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Abstract  

     The security and integrity of medical data, in particular, have become significant 

concerns due to the substantial expansion in the healthcare environment due to the 

internet of things (IoT). To guarantee data security during transmission, this research 

suggests a chaotic healthcare monitoring system. This system employs a new 5-

dimension (5D) chaotic system in conjunction with the secure hash algorithm 

version three (SHA3-256), salsa 20, and deoxyribonucleic acid (DNA). Lyapunov's 

proposed 5D chaos system was tested and passed for several initial periods, yielding 

a super chaos system (3 positive Lyapunov). Salsa 20 and randomly generated 

chaotic keys were utilized for encryption and decryption operations. The method we 

created will assess a patient's body temperature, heart rate, and oxygen saturation 

      levels in the blood and communicate the data to a healthcare center through 

the Message Queuing Telemetry Transport (MQTT) protocol. The suggested system 

ensures that patient data is transmitted via the internet or an intranet in a secure, 

reliable, and readily accessible manner. In several studies involving security 

analysis, The encryption time is 1.872, the throughput (in bits per second (bps)) is 

273.2642, and the memory usage (in megabytes) is 10.6211. The performance 

analysis confirmed the proposed cryptosystem's capacity to withstand multiple 

attacks due to its low computational and communication costs and broad key space. 
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 الخلاصة
أصبح أمن وسلامة البيانات الطبية , على وجه الخصوص , مصدر قلق كبير بسبب التوسع الكبير في      

. يصف هذا العمل (. لضمان أمن البيانات أثناء الإرسالIoTبسبب إنترنت الأشياء )بيئة الرعاية الصحية 
جنبًا إلى جنب مع خوارزمية  نظامًا فوضويًا فريدًا خماسي الأبعاد يستعملنظامًا آمنًا لمراقبة الرعاية الصحية 

تم . (DNA) ريبونوكلييكوحمض الديوكسي  Salsa 20 و (SHA3-256) التجزئة الآمنة الإصدار الثالث
وي أولية , مما أسفر عن نظام فوض مراحلالمقترح وتم تمريره لعدة  خماسي الابعاداختبار نظام الفوضى 

لكل من عمليات التشفير وفك  Salsa 20 استعمالتم  .(positive Lyapunov 3ممتاز حيث يحتوي على )
تم إنشاؤها عشوائيًا. سيقوم النظام الذي أنشأناه بتقييم التشفير , جنبًا إلى جنب مع المفاتيح العشوائية التي 
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يصال  (SpO2) درجة حرارة جسم المريض ومعدل ضربات القلب ومستويات تشبع الأكسجين في الدم وا 
يضمن النظام المقترح نقل بيانات المريض  MQTT. البيانات إلى مركز الرعاية الصحية من خلال بروتوكول

نت بطريقة آمنة وموثوقة ويمكن الوصول إليها بسهولة. وجدت العديد من الدراسات , عبر الإنترنت أو الإنترا
التي تضمنت التحليل الأمني وأوقات التنفيذ , أن فك التشفير يستغرق ثانيتين وأن وقت التنفيذ هو ثلاث ثوان 

لتشفير المقترح على ( ميغا بايت. أكد تحليل الأداء قدرة نظام ا3.20عندما تكون ذاكرة الوصول العشوائي )
 .قلة وقت التنفيذ وكلفة الاتصال وكبر مساحة المفاتيح المتولدةتحمل هجمات متعددة بسبب 

 

1. Introduction 

     The Internet of Things (IoT) is a network of interconnected physical systems that enables 

remote data gathering, processing, and analysis of useful information [1] and [2]. Recent 

developments in IoT technology have been made in computer networks and sensor networks 

for distributed architecture models responsible for the upkeep and monitoring of intelligent 

environments [3]. With its improved automation, analytical, and optimization characteristics, 

the Internet of Things substantially impacts practically every business [4]. Using sensors or 

other components built into intelligent devices simplifies data gathering, administration, and 

processing. Using sensors and IoT devices to collect patient health data like body temperature, 

heart rate, and blood oxygen levels has also caused a significant transformation in the 

healthcare sector [5]. Defending the security and privacy of this data is essential before 

developing a healthcare infrastructure design [6]. The lack of updated technology in network 

equipment resulted in security lapses that caused network attacks, including physical attacks 

like tampering with nodes to steal personal data [7]. As stated by Oza A.D. et al. [6] in their 

paper on privacy and integrity attacks, a malicious environment can reveal critical patient data 

to attackers. Impersonation, eavesdropping, and other attacks are also feasible during data 

transfer. 

 

     Consequently, patients could not have control over their medical information. So, many 

academics strongly advise encrypting data before transmission to ensure data confidentiality. 

Different security protocols, like public-key (symmetric encryption) cryptosystems, digital 

signatures, and authentication algorithms, can provide data protection, authentication, 

integrity, and confidentiality. Unfortunately, though, the confidentiality and integrity of 

healthcare data are not generally guaranteed by existing schemes [8]. Therefore, a significant 

task is investigating cryptographic data security methods in IoT healthcare systems [7]. 

Recently, crypto methods have been selected and tailored inside HCS under the moniker of 

"lightweight security cryptography" (LWC) to fit restricted resources, like KATAN, 

PRESENT, KLEIN, HEIGHT, CLEFIA, Salsa 20, and many other algorithms—lightweight 

security goals to gain sufficient security levels with optimum resource use [9] and [10]. The 

abovementioned issues spur efforts to create a more secure healthcare system by identifying 

the complementary strengths of the three algorithms, i.e., chaos, DNA computing, and Salsa 

20. 

 

     The remainder of the essay is organized based on the parts below. Related works are 

discussed in Section 2, and healthcare system techniques are discussed in Section 3. The 

proposed system architecture is in Section 4. Section 5 provides implementation information 

particular to the given use case. Finally, the final portion contains the conclusion. 

 

2. Related work 

     Researchers and medical industry executives are paying close attention to the development 

of monitoring systems for healthcare. Several more effective research initiatives are now 

being done in this field [11] and [12]. Real-time patient health status monitoring is a problem 

that the IoT solves with the aid of sensor data and connectivity in an efficient and usable 
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manner. Moreover, it has been demonstrated that the IoT may offer various upgraded and 

better services when used with intelligent technology. By recording significant vital signs, 

information on general health and potentially harmful conditions may be gathered [13]. An 

overview of current studies on IoT-based healthcare monitoring systems is given in this 

section. J. Rokan Naif et al. [14] presented a safe method for securing sensing data moving 

between embedded subsystems coupled by networks and IoT sensors/devices. This method is 

based on the modified, lightweight Advanced Encryption Standard (AES) and a newly 

suggested 4D chaotic system.  

 

     M. M. Dhanvijay et al. [15] introduced IoT-based healthcare in wireless body sensor 

networks, where the challenges and issues of wireless body area networks are discussed. M. 

M. Islam et al. [16] presented an e-healthcare system. This system consists of three 

components: a sensor module, a data-processing module, and a web user interface. V. 

Tamilsevi et al. [17] introduced IoT-based e-healthcare using an Arduino Uno processing 

device. The system can employ a temperature sensor, a spo2 sensor, a heartbeat sensor, and an 

eye blink sensor to predict the patient's state. H. T. Yew et al. [18] suggest a real-time remote 

patient monitoring system based on the IoT that can ensure the accuracy of the real-time 

electrocardiogram (ECG). Nevertheless, this system has significant levels of jitter delay and 

noise signal.  H. A. El Zouka [19] introduced IoT-based e-healthcare using fuzzy logic. But 

this work lacks experimental measurements, statistical analysis, examination, and security 

testing and introduces IoT-based e-healthcare using fuzzy logic. But this work lacks practical 

measures, statistical exploration, analysis, and security testing. M. M. Khan [20] presents a 

COVID-19 monitoring system. A mobile application can get information from the system on 

a patient's body temperature, heart rate, and blood oxygen saturation        levels through 

Bluetooth. Nevertheless, this system's drawback is that it is slow. H. Y. Mohamed [21] 

presented a system that can continuously track vital signs, update data online, inform 

clinicians if anything is out of the ordinary, and even predict whether a patient has a 

diagnosis. However, because the system uses deep-belief neural networks, training them 

requires massive amounts of data. 

     Since most of the healthcare systems mentioned above do not rely on data encryption, they 

cannot all be guaranteed to be reliable and honest. People may, as a result, lose control over 

their medical data. Therefore, the innovative technology is suggested to employ Salsa 20 for 

its higher security, DNA for security owing to its uniqueness, a new 5D chaotic map because 

of its complexity, and SHA3-256 for integrity. 

 

3. HealthCare System Techniques  

     To encrypt digital data, several attributes are considered the main requirements to achieve 

this goal: security, integrity, and confidentiality. The integrity requirement is fulfilled by 

using SHA3-256. Security and confidentiality requirements are performed using the Lorenz 

chaotic map, Salsa 20, and DNA. Chaos is a mathematical theory investigating dynamical 

systems' behavior [22]. The system's initial conditions are critical because they contain secret 

keys that only authorized individuals should understand. 

     Furthermore, because of the extreme sensitivity of the system, changing minor numbers 

will result in profoundly bizarre attractors, rendering hackers unable to decrypt the original 

content [23]. Deoxyribonucleic acid (DNA) is a type of biological macromolecule comprised 

of nucleotides. These nucleotides are in four categories of bases: (A) is adenine, (C) is 

cytosine, (G) is guanine, and (T) is thymine. The complementary nucleotides A and T (or C 

and G) generate hydrogen bonds that hold the two DNA strands together to form a double-

helix shape. Watson and Crick, two physicists, found this structure. This phenomenon is 

referred to as "Watson-Crick complementarity" [24]. The Salsa20 algorithm stream cipher 

was created by Daniel J. Bernstein and submitted to the eStream (Encrypt Stream Cipher 
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Project) in 2005 [25]. In reality, the core functionalities of Salsa20 can be described by 

combining expansion operations with hash functions. The expansion carefully combines an 8-

byte nonce and an 8-byte block counter to create 512 bits by cryptographically connecting 16 

bytes of data to 32 bytes of a secret key (a 64-byte block). Salsa20 is still regarded as suitable 

for our IoT healthcare system since the best-recorded attack against its security was made 

using a 256-bit Brute Force search, which takes longer than harming medical security [26]. 

Table 1 lists the functions of DNA. 

 

Table 1: a- Coding, b- Add, c-Subtract operation in DNA 

Co-de Bits Add A T C G Sub A T C G 

A 00 A A T C G A A T G C 

T 01 T T A G C T C A T G 

C 10 C C G A T C G C A T 

G 11 G G C T A G T G C A 

 

4. The Proposed System 

     The proposed system's architecture combines three phases, as shown in Figure 1. The blue 

arrows indicate the direction of the data flow between the necessary system components and 

the human actors, as well as through the internal system architecture. The privacy of the 

processed data is essential because of the three crucial steps that enable the data transmission 

pipeline's functionality. The first phase included the client-side (patient node), the second 

phase included sending cipher text or secreted data over the MQTT protocol, and the third 

phase included the server-side (healthcare node). The main objectives of the proposed system 

are to achieve confidentiality, integrity, and availability of patient data during transmission 

over the internet or intranet to the healthcare center. In the proposed system, the wearable 

gadget has one microprocessor (𝑅𝑎𝑠 𝑏𝑒𝑟𝑟𝑦 𝑃𝑖4) and two sensors (𝑀𝐴𝑋30102, 𝑀𝐿𝑋90614). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: General Structure 

 

The following sub-section will describe these phases in detail: 

 

4.1 Client-Side (Patient Side) 

     In the first phase of the proposed healthcare system, a pulse oximeter and heart-rate sensor 

(𝑀𝐴𝑋     ) were used to measure the heart rate (O2, 𝑅) and SpO2. In addition, the 

infrared thermometer sensor (MLX90614) also provided body temperature (TEMP). Then, 

these reading sensor data are padded when the length of (O2<3,  𝑅 <3, and TEMP<2) is left 

padded for each sensor data. After that, we concatenate reading sensor data (O2,  𝑅, and 

TEMP). Next, to provide confidentiality, sensor data has been encrypted by a new five-
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dimension randomness chaotic system to generate 32 keys, the DNA algorithm, Add Round, 

and Salsa20 algorithm to generate a 512-bit block of a key stream (16 words). 

Additionally, we apply SHA3-256 to sensor data to provide integrity. Finally,   hashed and 

encrypted data are concatenated to prepare to transmit them over the internet or intranet to the 

healthcare center. The proposed system's wearable sensors include (𝑀𝐴𝑋      and 

𝑀𝐿𝑋     ). The 𝑀𝐴𝑋      takes precise SpO2 and heart rate measurements and sends 

those values to the Raspberry Pi4 through the I2C communication line. MLX90614 (non-

contact infrared thermometer sensor) can be easily connected to a Raspberry Pi4 for 

measuring the temperature of a patient’s body from a distance. Before sending data to 

concatenation processing, it must ensure the length of string (O2) equals 3, the length of 

string ( 𝑅) equals 3, and the length of string (TEMP) equals 2. Therefore, the padding on the 

three variables is performed if the length of sensor data is not equal to the present lengths. 

After completing the padding process for sensor data, the concatenation data is saved into a  

state. The string (state) must be eight characters long to be ready to start the encryption and 

hashing procedure. Patient data must be encrypted to ensure its confidentiality during 

transmission over the internet or intranet. Algorithm 1 and Figure 2 present our proposed 

system on the patient side. Also, algorithm 1 shows our proposed system on the inpatient side: 

Algorithm 1: Proposal Encryption Algorithm on Patient Side   

Input: State, Initial Values (xs, ys, zs, ks, ps) to 32 Keys Generation, and Initial Values for 

Salsa20 

Output: E-State. 

Step 1: Convert State from String to Number. 

Step 2: Generate 32 keys using 5D Chaotic System. 

Step3: Apply Salsa20  

Step4: Apply to Add Round on (State, 32 Chaotic Keys, and Final Salsa20) 

Step 5: Apply Pre-processing (Padding) if the length of Final State! = 64 bits 

Step6: Encoding Final State with DNA Code into (DNA State) 

Step7: Select Final Salsa 20 

Step8: Convert Final Salsa20 to Binary Form 

Step 9: Apply Pre-processing (Padding) if the length! = 32 bits 

Step10: Split every two-bit 

Step11: Encoding Final Salsa 20 with DNA Code into (DNA Salsa20) 

Step12: Applying DNA- Addition Operation on (DNA State, and DNA Salsa20) into (DNA 

Add State) 

Step 13: Convert DNA Add State from String to Number into (E-State). 

Step14: Return integer (E-State) 

End. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Proposal Encryption Algorithm on the patient side 
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The proposed encryption algorithms explain in detail:  

 

 

4.1.1 Salsa 20  

     Salsa20 is used in our proposed system to create 512-bit blocks of keystream (Matrix 16 

words). Salsa20's default in our suggestion is as follows: Twenty rounds are involved; the 

length of the keys is 32; the nonce is eight bytes long; the counter is eight bytes long; and the 

default value of the keys, nonce, and block counters is zero. First, the initial values of Salsa20 

are as follows: For keys, we used default values (all zeroes). Nonce, the initial values are [3, 

1, 4, 1, 5, 9, 2, and 6]. Block Counters: the initial values are [7, 0, 0, 0, 0, 0, 0, 0]. Constants: 

the initial values are [61707865, 3320646e, 79622d32, 6b206574]. Then, for keys, we select 

the first four numbers from the initial values of keys to k [0], the second four numbers from 

the initial keys to k [1], the third four numbers from the initial keys to k [2], and so on, until 

we reach the final four numbers from the initial keys to k [7]. For the nonce, we select the first 

four numbers from the initial values of the nonce to n [0] and the second four numbers from 

the initial nonce to n [1]. For block counters, we choose the first four numbers from the block 

counters' starting values up to b [0] and the following four numbers from b [1]. For constants, 

c [0] = 61707865, c [1] = 3320646e, c [2] = 79622d32, and c [3] = 6b206574. Then, we apply 

the little-endian function only on keys (k [0], k [1],..., k [7]), nonce (n [0], and n [1]), and 

block counters (b [0], b [1]). The block of keystream (16 words), which generates the starting 

matrix (S), 512 bits, is organized as follows: 

 

S=(

  

  

  

  

  

  

      

      

     

  

  

  

  

) 

Next, for each round (       ), S is selected as input (only for the first iteration). Then, 

apply quarter-round equations in salsa 20. After that, the column-round equation is used. 

Finally, we transpose every row as a column to generate (S1), a new 512-bit block of 

keystream. Note that S1 is the next iteration's input until all twenty rounds are completed. 

Finally, we apply the adding operation between S1 (after 20 rounds) and S for every word; the 

result is the final salsa.  

 

 4.1.2 Add Round 

     As shown in Figure 3,  the inputs in our suggested system include starting values (i=0, and 

j=0), 32 chaotic keys (5-dimensional), the final Salsa20 (16 words), and state (concatenate 

data sensors). We translate a state from binary to an integer. For 32 rounds, if the round (i) 

number is even, First, we apply XOR between keys ( 𝑠 [i] and  𝑠 [i]) into (  ). Then, we use 

the XOR operation between (State and   ) into (State). After that, we apply the XOR 

operation between keys ( 𝑠[i] and 𝑦𝑠 [i]) into (  ). Next, we use the XOR operation between 

(State and   ) into (State). Then, we apply XOR between key  𝑠[i] and Final Salsa20 [j] into 

(  ) and     . Finally, we use the XOR operation between (State and   ) into State 

and 𝑖  𝑖   . If the number of the round (i) is odd. First, we apply XOR between keys ( 𝑠 [i] 

and  𝑠[i]) into (  ). Then, we use the XOR operation between (State and   ) into (State). 

After that, we apply the XOR operation between keys ( 𝑠[i]and 𝑦𝑠[i]) into (  ). Next, we 

use XOR between (State and   ) into (State). Finally, if the value of (i) is less than or equal 

to thirty-one, then 𝑖  𝑖   ; otherwise, final state equals state. In our proposed system, we 

need to generate keys for the encryption process. Therefore, we use the 5-Dimension 

Randomness Chaotic System to generate 32 keys. First, we create two empty lists (x, y, z, k, 

and p) and the second (x1, y1, z1, k1, and p1). Then input the initial value (Seed) for variables 
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xs, ys, zs, ks, and ps in location zero as xs [0] = 0.01, ys [0] = 0.02, zs [0] =0.03, ks [0] =0,01, 

and ps [0] =0.02. These initial values can change at any time (any change on the patient side 

must be the exact change on the healthcare side) to create new keys. Any simple change can 

create new and different keys.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Add Round Process 

 

4.1.3 DNA Encryption 

     Our proposed system's starting settings for DNA encryption are Final State and Final 

Salsa20. For Final Salsa20, first select a random key and then convert the selected key to 

binary form. After that, we apply padding to ensure the length of the string is exactly 32 bits; 

if not, we add zeros on the left of the string. Next, every two-bit is split and encoded with the 

DNA codes (A, C, G, and T) using Table 1. a. After that, concatenate these DNA characters 

into a string. Finally, this concatenation results in a DNA string length of 16 characters (DNA 

Salsa20). Also, the same thing applies for final state encodings with DNA Code: apply 

padding to ensure the length of the string is 64 bits; if not, we add zeros on the left of the 

string. Then, concatenate these DNA characters into a string. Finally, this concatenation 

results in a DNA string length of 32 characters named “DNA State.” Finally, the DNA-

Addition operation is applied to (DNA Salsa20) and (DNA State) using Table 1. b. Because 

the length of the DNA Salsa20 string is less than the length of the DNA State string, we repeat 

the DNA Salsa20 string to ensure the length of the two strings is equal. Next, concatenate 

these DNA characters to the string, and the result from the addition operation is a DNA string 

length of 32 characters named (DNA Add State). 

 

Algorithm 2: DNA-Encryption Process 

Input: Final Salsa20, Final State  

Output: DNA String (DNA Add State) 

Begin 

Step1: Convert Final Salsa20 to Binary Form 
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Step2: Apply Pre-processing (Padding) if the length of the Final Salsa20  <> 32 bits 

Step3: Split every two-bit 

Step4: Encoding Every Two bits with DNA Code into (DNA Salsa20) using (Table 1. a) 

Step5: Concatenate DNA Salsa20 

Step6: Convert Final State to Binary Form 

Step7: Apply Pre-processing (Padding) if the length of the Final State <> 64 bits 

Step8: Apply Steps 3 to 5 on State into (DNA State) 

Step9: Apply DNA-Addition Operation on (DNA Salsa20) and (DNA State) into (DNA Add 

State) using (Table 1. b) 

Step10: Concatenate DNA Add State 

Step11: Return DNA Add State 

End. 

 

4.1.4 Hashing Sensors Data  

     We implemented SHA3-based cryptography to ensure integrity in our suggested system 

when delivering patient data over the network (256). SHA-3 is a unidirectional function that 

may create input data into digital print lengths              𝑎       . The r and c for our 

proposed SHA3-256 are as follows:       𝑟       𝑎          where r is the bit rate 

(  𝑒  𝑎  𝑒    𝑏     𝑠𝑖 𝑒  𝑠𝑒      𝑎𝑟 𝑖 𝑖     𝑒 𝑖      𝑒𝑠𝑠𝑎 𝑒 . C denotes capacity (a 

measure of the achievable complexity of the sponge construction). Using the reading data 

sensor, hashing is performed (state). The state is initially padded with the first "1" and then 

zeroes to achieve a length of 1088 bits (r). The state variable's operation, b = r + c bit, is 

initialized to all zeroes when making a sponge and is updated each time. The two phases of 

sponge construction are the absorption phase and the compression phase. The absorbing phase 

is carried out as follows: the input block to be processed is padded with all zeroes for each 

iteration (in our proposed system, just one iteration), increasing its length from r (1088 bits) to 

b (1600 bits), and then a bitwise 𝑋 𝑅 of the extended message block and s is formed to create 

a b bit input to iteration function f. The output of f is the value of s, which is the input for the 

following stage. We need 24 rounds in f; five internal steps are in each round. The first block 

   in the squeezing phase is the first 256 bits of s. (in our proposed system block     is hash 

data). Then, for each iteration, the values of s are updated by repeatedly running f; the first 

256 bits are used as a block    and are concatenated with previously created blocks. The result 

of the hashing process under the system we've described is H-State. 

 

4.1.5 Key Generation using 5D Chaotic System  

     In order to analyze chaotic qualities like  𝑟𝑎     𝑒𝑠𝑠  𝑦 𝑎 𝑖 𝑠 𝑎   𝑠𝑒 𝑠𝑖 𝑖 𝑖 𝑦  to 

the initials and equation parameters and produce a set of numerical output sequences, the 

suggested new 5D chaotic system of differential dynamic, chaotic equations is being put into 

reality. The following are the recently suggested 5D chaotic system equations: 

 

 𝑠[   ]     [ ]  (𝑠   𝑦𝑠[𝑖]   𝑠[𝑖]  )                                                            (1) 

  [   ]  (  [ ]  (   [ ]       [ ]    [ ] ))                                                (2) 

  [   ]    [ ]      [ ]    [ ]  𝑏   𝑠[𝑖]                                                      (3) 

  [   ]          [ ]    [ ]    [ ]                                                           (4) 

  [   ]       [ ]                                                                                              (5) 

 

     where xs, ys, zs, ks, and ps are the beginning conditions for the chaos map, while s, r, b, L, 

B, and dt are the chaotic parameters. Lyapunov exponents were calculated for various initials 

and parameters after the suggested new 5D chaotic system was implemented and tested. For 

example, with parameters (s =0.01, r =2.8, s =0.95, b =2.667, L=1.4, B=0.3, and dt=0.01), the 
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initial values for xs = 0.01, ys = 0.02, zs = 0.03, ks = 0.01, ps = 0.02, the proposed new 5D 

chaotic system displays super-chaotic Lyapunov values with positive values. All suggested 

systems employ the created chaotic keys (K1, K2,..., K5), which will be kept in the file to make 

it easier to use and refer to them in subsequent processes. The proposed 5D Lorenz chaotic 

map's chaotic attractors for each plane are shown in Figure 4. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Chaotic attractors of each plane of 5D Lorenz chaotic map 

 

4.2 Sending Data over the MQTT Protocol  

     Now the hashed and encrypted data are ready to be sent over the internet or intranet, so we 

used MQTT protocols to send the data. First, we named the patient node (“node”) and the 

healthcare node (“server”). The configuration of the MQTT protocol is as follows: IP number, 

unencrypted MQTT port (1883), QoS (0), and keep alive (60). 

 

4.3 Healthcare Side  

     In this phase of the proposed system, we used a PC as the server for the healthcare unit. 

First, the healthcare server receives the cipher text from the patient side. Then, we perform a 

separation process to separate the hashed data (H-State) and encrypted data (E-State). After 

that, we decrypt (E-State) by generating 32 random chaotic system keys (five dimensions), 

Salsa20 to generate a 512-bit block of the keystream (16 words), the DNA algorithm, and 

adding a round into (D-State). Then, we separate D-State into O2,  𝑅, and TEMP. Also, we 

hash decrypt data using SHA3-256 into HD-State. Finally, we check if the HD-State equals 

the H-State; if yes, then print authorized and store O2,  𝑅, and TEMP in the dataset; 

otherwise, print unauthorized and discard the data. Algorithm 3 and Figure 5 present the 

server side of the proposed system. 
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Algorithm 3: Server-Side 

Input: Ciphertext 

Output: O2,  𝑅, and TEMP 

Begin 

Step1: Received Ciphertext from the Patient's Side 

Step 2: Separate Ciphertext into (H-State) and (E-State). 

Step3: Keys Generation using 5D Chaotic Systems 

Step4: Decrypt E-State using (32 Keys Generation, Salsa20, DNA, and Add Round) into (D-

State) 

All processes can explain in algorithm four on the server side. 

Step5: Separate D-State into (O2, HR, and TEMP) 

Step6: Hashing D-State into (HD-State) 

Step7: If H-State== HD -State 

Step8: Print Authorized and Save (O2, HR, and TEMP) 

Step9: Else 

Step10: Print Unauthorized and Discard (O2, HR, and TEMP) 

End 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Server-Side 

 

The server side has three processes:  

 

4.3.1 Receiving cipher data  

     In the proposed system, after transmitting cipher text over the internet or intranet using the 

MQTT protocol, the healthcare side receives the data, and now it is ready to begin decryption 

and hashing the data and make sure the data is secure from threats and prepared to be stored 

in the database. 

 

4.3.2 Cipher data separation  

     On the healthcare side, the first operation separates ciphertext into hacked data (H-State) 

and encrypted data (E-State). So we select the first 62 characters from the ciphertext string as 

H-State and the remaining string as decrypted data E-State. 



Mohammed et al.                                      Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852 
 

2848 

4.3.3 Decryption proposed  

     On the healthcare side, after separation and receiving decrypted data (E-State), now it must 

perform the decryption process. In the proposed system, to decrypt data sensors, we used the 

Five-Dimensions Randomness Chaotic System to generate 32 keys, the Salsa20 algorithm to 

generate a 512-bit block of the keystream, the DNA algorithm, and 𝐴   𝑅     to decrypt 

data to avoid threats. Each previous process does the inverse; Figure 6 and algorithm (4) 

present the decryption process of the proposed system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Decryption Process 

 

Algorithm 4: Decryption Process 

Input: Decrypted Date Sensors (E-State), initial values (x, y, z, k, p) to Generate Keys, and 

initial values for Salsa20 

Output: D-State   

Begin 

Step 1: Convert E-State from Number to String into (DNA Add State). 

Step 2: Generate 32 keys using Five-Dimensions Chaotic System. 

Step 3: Apply Salsa20 to generate 512 bits block of keystream into (Final Salsa20). 

Step4: Select Final Salsa20 (one word) 

Step5: Convert Final Salsa20 to Binary Form 

Step 6: Apply Pre-processing (Padding) if the length of the Final Salsa20 <> 32 bits. 

Step7: Encoding Every Two bits with DNA Code into (DNA Salsa20) using (Table 1. a) 

Step8: Applying DNA Subtraction Operation on (DNA Add State) and (DNA Salsa20) into 

(DNA Sub State) (using Table 1. c) 

Step10: Decode DNA State using (Table 1. a). 

Step10: Convert Decode DNA State to Decimal  

Step11: Apply to Add Round  

Step12: Return D-State 

End. 

 

5. Test and Experimental  

     In this section, we discuss how key space, key sensitivity, NIST, computing, and time, 

which are crucial assessment criteria for a text encryption system resisting an all-out attack, 

are met by our scheme in terms of the security parameters indicated above. 
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5.1 Security Space 

      The suggested strategy uses iteration times N0 as the secret key, with a value of 32. The 

five starting values of the 5-D chaotic system are indicated as ( 𝑠[0] = 0.01, 𝑦𝑠[0] = 0.02, 

 𝑠[0] =0.03,  𝑠[0] =0,01, and  𝑠[0] =0.02).  𝑒𝑦            ,  𝑦         ,  𝑒𝑦     

     ,  𝑒𝑦               , and  𝑒𝑦     have the following ranges (1000, 2500). We 

may determine the key space by using the formula key space = 80×1015 ×80×1015 ×80×1015 

×500×1015 ×1500 ≈ 2
237

  > 2
128

 if all of the starting numbers have a precision of 10
15

. The 

suggested approach may therefore be guaranteed to withstand a thorough attack because of 

the essential space volume. 

 

5.2 Security Key Sensitivity 

      The degree of difference between two cipher texts, derived by encrypting the identical 

source text with two secret keys that have a slight modification, can be used to gauge the 

sensitivity of a key. In our suggested approach, there are five secret keys (keys x0, y0, z0, k0, 

and p0). We randomly choose one set of keys from the secret key space to evaluate the 

sensitivity of the secret keys. Then, the plaintext is encrypted using the selected keys to 

produce the matching cipher text C1. Maintaining the same values for the other four keys 

(keys y0, z0, w0, and N0) will allow us to assess the sensitivity of key x0. To get a fresh set of 

secret keys, swap out key x0 with key x0 + 10-15. After that, use the new keys to encrypt the 

identical starting text to create text C2. 

 

5.3 NIST Roundness Test 

     The NIST test suite includes 15 statistical metrics. The NIST metrics verify the 

randomness of binary series, such as cipher text or crypto PSNG. A P-value is calculated for 

each of these tests. The results for each NIST test were displayed in a table, revealing that 

every test had a success rate of > 0.01 when it came to execution [27] and [28]. For example, 

Table 2 shows the NIST statistical test results for the proposed algorithm for encryption 

cipher text. All of these tests yielded essentially identical results. 

 

Table 2: NIST Test Results 

NIST statistical tests Name 
Length of input size in bits and 

other parameters 

Proposed 

Algorithm 

 

Frequency 100 bits Pass 

Block  Frequency’s 1000 bits, M=128 Pass 

Discrete Fourier Transform 6000 bits Pass 

Approximate Entropy 1000 bits, M=11 Pass 

Cumulative sums 100 bits Pass 

Serial 100 bits, M=4 Pass 

Runs 10000 bits Pass 

Longest Runs of ones in a block 6272 bits, M = 128 Pass 

Overlapping template of all one's 1000 bits, M=9 Pass 

Non- overlapping templates 1000 bits Pass 

Linear complexity 10000 bits, M=500 Pass 

Binary matrix ranks 38,912 bits, M=32, Q=32 Pass 

Maurer’s universal statistical 387,840 bits, L=5, Q=320 Pass 

Random Excursion 1000000 bits Pass 

Random Excursion Variant 1000000 bits Pass 
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5.4 Encrypted Time Analysis 

     The running speed of the cryptosystem is a key indicator in addition to the security 

performance. The execution time is measured in seconds. Therefore, our technique performs 

better in terms of encryption speed. Additionally, completing encryption and decryption is 

related to computational complexity. The time-consuming aspects of our suggested strategy 

mainly involve the creation of the key streams in the Salsa20 chaotic system: DNA encoding, 

decoding, and hashing 256. Time complexity studies show that the DNA encoding and 

decoding processes have greater time complexity. The encryption time is 1.872, the 

throughput (in bits per second (bps)) is 273.2642, and the memory usage (in megabytes) is 

10.6211. 

 

6. Conclusion 

     We all know that the Internet of Things is one of the most coveted solutions for health 

monitoring right now. The most crucial aspect is that any doctor may remotely check on any 

patient's health since it ensures that the data is safe while being transmitted over the internet 

or intranet to the healthcare facility. The MQTT protocol is used by this device to send data to 

the healthcare facility about a patient's body temperature, heart rate, and blood oxygen 

saturation        levels. The key principle of this study is to assure the confidentiality, 

availability, and integrity of the data by decreasing the use of memory and processing time. 

Experimental results demonstrate that the proposed system guarantees increased security 

while still providing integrity through SHA3-256, where The encryption time is 1.872, and 

the throughput (in bits per second (bps)) is 273.2642. On the other hand, the memory usage 

(in megabytes) is 10.6211. Furthermore, good results were obtained from evaluating the 

randomness of the cipher’s output using three statistical test suites: NIST, key-sensitive, and 

computing. Therefore, the proposed system is a perfect fit for healthcare and telemedicine 

applications, which often send contextual data in small packets, avoiding the needless use of 

memory and processing power. 
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