS)rka(VVs)) - 9(5» E(k—1)s(mé),x(k—1)s(V|@)| ds
<

2 _ 2
ZK*thOtE (lE}?S(Ws) - z&-ns(Ws)l + |£}?S(VVS) - x(k—l)s(vvs)l )ds +
t 2 _ 2
2K? [ E (lE}?S(Ws) - z&-ns(Ws)l + |£}?S(VVS) - x(k—l)s(vvs)l )ds
2 _ 2

< (2KZt + 2K2)E (| (W) — x8ea), (WO)| + 28 (W) — %oy, (W[ | £

(Mt)k+1
S G for0<k<m-1.

This implies that x5, (W;) € uZ[0,T] and hence the proof of inductive assumption for

m + 1 is complete.
Now, from inequality (13), we have also:

E|x$rll+1t(Wt) - xglt(Wt)lz
25|f [£ (s, x& (W), &%, (We)) — f (s, 28y (W3), £%_ 1S(W5))]ds| +

28 |79 5,6, (W), 285, (W) — (. x5 (Wo), %5 (W) ds
Hence:

2
SUP0<t<TE|£%+1t(Wt) - &rorllt(Wt)l < 2TK. ( Xm

W) — xy W) + |25, (W) -
X 1t(Wt)|2 +

2Supocear | Iy 19 (5, x5, (W5), 75, (W) = g (s, 80, (W), T, )

using Theorem 2:

Supo<t<TE|x,%+1t(Wt> — xk, W)|* < 2K | (Elxms(W) X 1S(W)| + E| g, (W) —
%1, W] ") ds + 8K?2 [y (E|xfs, (Wy) — 2oy, Wo)|” + E |75, (W) — %y (W[ ) ds

< (2TK? + 8K2)T.
Therefore:
c(MT)™

2
E|£$rll+1t(Wt)_£$rllt(Wt)| < -
Now, to prove the convergence of the sequence {g,",‘lt}:l:l uniformly in t € [0, T], which

means that to prove the following sequence of partial sums must also be converge uniformly:
xie, (W) = x5 + ot (xm+1t(Wt) xmt(Wt)) Vk=12,.

= x5 + (Elt(Wt) xot(Wt)) + -+ (_kt(Wt 1t(Wt))
From (4), we have:

E|xg o Wol* = E |28 + f £(s x5, (W), %5, (We))ds + J, g(s, x5, (Wo), %,
< Bl |” + E| £ (s, x5, (W), 28, (W) )ds| +E IIJg(s i, (W), T,
< E|x§|" + K2t [ (1 + B) |, (W) + E|s, o)) ds + k7 [ (1 + E|xms(W)| +
E|xg, (wo)|") ds

< E|xg|* + (K2e+k2) [} (Elxs, W[ + E|za, o)) ds

< ¢ (1+E|xg[*) + ¢ fj (Bl |” + Bl (o)) ds
Now, carrying the last inequality recursively, yields to:
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Elx&,, Wyl < ¢ (1 + Elxg|*) + ct[c (1+E|x§]" + celc + E|xg]") +

C Jy (Elghios, W[ + El 5o, (0| ds]]

So, carrying the last inequality m-times will produce:

E|£,",‘l+1t(Wt)|2 < (1 +C+C*+ -+ Cm%m' + )(1 + E|§8‘|2)

= et (1 + E|£8‘|2).

Therefore,

Elx@ o Wo|” < ¢ (1+E|x§[") e

To prove x, (W) converge to x¢(W;) as k — oo, for each Weiner process W, i.e., to prove
limy e X t(Wt) = x{ (W), given any € > 0, there exists N € N, such that:

|£I?t(Wt) —xf(Wp)|<e Vk>N

and so:

|x0 + Yk (xm+1t(Wt) Eroflt(Wt)) - &g(Wt)| = |£((Jl + (Kﬁ(Wt) - E&(Wt)) +
(Ezt(Wt) &t(Wt)) + ot (&%t(Wt) - &%—1t(Wt))| <,

which implies:

|_ﬁ D) x?(bV})|<:£

Since xg, (W) = x¢ + Yk (xmﬂt(Wt) Eﬁlt(Wt)), for all k =1,2,... converges on a
compact interval [0,T], then the sequence converges uniformly.

Now, to prove xZ(W;) is continuous, that means we have to prove limy_,x%.,(W;) =
x£ (Wy). Since:

| xEn (W) — xF W] = |xEn(We) — X, (W) + X2, (W) — x8, (We) + 22, (W) —

K?(Mé)l

< |xfn W) — 22, (WO + [, W) — xf W] + |x2, (W) — xF (W)

=-+-+-=¢

Therefore, limy_,o x¢,,(W;) = x&(W,) and therefore xf (W,) is continuous.

To prove x/(W,) is a solution, that means to show that x{(W,) satisfies the stochastic
integral equation:

t _ t _
xfEWY) = x§ + [ (s, xE (W), xE(W,)) ds + [, g(s, x¥(Wy), x&(W,)) dW,
and since:

X e1, (W) = x§ + [7 (5, %8, (W, %8, (W) ds + [ g(s, x% (W), % (Wy)) dW,,
and, as m — oo, then:
&?(Wt) =

. t _ . t _
X8+ Uit en [ f (5,265, (We), %5, (W) ds + L oo [ g (5, 280, (We), %85, (W) ) AW
Therefore, it is enough to prove the foIIowing

[iMescr [y (528, (W), 8 (We)) ds = [ f(s, x5 (W), ¢ (W) ds,

. t _
iMoo fy 9(s, x5, (W), %5 (W) AW, = [ g(s, x8(Wy), %& (Wy)) dWs.
Now:

E|f5 [f (s 28 W), 26 (W) — £(s, me(W)me(W))]ds| +

E|f0t [9(s, x& (W), k¢ (W5)) — g(s, x5, (We), %ihy (W5))] ds| < 2KZtE [} (lx“(W) -
xi (W)l * + |28 (We) — 2, (W)|*) dis + 2K2¢E [ (|xf(We) — i (W)|” + |78 (W) —

w5, (W) ds
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and taking m — oo and using Fatou's lemma [22], we conclude that:
2 2
Elxtwo)|” < ¢ (1+E|xg]").
Thus x¢ (W) is a solution of the integral equations (6) and hence it is asolution of differential
equations (4). [

Theorem 4 (Uniqueness Theorem). Under the same hypotheses of Theorem 3, there exists a
unique solution of Egs. (4) and (6).

Proof. Suppose that xf (W) and x3, (W;) are any two solutions which belonging to u3[0,T]
of Egs.(4) and (6). Hence:

XL (We) = x§ + [ (s, x5 (We), ZLW,)) ds + [, g(s, 8 (We), L (Wy)) dW,

t _ t _
x5, (W) = x§ + [ (s, x5 (W), x5 (W) ds + [ g((s, x5 (We), %5, (Ws)) dW.
Therefore,

|28 W) — x& (W)l = |f, [F(s, x5 (W), 78 (Wa)) = F (s, x5, (We), 5 (Wy))] ds +

Jy [9(s 2 (We), % (W) — g (s, 25 (We), %5, (W) ] AW
Taking the expectation and using inequalities (10), we get:

E|xf (W) — x§& W) = E [[3 [f (s, x5 We), 72 (Wy)) — £ (5,28 (W5), T8 (W5))] ds| +

E|fy [9(s x8 (W), 28 (We)) — g (s, x5 (W), T8 (W5))] AW
Hence,

Bl W) — x5 Wl < 2B |f [£ (s, 25 (W), 2. (W) — £ (s, 25 (W), 75, (W,))] ds|
2B [[1 [g(s, x5 (W), B (W) — g (s, 25 (W), 75, (W) dws |

< 2K2t [ E || W) — x§ W)l + |28 (We) — 28 (Wo)| | ds + 2K2¢ f, E [|xf (w3) -
28 Wo)|* + [ (Wy) — 7, W)l | ds

< (2K2t +2K20) f B [|xf (W) — x5, (Wo)|* + |78 (ws) — 25 (o) ] ds.

and using Gronwall's inequality, thus the function:

QEW,) = E [|xf (W) — x& W)l + |78 W) — 2. w)°],

will satisfies:

PE(Wy) < (2Kt +2K20) ([} @ (Wy)ds),
ie.,

PF (W) < C(J; EWe)ds),

and hence

PEWy) < C ([, pfWyds) =0,

which means that ¢ & (W;) = 0, for every Brownian motion W;.

Therefore, o (W,) = 0, for all t € [0, T] and every Brownian motion W; and so:

E||xwy) — x5 Wl + |75 W) - 2wl | =0,

e, xi, (W) = x3,(W,) and x7,(W;) = x5, (W), for every Brownian motion W, and for all
t € [0,T], i.e., the solution of Eqgs.(4) and (6) is unique. M

4. Conclusions

Among the most important tasks in solving fuzzy stochastic ordinary differential
equations, is the need to investigate before that the existence and uniqueness theorems for the
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solutions obtained. Also, since the main difficulty in studying differential equations with
fuzzy logic is how to deal with such equations, which contains uncertainity in their nature.
Thus this uncertinity or vaguness may be overcome by using the concept of a-level sets,
which proved to be effective and reliable in studying the existence and unigqueness theorems
of fuzzy stochastic ordinary differential equations, because it will transform the differential
equation into crisp space and using the mean square convergence of the Picard successive
approximations to the related stochastic integral equation, where the critical discussions
regarding these theorems for the solutions of fuzzy stochastic ordinary differential equations
are given in Theorems 3 and 4, respectively.
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