
Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852
 DOI: 10.24996/ijs.2024.65.5.38

*Email: rawiaaljubori@gmail.com

2838

Monitoring System Based on New Chaotic System and IoT

Rawia Abdulla Mohammed

1
*, Maisa'a Abid Ali Khodher

1
, Ashwak Alabaichi

2

1
 Department of Computer Science, University of Technology, Baghdad, Iraq

2
Department of Biomedical Engineering, University of Kerbala, Iraq

Received: 16/12/2022 Accepted: 6/5/2023 Published: 30/5/2024

Abstract

 The security and integrity of medical data, in particular, have become significant

concerns due to the substantial expansion in the healthcare environment due to the

internet of things (IoT). To guarantee data security during transmission, this research

suggests a chaotic healthcare monitoring system. This system employs a new 5-

dimension (5D) chaotic system in conjunction with the secure hash algorithm

version three (SHA3-256), salsa 20, and deoxyribonucleic acid (DNA). Lyapunov's

proposed 5D chaos system was tested and passed for several initial periods, yielding

a super chaos system (3 positive Lyapunov). Salsa 20 and randomly generated

chaotic keys were utilized for encryption and decryption operations. The method we

created will assess a patient's body temperature, heart rate, and oxygen saturation

 levels in the blood and communicate the data to a healthcare center through

the Message Queuing Telemetry Transport (MQTT) protocol. The suggested system

ensures that patient data is transmitted via the internet or an intranet in a secure,

reliable, and readily accessible manner. In several studies involving security

analysis, The encryption time is 1.872, the throughput (in bits per second (bps)) is

273.2642, and the memory usage (in megabytes) is 10.6211. The performance

analysis confirmed the proposed cryptosystem's capacity to withstand multiple

attacks due to its low computational and communication costs and broad key space.

Keywords: DNA, encryption, salsa 20, MQTT, and hashing function.

 نظام مراقبة بالاعتماد على نظام فوضوي خماسي الابعاد جديد وانترنت الاشياء

2العبايجي محمود اشواق ,1خضرعلي بدميساء ع, *1عبد الله محمد هراوي
 1 قسم علوم الحاسبات, الجامعة التكنولوجية, بغداد, العراق

 العراققسم الهندسة الطبية الحيوية, جامعة كربلاء, 2
Save translation

 الخلاصة
أصبح أمن وسلامة البيانات الطبية , على وجه الخصوص , مصدر قلق كبير بسبب التوسع الكبير في

. يصف هذا العمل (. لضمان أمن البيانات أثناء الإرسالIoTبسبب إنترنت الأشياء)بيئة الرعاية الصحية
جنبًا إلى جنب مع خوارزمية نظامًا فوضويًا فريدًا خماسي الأبعاد يستعملنظامًا آمنًا لمراقبة الرعاية الصحية

تم . (DNA) ريبونوكلييكوحمض الديوكسي Salsa 20 و (SHA3-256) التجزئة الآمنة الإصدار الثالث
وي أولية , مما أسفر عن نظام فوض مراحلالمقترح وتم تمريره لعدة خماسي الابعاداختبار نظام الفوضى

لكل من عمليات التشفير وفك Salsa 20 استعمالتم .(positive Lyapunov 3ممتاز حيث يحتوي على)
تم إنشاؤها عشوائيًا. سيقوم النظام الذي أنشأناه بتقييم التشفير , جنبًا إلى جنب مع المفاتيح العشوائية التي

 ISSN: 0067-2904

mailto:rawiaaljubori@gmail.com

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2839

يصال (SpO2) درجة حرارة جسم المريض ومعدل ضربات القلب ومستويات تشبع الأكسجين في الدم وا
يضمن النظام المقترح نقل بيانات المريض MQTT. البيانات إلى مركز الرعاية الصحية من خلال بروتوكول

نت بطريقة آمنة وموثوقة ويمكن الوصول إليها بسهولة. وجدت العديد من الدراسات , عبر الإنترنت أو الإنترا
التي تضمنت التحليل الأمني وأوقات التنفيذ , أن فك التشفير يستغرق ثانيتين وأن وقت التنفيذ هو ثلاث ثوان

لتشفير المقترح على (ميغا بايت. أكد تحليل الأداء قدرة نظام ا3.20عندما تكون ذاكرة الوصول العشوائي)
 .قلة وقت التنفيذ وكلفة الاتصال وكبر مساحة المفاتيح المتولدةتحمل هجمات متعددة بسبب

1. Introduction

 The Internet of Things (IoT) is a network of interconnected physical systems that enables

remote data gathering, processing, and analysis of useful information [1] and [2]. Recent

developments in IoT technology have been made in computer networks and sensor networks

for distributed architecture models responsible for the upkeep and monitoring of intelligent

environments [3]. With its improved automation, analytical, and optimization characteristics,

the Internet of Things substantially impacts practically every business [4]. Using sensors or

other components built into intelligent devices simplifies data gathering, administration, and

processing. Using sensors and IoT devices to collect patient health data like body temperature,

heart rate, and blood oxygen levels has also caused a significant transformation in the

healthcare sector [5]. Defending the security and privacy of this data is essential before

developing a healthcare infrastructure design [6]. The lack of updated technology in network

equipment resulted in security lapses that caused network attacks, including physical attacks

like tampering with nodes to steal personal data [7]. As stated by Oza A.D. et al. [6] in their

paper on privacy and integrity attacks, a malicious environment can reveal critical patient data

to attackers. Impersonation, eavesdropping, and other attacks are also feasible during data

transfer.

 Consequently, patients could not have control over their medical information. So, many

academics strongly advise encrypting data before transmission to ensure data confidentiality.

Different security protocols, like public-key (symmetric encryption) cryptosystems, digital

signatures, and authentication algorithms, can provide data protection, authentication,

integrity, and confidentiality. Unfortunately, though, the confidentiality and integrity of

healthcare data are not generally guaranteed by existing schemes [8]. Therefore, a significant

task is investigating cryptographic data security methods in IoT healthcare systems [7].

Recently, crypto methods have been selected and tailored inside HCS under the moniker of

"lightweight security cryptography" (LWC) to fit restricted resources, like KATAN,

PRESENT, KLEIN, HEIGHT, CLEFIA, Salsa 20, and many other algorithms—lightweight

security goals to gain sufficient security levels with optimum resource use [9] and [10]. The

abovementioned issues spur efforts to create a more secure healthcare system by identifying

the complementary strengths of the three algorithms, i.e., chaos, DNA computing, and Salsa

20.

 The remainder of the essay is organized based on the parts below. Related works are

discussed in Section 2, and healthcare system techniques are discussed in Section 3. The

proposed system architecture is in Section 4. Section 5 provides implementation information

particular to the given use case. Finally, the final portion contains the conclusion.

2. Related work

 Researchers and medical industry executives are paying close attention to the development

of monitoring systems for healthcare. Several more effective research initiatives are now

being done in this field [11] and [12]. Real-time patient health status monitoring is a problem

that the IoT solves with the aid of sensor data and connectivity in an efficient and usable

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2840

manner. Moreover, it has been demonstrated that the IoT may offer various upgraded and

better services when used with intelligent technology. By recording significant vital signs,

information on general health and potentially harmful conditions may be gathered [13]. An

overview of current studies on IoT-based healthcare monitoring systems is given in this

section. J. Rokan Naif et al. [14] presented a safe method for securing sensing data moving

between embedded subsystems coupled by networks and IoT sensors/devices. This method is

based on the modified, lightweight Advanced Encryption Standard (AES) and a newly

suggested 4D chaotic system.

 M. M. Dhanvijay et al. [15] introduced IoT-based healthcare in wireless body sensor

networks, where the challenges and issues of wireless body area networks are discussed. M.

M. Islam et al. [16] presented an e-healthcare system. This system consists of three

components: a sensor module, a data-processing module, and a web user interface. V.

Tamilsevi et al. [17] introduced IoT-based e-healthcare using an Arduino Uno processing

device. The system can employ a temperature sensor, a spo2 sensor, a heartbeat sensor, and an

eye blink sensor to predict the patient's state. H. T. Yew et al. [18] suggest a real-time remote

patient monitoring system based on the IoT that can ensure the accuracy of the real-time

electrocardiogram (ECG). Nevertheless, this system has significant levels of jitter delay and

noise signal. H. A. El Zouka [19] introduced IoT-based e-healthcare using fuzzy logic. But

this work lacks experimental measurements, statistical analysis, examination, and security

testing and introduces IoT-based e-healthcare using fuzzy logic. But this work lacks practical

measures, statistical exploration, analysis, and security testing. M. M. Khan [20] presents a

COVID-19 monitoring system. A mobile application can get information from the system on

a patient's body temperature, heart rate, and blood oxygen saturation levels through

Bluetooth. Nevertheless, this system's drawback is that it is slow. H. Y. Mohamed [21]

presented a system that can continuously track vital signs, update data online, inform

clinicians if anything is out of the ordinary, and even predict whether a patient has a

diagnosis. However, because the system uses deep-belief neural networks, training them

requires massive amounts of data.

 Since most of the healthcare systems mentioned above do not rely on data encryption, they

cannot all be guaranteed to be reliable and honest. People may, as a result, lose control over

their medical data. Therefore, the innovative technology is suggested to employ Salsa 20 for

its higher security, DNA for security owing to its uniqueness, a new 5D chaotic map because

of its complexity, and SHA3-256 for integrity.

3. HealthCare System Techniques

 To encrypt digital data, several attributes are considered the main requirements to achieve

this goal: security, integrity, and confidentiality. The integrity requirement is fulfilled by

using SHA3-256. Security and confidentiality requirements are performed using the Lorenz

chaotic map, Salsa 20, and DNA. Chaos is a mathematical theory investigating dynamical

systems' behavior [22]. The system's initial conditions are critical because they contain secret

keys that only authorized individuals should understand.

 Furthermore, because of the extreme sensitivity of the system, changing minor numbers

will result in profoundly bizarre attractors, rendering hackers unable to decrypt the original

content [23]. Deoxyribonucleic acid (DNA) is a type of biological macromolecule comprised

of nucleotides. These nucleotides are in four categories of bases: (A) is adenine, (C) is

cytosine, (G) is guanine, and (T) is thymine. The complementary nucleotides A and T (or C

and G) generate hydrogen bonds that hold the two DNA strands together to form a double-

helix shape. Watson and Crick, two physicists, found this structure. This phenomenon is

referred to as "Watson-Crick complementarity" [24]. The Salsa20 algorithm stream cipher

was created by Daniel J. Bernstein and submitted to the eStream (Encrypt Stream Cipher

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2841

Project) in 2005 [25]. In reality, the core functionalities of Salsa20 can be described by

combining expansion operations with hash functions. The expansion carefully combines an 8-

byte nonce and an 8-byte block counter to create 512 bits by cryptographically connecting 16

bytes of data to 32 bytes of a secret key (a 64-byte block). Salsa20 is still regarded as suitable

for our IoT healthcare system since the best-recorded attack against its security was made

using a 256-bit Brute Force search, which takes longer than harming medical security [26].

Table 1 lists the functions of DNA.

Table 1: a- Coding, b- Add, c-Subtract operation in DNA

Co-de Bits Add A T C G Sub A T C G

A 00 A A T C G A A T G C

T 01 T T A G C T C A T G

C 10 C C G A T C G C A T

G 11 G G C T A G T G C A

4. The Proposed System

 The proposed system's architecture combines three phases, as shown in Figure 1. The blue

arrows indicate the direction of the data flow between the necessary system components and

the human actors, as well as through the internal system architecture. The privacy of the

processed data is essential because of the three crucial steps that enable the data transmission

pipeline's functionality. The first phase included the client-side (patient node), the second

phase included sending cipher text or secreted data over the MQTT protocol, and the third

phase included the server-side (healthcare node). The main objectives of the proposed system

are to achieve confidentiality, integrity, and availability of patient data during transmission

over the internet or intranet to the healthcare center. In the proposed system, the wearable

gadget has one microprocessor (𝑅𝑎𝑠 𝑏𝑒𝑟𝑟𝑦 𝑃𝑖4) and two sensors (𝑀𝐴𝑋30102, 𝑀𝐿𝑋90614).

Figure 1: General Structure

The following sub-section will describe these phases in detail:

4.1 Client-Side (Patient Side)

 In the first phase of the proposed healthcare system, a pulse oximeter and heart-rate sensor

(𝑀𝐴𝑋) were used to measure the heart rate (O2, 𝑅) and SpO2. In addition, the

infrared thermometer sensor (MLX90614) also provided body temperature (TEMP). Then,

these reading sensor data are padded when the length of (O2<3, 𝑅 <3, and TEMP<2) is left

padded for each sensor data. After that, we concatenate reading sensor data (O2, 𝑅, and

TEMP). Next, to provide confidentiality, sensor data has been encrypted by a new five-

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2842

dimension randomness chaotic system to generate 32 keys, the DNA algorithm, Add Round,

and Salsa20 algorithm to generate a 512-bit block of a key stream (16 words).

Additionally, we apply SHA3-256 to sensor data to provide integrity. Finally, hashed and

encrypted data are concatenated to prepare to transmit them over the internet or intranet to the

healthcare center. The proposed system's wearable sensors include (𝑀𝐴𝑋 and

𝑀𝐿𝑋). The 𝑀𝐴𝑋 takes precise SpO2 and heart rate measurements and sends

those values to the Raspberry Pi4 through the I2C communication line. MLX90614 (non-

contact infrared thermometer sensor) can be easily connected to a Raspberry Pi4 for

measuring the temperature of a patient’s body from a distance. Before sending data to

concatenation processing, it must ensure the length of string (O2) equals 3, the length of

string (𝑅) equals 3, and the length of string (TEMP) equals 2. Therefore, the padding on the

three variables is performed if the length of sensor data is not equal to the present lengths.

After completing the padding process for sensor data, the concatenation data is saved into a

state. The string (state) must be eight characters long to be ready to start the encryption and

hashing procedure. Patient data must be encrypted to ensure its confidentiality during

transmission over the internet or intranet. Algorithm 1 and Figure 2 present our proposed

system on the patient side. Also, algorithm 1 shows our proposed system on the inpatient side:

Algorithm 1: Proposal Encryption Algorithm on Patient Side

Input: State, Initial Values (xs, ys, zs, ks, ps) to 32 Keys Generation, and Initial Values for

Salsa20

Output: E-State.

Step 1: Convert State from String to Number.

Step 2: Generate 32 keys using 5D Chaotic System.

Step3: Apply Salsa20

Step4: Apply to Add Round on (State, 32 Chaotic Keys, and Final Salsa20)

Step 5: Apply Pre-processing (Padding) if the length of Final State! = 64 bits

Step6: Encoding Final State with DNA Code into (DNA State)

Step7: Select Final Salsa 20

Step8: Convert Final Salsa20 to Binary Form

Step 9: Apply Pre-processing (Padding) if the length! = 32 bits

Step10: Split every two-bit

Step11: Encoding Final Salsa 20 with DNA Code into (DNA Salsa20)

Step12: Applying DNA- Addition Operation on (DNA State, and DNA Salsa20) into (DNA

Add State)

Step 13: Convert DNA Add State from String to Number into (E-State).

Step14: Return integer (E-State)

End.

Figure 2: Proposal Encryption Algorithm on the patient side

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2843

The proposed encryption algorithms explain in detail:

4.1.1 Salsa 20

 Salsa20 is used in our proposed system to create 512-bit blocks of keystream (Matrix 16

words). Salsa20's default in our suggestion is as follows: Twenty rounds are involved; the

length of the keys is 32; the nonce is eight bytes long; the counter is eight bytes long; and the

default value of the keys, nonce, and block counters is zero. First, the initial values of Salsa20

are as follows: For keys, we used default values (all zeroes). Nonce, the initial values are [3,

1, 4, 1, 5, 9, 2, and 6]. Block Counters: the initial values are [7, 0, 0, 0, 0, 0, 0, 0]. Constants:

the initial values are [61707865, 3320646e, 79622d32, 6b206574]. Then, for keys, we select

the first four numbers from the initial values of keys to k [0], the second four numbers from

the initial keys to k [1], the third four numbers from the initial keys to k [2], and so on, until

we reach the final four numbers from the initial keys to k [7]. For the nonce, we select the first

four numbers from the initial values of the nonce to n [0] and the second four numbers from

the initial nonce to n [1]. For block counters, we choose the first four numbers from the block

counters' starting values up to b [0] and the following four numbers from b [1]. For constants,

c [0] = 61707865, c [1] = 3320646e, c [2] = 79622d32, and c [3] = 6b206574. Then, we apply

the little-endian function only on keys (k [0], k [1],..., k [7]), nonce (n [0], and n [1]), and

block counters (b [0], b [1]). The block of keystream (16 words), which generates the starting

matrix (S), 512 bits, is organized as follows:

S=(

)

Next, for each round (), S is selected as input (only for the first iteration). Then,

apply quarter-round equations in salsa 20. After that, the column-round equation is used.

Finally, we transpose every row as a column to generate (S1), a new 512-bit block of

keystream. Note that S1 is the next iteration's input until all twenty rounds are completed.

Finally, we apply the adding operation between S1 (after 20 rounds) and S for every word; the

result is the final salsa.

 4.1.2 Add Round

 As shown in Figure 3, the inputs in our suggested system include starting values (i=0, and

j=0), 32 chaotic keys (5-dimensional), the final Salsa20 (16 words), and state (concatenate

data sensors). We translate a state from binary to an integer. For 32 rounds, if the round (i)

number is even, First, we apply XOR between keys (𝑠 [i] and 𝑠 [i]) into (). Then, we use

the XOR operation between (State and) into (State). After that, we apply the XOR

operation between keys (𝑠[i] and 𝑦𝑠 [i]) into (). Next, we use the XOR operation between

(State and) into (State). Then, we apply XOR between key 𝑠[i] and Final Salsa20 [j] into

() and . Finally, we use the XOR operation between (State and) into State

and 𝑖 𝑖 . If the number of the round (i) is odd. First, we apply XOR between keys (𝑠 [i]

and 𝑠[i]) into (). Then, we use the XOR operation between (State and) into (State).

After that, we apply the XOR operation between keys (𝑠[i]and 𝑦𝑠[i]) into (). Next, we

use XOR between (State and) into (State). Finally, if the value of (i) is less than or equal

to thirty-one, then 𝑖 𝑖 ; otherwise, final state equals state. In our proposed system, we

need to generate keys for the encryption process. Therefore, we use the 5-Dimension

Randomness Chaotic System to generate 32 keys. First, we create two empty lists (x, y, z, k,

and p) and the second (x1, y1, z1, k1, and p1). Then input the initial value (Seed) for variables

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2844

xs, ys, zs, ks, and ps in location zero as xs [0] = 0.01, ys [0] = 0.02, zs [0] =0.03, ks [0] =0,01,

and ps [0] =0.02. These initial values can change at any time (any change on the patient side

must be the exact change on the healthcare side) to create new keys. Any simple change can

create new and different keys.

Figure 3: Add Round Process

4.1.3 DNA Encryption

 Our proposed system's starting settings for DNA encryption are Final State and Final

Salsa20. For Final Salsa20, first select a random key and then convert the selected key to

binary form. After that, we apply padding to ensure the length of the string is exactly 32 bits;

if not, we add zeros on the left of the string. Next, every two-bit is split and encoded with the

DNA codes (A, C, G, and T) using Table 1. a. After that, concatenate these DNA characters

into a string. Finally, this concatenation results in a DNA string length of 16 characters (DNA

Salsa20). Also, the same thing applies for final state encodings with DNA Code: apply

padding to ensure the length of the string is 64 bits; if not, we add zeros on the left of the

string. Then, concatenate these DNA characters into a string. Finally, this concatenation

results in a DNA string length of 32 characters named “DNA State.” Finally, the DNA-

Addition operation is applied to (DNA Salsa20) and (DNA State) using Table 1. b. Because

the length of the DNA Salsa20 string is less than the length of the DNA State string, we repeat

the DNA Salsa20 string to ensure the length of the two strings is equal. Next, concatenate

these DNA characters to the string, and the result from the addition operation is a DNA string

length of 32 characters named (DNA Add State).

Algorithm 2: DNA-Encryption Process

Input: Final Salsa20, Final State

Output: DNA String (DNA Add State)

Begin

Step1: Convert Final Salsa20 to Binary Form

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2845

Step2: Apply Pre-processing (Padding) if the length of the Final Salsa20 <> 32 bits

Step3: Split every two-bit

Step4: Encoding Every Two bits with DNA Code into (DNA Salsa20) using (Table 1. a)

Step5: Concatenate DNA Salsa20

Step6: Convert Final State to Binary Form

Step7: Apply Pre-processing (Padding) if the length of the Final State <> 64 bits

Step8: Apply Steps 3 to 5 on State into (DNA State)

Step9: Apply DNA-Addition Operation on (DNA Salsa20) and (DNA State) into (DNA Add

State) using (Table 1. b)

Step10: Concatenate DNA Add State

Step11: Return DNA Add State

End.

4.1.4 Hashing Sensors Data

 We implemented SHA3-based cryptography to ensure integrity in our suggested system

when delivering patient data over the network (256). SHA-3 is a unidirectional function that

may create input data into digital print lengths 𝑎 . The r and c for our

proposed SHA3-256 are as follows: 𝑟 𝑎 where r is the bit rate

(𝑒 𝑎 𝑒 𝑏 𝑠𝑖 𝑒 𝑠𝑒 𝑎𝑟 𝑖 𝑖 𝑒 𝑖 𝑒𝑠𝑠𝑎 𝑒 . C denotes capacity (a

measure of the achievable complexity of the sponge construction). Using the reading data

sensor, hashing is performed (state). The state is initially padded with the first "1" and then

zeroes to achieve a length of 1088 bits (r). The state variable's operation, b = r + c bit, is

initialized to all zeroes when making a sponge and is updated each time. The two phases of

sponge construction are the absorption phase and the compression phase. The absorbing phase

is carried out as follows: the input block to be processed is padded with all zeroes for each

iteration (in our proposed system, just one iteration), increasing its length from r (1088 bits) to

b (1600 bits), and then a bitwise 𝑋 𝑅 of the extended message block and s is formed to create

a b bit input to iteration function f. The output of f is the value of s, which is the input for the

following stage. We need 24 rounds in f; five internal steps are in each round. The first block

 in the squeezing phase is the first 256 bits of s. (in our proposed system block is hash

data). Then, for each iteration, the values of s are updated by repeatedly running f; the first

256 bits are used as a block and are concatenated with previously created blocks. The result

of the hashing process under the system we've described is H-State.

4.1.5 Key Generation using 5D Chaotic System

 In order to analyze chaotic qualities like 𝑟𝑎 𝑒𝑠𝑠 𝑦 𝑎 𝑖 𝑠 𝑎 𝑠𝑒 𝑠𝑖 𝑖 𝑖 𝑦 to

the initials and equation parameters and produce a set of numerical output sequences, the

suggested new 5D chaotic system of differential dynamic, chaotic equations is being put into

reality. The following are the recently suggested 5D chaotic system equations:

 𝑠[] [] (𝑠 𝑦𝑠[𝑖] 𝑠[𝑖]) (1)

 [] ([] ([] [] [])) (2)

 [] [] [] [] 𝑏 𝑠[𝑖] (3)

 [] [] [] [] (4)

 [] [] (5)

 where xs, ys, zs, ks, and ps are the beginning conditions for the chaos map, while s, r, b, L,

B, and dt are the chaotic parameters. Lyapunov exponents were calculated for various initials

and parameters after the suggested new 5D chaotic system was implemented and tested. For

example, with parameters (s =0.01, r =2.8, s =0.95, b =2.667, L=1.4, B=0.3, and dt=0.01), the

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2846

initial values for xs = 0.01, ys = 0.02, zs = 0.03, ks = 0.01, ps = 0.02, the proposed new 5D

chaotic system displays super-chaotic Lyapunov values with positive values. All suggested

systems employ the created chaotic keys (K1, K2,..., K5), which will be kept in the file to make

it easier to use and refer to them in subsequent processes. The proposed 5D Lorenz chaotic

map's chaotic attractors for each plane are shown in Figure 4.

Figure 4: Chaotic attractors of each plane of 5D Lorenz chaotic map

4.2 Sending Data over the MQTT Protocol

 Now the hashed and encrypted data are ready to be sent over the internet or intranet, so we

used MQTT protocols to send the data. First, we named the patient node (“node”) and the

healthcare node (“server”). The configuration of the MQTT protocol is as follows: IP number,

unencrypted MQTT port (1883), QoS (0), and keep alive (60).

4.3 Healthcare Side

 In this phase of the proposed system, we used a PC as the server for the healthcare unit.

First, the healthcare server receives the cipher text from the patient side. Then, we perform a

separation process to separate the hashed data (H-State) and encrypted data (E-State). After

that, we decrypt (E-State) by generating 32 random chaotic system keys (five dimensions),

Salsa20 to generate a 512-bit block of the keystream (16 words), the DNA algorithm, and

adding a round into (D-State). Then, we separate D-State into O2, 𝑅, and TEMP. Also, we

hash decrypt data using SHA3-256 into HD-State. Finally, we check if the HD-State equals

the H-State; if yes, then print authorized and store O2, 𝑅, and TEMP in the dataset;

otherwise, print unauthorized and discard the data. Algorithm 3 and Figure 5 present the

server side of the proposed system.

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2847

Algorithm 3: Server-Side

Input: Ciphertext

Output: O2, 𝑅, and TEMP

Begin

Step1: Received Ciphertext from the Patient's Side

Step 2: Separate Ciphertext into (H-State) and (E-State).

Step3: Keys Generation using 5D Chaotic Systems

Step4: Decrypt E-State using (32 Keys Generation, Salsa20, DNA, and Add Round) into (D-

State)

All processes can explain in algorithm four on the server side.

Step5: Separate D-State into (O2, HR, and TEMP)

Step6: Hashing D-State into (HD-State)

Step7: If H-State== HD -State

Step8: Print Authorized and Save (O2, HR, and TEMP)

Step9: Else

Step10: Print Unauthorized and Discard (O2, HR, and TEMP)

End

Figure 5: Server-Side

The server side has three processes:

4.3.1 Receiving cipher data

 In the proposed system, after transmitting cipher text over the internet or intranet using the

MQTT protocol, the healthcare side receives the data, and now it is ready to begin decryption

and hashing the data and make sure the data is secure from threats and prepared to be stored

in the database.

4.3.2 Cipher data separation

 On the healthcare side, the first operation separates ciphertext into hacked data (H-State)

and encrypted data (E-State). So we select the first 62 characters from the ciphertext string as

H-State and the remaining string as decrypted data E-State.

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2848

4.3.3 Decryption proposed

 On the healthcare side, after separation and receiving decrypted data (E-State), now it must

perform the decryption process. In the proposed system, to decrypt data sensors, we used the

Five-Dimensions Randomness Chaotic System to generate 32 keys, the Salsa20 algorithm to

generate a 512-bit block of the keystream, the DNA algorithm, and 𝐴 𝑅 to decrypt

data to avoid threats. Each previous process does the inverse; Figure 6 and algorithm (4)

present the decryption process of the proposed system.

Figure 6: Decryption Process

Algorithm 4: Decryption Process

Input: Decrypted Date Sensors (E-State), initial values (x, y, z, k, p) to Generate Keys, and

initial values for Salsa20

Output: D-State

Begin

Step 1: Convert E-State from Number to String into (DNA Add State).

Step 2: Generate 32 keys using Five-Dimensions Chaotic System.

Step 3: Apply Salsa20 to generate 512 bits block of keystream into (Final Salsa20).

Step4: Select Final Salsa20 (one word)

Step5: Convert Final Salsa20 to Binary Form

Step 6: Apply Pre-processing (Padding) if the length of the Final Salsa20 <> 32 bits.

Step7: Encoding Every Two bits with DNA Code into (DNA Salsa20) using (Table 1. a)

Step8: Applying DNA Subtraction Operation on (DNA Add State) and (DNA Salsa20) into

(DNA Sub State) (using Table 1. c)

Step10: Decode DNA State using (Table 1. a).

Step10: Convert Decode DNA State to Decimal

Step11: Apply to Add Round

Step12: Return D-State

End.

5. Test and Experimental

 In this section, we discuss how key space, key sensitivity, NIST, computing, and time,

which are crucial assessment criteria for a text encryption system resisting an all-out attack,

are met by our scheme in terms of the security parameters indicated above.

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2849

5.1 Security Space

 The suggested strategy uses iteration times N0 as the secret key, with a value of 32. The

five starting values of the 5-D chaotic system are indicated as (𝑠[0] = 0.01, 𝑦𝑠[0] = 0.02,

 𝑠[0] =0.03, 𝑠[0] =0,01, and 𝑠[0] =0.02). 𝑒𝑦 , 𝑦 , 𝑒𝑦

 , 𝑒𝑦 , and 𝑒𝑦 have the following ranges (1000, 2500). We

may determine the key space by using the formula key space = 80×1015 ×80×1015 ×80×1015

×500×1015 ×1500 ≈ 2
237

 > 2
128

 if all of the starting numbers have a precision of 10
15

. The

suggested approach may therefore be guaranteed to withstand a thorough attack because of

the essential space volume.

5.2 Security Key Sensitivity

 The degree of difference between two cipher texts, derived by encrypting the identical

source text with two secret keys that have a slight modification, can be used to gauge the

sensitivity of a key. In our suggested approach, there are five secret keys (keys x0, y0, z0, k0,

and p0). We randomly choose one set of keys from the secret key space to evaluate the

sensitivity of the secret keys. Then, the plaintext is encrypted using the selected keys to

produce the matching cipher text C1. Maintaining the same values for the other four keys

(keys y0, z0, w0, and N0) will allow us to assess the sensitivity of key x0. To get a fresh set of

secret keys, swap out key x0 with key x0 + 10-15. After that, use the new keys to encrypt the

identical starting text to create text C2.

5.3 NIST Roundness Test

 The NIST test suite includes 15 statistical metrics. The NIST metrics verify the

randomness of binary series, such as cipher text or crypto PSNG. A P-value is calculated for

each of these tests. The results for each NIST test were displayed in a table, revealing that

every test had a success rate of > 0.01 when it came to execution [27] and [28]. For example,

Table 2 shows the NIST statistical test results for the proposed algorithm for encryption

cipher text. All of these tests yielded essentially identical results.

Table 2: NIST Test Results

NIST statistical tests Name
Length of input size in bits and

other parameters

Proposed

Algorithm

Frequency 100 bits Pass

Block Frequency’s 1000 bits, M=128 Pass

Discrete Fourier Transform 6000 bits Pass

Approximate Entropy 1000 bits, M=11 Pass

Cumulative sums 100 bits Pass

Serial 100 bits, M=4 Pass

Runs 10000 bits Pass

Longest Runs of ones in a block 6272 bits, M = 128 Pass

Overlapping template of all one's 1000 bits, M=9 Pass

Non- overlapping templates 1000 bits Pass

Linear complexity 10000 bits, M=500 Pass

Binary matrix ranks 38,912 bits, M=32, Q=32 Pass

Maurer’s universal statistical 387,840 bits, L=5, Q=320 Pass

Random Excursion 1000000 bits Pass

Random Excursion Variant 1000000 bits Pass

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2850

5.4 Encrypted Time Analysis

 The running speed of the cryptosystem is a key indicator in addition to the security

performance. The execution time is measured in seconds. Therefore, our technique performs

better in terms of encryption speed. Additionally, completing encryption and decryption is

related to computational complexity. The time-consuming aspects of our suggested strategy

mainly involve the creation of the key streams in the Salsa20 chaotic system: DNA encoding,

decoding, and hashing 256. Time complexity studies show that the DNA encoding and

decoding processes have greater time complexity. The encryption time is 1.872, the

throughput (in bits per second (bps)) is 273.2642, and the memory usage (in megabytes) is

10.6211.

6. Conclusion

 We all know that the Internet of Things is one of the most coveted solutions for health

monitoring right now. The most crucial aspect is that any doctor may remotely check on any

patient's health since it ensures that the data is safe while being transmitted over the internet

or intranet to the healthcare facility. The MQTT protocol is used by this device to send data to

the healthcare facility about a patient's body temperature, heart rate, and blood oxygen

saturation levels. The key principle of this study is to assure the confidentiality,

availability, and integrity of the data by decreasing the use of memory and processing time.

Experimental results demonstrate that the proposed system guarantees increased security

while still providing integrity through SHA3-256, where The encryption time is 1.872, and

the throughput (in bits per second (bps)) is 273.2642. On the other hand, the memory usage

(in megabytes) is 10.6211. Furthermore, good results were obtained from evaluating the

randomness of the cipher’s output using three statistical test suites: NIST, key-sensitive, and

computing. Therefore, the proposed system is a perfect fit for healthcare and telemedicine

applications, which often send contextual data in small packets, avoiding the needless use of

memory and processing power.

References

[1] A. T. M. Mohammed Shakir, “Lightweight Authentication Model for IoT Environments Based on

Enhanced Elliptic Curve Digital Signature and Shamir Secret Share,” INASS, International

Journal of Intelligent Engineering and Systems, vol.15, no.5, pp. 81-90,2022.

[2] A. Y. Hussein and A. T. Sadiq, “Meerkat Clan-Based Feature Selection in Random Forest

Algorithm for IoT Intrusion Detection,” Iraqi Journal of Computers, Communications, Control &

Systems Engineering, vol. 22, no. 3, pp. 15–24, 2022.

[3] M. A. Khodher, A. M. Alabaichi and A. S. Abbas, “Dual method cryptography image by two

force secure and steganography secret message in IoT,” TELKOMNIKA Telecommunication,

Computing, Electronics and Control, vol. 18, no. 6, pp. 2928-2938, 2020.

[4] I. M. Hasan and R. F. Ghani, “Blockchain for Authorized Access of Health Insurance IoT

System,” Iraqi Journal of Computers, Communications, Control & Systems Engineering, vol. 21,

no. 3, pp. 76–88, 2021.

[5] R. W. L. Coutinho and A. Boukerche, “Modeling and Analysis of a Shared Edge Caching System

for Connected Cars and Industrial IoT-Based Applications,” IEEE Trans. Ind. Informatics, vol.

16, no. 3, pp. 2003–2012, 2020.

[6] A. Karati, S. K. Hafizul Islam, G. P. Biswas, M. Z. A. Bhuiyan, P. Vijayakumar, and M.

Karuppiah, “Provably secure identity-based signcryption scheme for crowdsourced industrial

internet of things environments,” IEEE Internet Things J., vol. 5, no. 4, pp. 2904–2914, Aug.

2018.

[7] D. G. Korzun, “Internet of Things Meets Mobile Health Systems in Smart Spaces: An Overview,”

In book: Studies in Big Data, Berlin/Heidelberg, Germany, Springerlink, pp 111–129, 2017.

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2851

[8] H. Deng, Z. Qin, L. Sha, and H. Yin, “A Flexible Privacy-Preserving Data Sharing Scheme in

Cloud-Assisted IoT,” IEEE Internet Things J., vol. 7, no. 12, pp. 11601–11611, 2020.

[9] C. G. Thorat and V. S. Inamdar, “Implementation of new hybrid lightweight cryptosystem,” Appl.

Comput. Informatics, vol. 16, no. 1/2, pp. 195–206, 2020.

[10] S. A. Jassim, A. K. Farhan, “Designing a New Lightweight AES Algorithm to Improve the

Security of the IoT Environment,” Iraqi Journal of Computers, Communications, Control &

Systems Engineering, vol. 22, no. 2, pp. 96–108, 2022.

[11] Y. N. Teja, L. Vooha, A. R. Priya, and N. V. K. Ramesh, “IOT based smart health care,” Int. J.

Eng. Technol., vol. 7, no. 11, pp. 470–472, 2018.

[12] C. Li, X. Hu, and L. Zhang, “The IoT-based heart disease monitoring system for pervasive

healthcare service,” Procedia Comput. Sci., vol. 112, pp. 2328–2334, 2017.

[13] A. S. El Batouty , H. H. Farag , A. A. Mokhtar , A. El-Badawy and M. H. Aly, “Improvement of

Radio Frequency Identification Security Using New Hybrid Advanced Encryption Standard

Substitution Box by Chaotic Maps,” Electronics, vol. 9, no. 1168, 2021.

[14] J. Rokan Naif, G. H. Abdul-Majeed, and A. K. Farhan, “Internet of Things Security using New

Chaotic System and Lightweight AES,” J. Al-Qadisiyah Comput. Sci. Math., vol. 11, no. 2, pp.

45–52, 2019.

[15] M. M. Dhanvijay and S. C. Patil, “Internet of Things: a survey of enabling technologies in

healthcare and its applications,” Comput. Networks, vol. 153, pp. 113–131, Apr. 2019.

[16] M. M. Islam, A. Rahaman, and M. R. Islam, “Development of Smart Healthcare Monitoring

System in IoT Environment,” SN Comput. Sci., vol. 1, no. 3, pp. 1–11, 2020.

[17] V. Tamilselvi, S. Sribalaji, P. Vigneshwaran, P. Vinu, and J. Geetharamani, “IoT Based Health

Monitoring System,” 2020 6th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2020, pp. 386–

389, 2020.

[18] H. T. Yew, M. F. Ng, S. Z. Ping, S. K. Chung, A. Chekima, and J. A. Dargham, “IoT Based Real-

Time Remote Patient Monitoring System,” Proc. - 2020 16th IEEE Int. Colloq. Signal Process.

its Appl. CSPA 2020, no. March 2021, pp. 176–179, 2020.

[19] H. A. El Zouka and M. M. Hosni, “Secure IoT communications for smart healthcare monitoring

system,” Internet of Things, vol. 13, p. 100036, Mar. 2021.

[20] M. M. Khan, S. Mehnaz, A. Shaha, M. Nayem, and S. Bourouis, “IoT-Based Smart Health

Monitoring System for COVID-19 Patients,” Comput. Math. Methods Med., vol. 2021, 2021.

[21] H. Y. Mohamed, R. Shahin, O. R. Hamed and M. H. Abdellattif, “Analyzing the Patient Behavior

for Improving the Medical Treatment Using Smart Healthcare and IoT-Based Deep Belief

Network,” Journal of Healthcare Engineering, vol. 2022, no. 63, pp. 8, 2022.

[22] J. P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors,” Reviews of

Modern Physics, vol. 57, no. 3, pp. 273–312, 2008.

[23] F. Masood, M. Driss, W. Boulila, J. Ahmad, S. Ullah et al., “A Lightweight Chaos-Based

Medical Image Encryption Scheme Using Random Shuffling and XOR Operations,” Wirel. Pers.

Commun. vol. 2021, no. 127, pp. 1-28, 2021.

[24] A. Alabaichi, “True color image encryption based on dna sequence, 3D chaotic map, and key-

dependent DNA S-box of AES,” Journal of Theoretical and Applied Information Technology,

vol. 96, no. 2. pp. 304–321, 2018.

[25] P.A. Nikolov, “Analysis and Design of a Stream Cipher,” M.S. thesis, Univ. of Alicante, San

Vicente del Raspeig, España, 2019.

[26] G. Meiser, T. Eisenbarth, K. Lemke-Rust, and C. Paar, “Efficient implementation of eSTREAM

ciphers on 8-bit AVR microcontrollers,” in Proceedings of the International Symposium on

Industrial Embedded Systems, Le Grande Motte, France , 2009.

[27] A. Rukhin, J. Soto, and J. Nechvatal, “A Statistical Test Suite for Random and Pseudorandom

Number Generators for Cryptographic Applications,” NIST Special Publication, vol. 22, no. 4,

Mohammed et al. Iraqi Journal of Science, 2024, Vol. 65, No. 5, pp: 2838-2852

2852

pp. 1-1-G-1, 2010.

[28] M. S. Fadhil , A. K. Farhan, M. N. Fadhil, “A lightweight AES Algorithm Implementation for

Secure IoT Environment, ” Iraqi Journal of Science, vol. 62, no. 8, pp. 2759-2770, 2021.

