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Abstract 

       A submodule N is called rational in M if HomR(
M

N
, E(M))=0, where E(M) is the 

injective hull of M. Rational submodules have been studied and discussed by many 

authors such as H.H. Storrer, H. Khabazian, E. Ghashghaei, A. Hajikarimi and A.R. 

Naghipour, M.S. Abbas and M.A. Ahmed. The main objective of this paper is to give 

a new class of submodules named P-rational submodules. This class is contained 

properly in the class of rational submodules. Several properties of this concept are 

introduced. The relationships between this class of submodules and some other related 

concepts are discussed such as essential and quasi-invertible submodules. Other 

characterizations of the P-rational submodule analogous to those which is known in 

the concept of the rational submodule are given. 

 

Keywords: Rational submodules, Pure submodules, P-rational submodules, Essential 
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1. Introduction: 

       Rational submodules played a large and important role in the module theory. Many authors 

studied the concept of rational submodules such as H.H. Storrer, H. Khabazian, E. Ghashghaei, 

A. Hajikarimi & A.R. Naghipour, M.S. Abbas & M.A. Ahmed. Other features of rational 

submodules have also been explored. Furthermore, those researchers found new types 

containing or contained in the class of rational submodules. In addition to that, the rationality 

property has appeared as an additional condition with other concepts to introduce other new 

concepts. However, there are few findings on the concept of rational submodules compared to 

its important role in module theory. 

 

       An R-module M is called injective if for every monomorphism f: M ⟶B and every 

homomorphism g: M ⟶C there exists a homomorphism h: B ⟶C with g=h∘f, [1, P.116]. A 

non-zero submodule N of M is said to be essential (briefly N≤𝑒M) if N∩L≠0 for every non-

zero submodule L of M, [2, P.15]. An injective hull of any R-module M is denoted by E(M), 

and it is defined as a monomorphism f: M⟶E(M) such that E(M) is an injective module and f 

is an essential monomorphism, [1, P.124]. A submodule N of an R-module M is called rational 

(simply, N≤𝑟M), if HomR(
M

N
, E(M))=0, [3, P.274]. 

  

      Our main goal is to introduce a class of submodules which contained properly in the class 

of rational submodules, which we named the P-rational submodule. A submodule N of M is 

called pure if N∩IM=IN for every ideal I of R, [4, P.18]. We define the P-rational submodule 

as a pure submodule N which satisfies HomR(
M

N
, E(M)) =0.  

 

      This paper is divided into three sections. In Section Two, we study P-rational submodules. 

Various characteristics of the P-rational submodule are given and discussed that are analogous 

to the results which are known in the concept of the rational submodule. Among these results: 

• Let A≤𝑝𝑟B≤C with B having PIP. If A1 ≤𝑝𝑟 B1≤C then A∩A1 ≤𝑝𝑟B∩B1, see Propositions 

2.8. 

•  For any chain of modules, A≤ B≤ C with B is a pure submodule of C, A≤𝑝𝑟C if and only if 

A≤𝑝𝑟B and B≤𝑝𝑟C, see Theorem 2.11.  

• Let L be a non-zero pure submodule of an R-module M. If for any 0≠mM, annR(
M

L
) ⊈

annR(m), then L≤𝑝𝑟M, see Proposition 2.21. 

   

      In addition, we present several characterizations for this type of submodule such as the 

following: 

• Let N be a pure submodule of an R-module M. Then N≤p𝑟M if and only if for all submodules 

L of M with N≤L≤M, HomR(
L

N
, M)=0, see Theorem 2.7. 

• Let N be a pure submodule of M. Then the following statements are equivalent. 

  i. HomR(
L

N
, M)=0 for each submodule L of M with NLM. 

  ii.  For all yM and xM\{0} there exists rR such that rx≠0 and ryN. 

See Theorem 2.13.  

• For any R-module M, with N is a pure submodule of M, the following statements are 

equivalent: 

i. For all 𝑦M and xM\{0}, there exists r∈R such that rx≠0 and ryN. 

ii. N ≤𝑝𝑟M. 

iii. For any submodule P of M with N⊆P⊆M, HomR(
P

N
, M)=0. 
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       See Theorem 2.16.  

  

     In Section Three we study the relationships between this class of modules and other related 

concepts, among these results are the following: 

• Let N be a submodule of an R-module M. Consider the following statements.  

a. N≤𝑝𝑟M. 

b. N≤𝑟M. 

c. N≤𝑒M. 

Then (a)  (b)  (c) and if M is a nonsingular module and N pure then (c)  (a). 

See Proposition 3.4. 

• Let M be a multiplication module with a prime annihilator. Consider the following 

statements.  

i. N≤𝑝𝑟M. 

ii. N≤𝑝𝑞𝑢M. 

iii. N≤𝑞𝑢M. 

iv. N≤𝑒M. 

v. N≤𝑝𝑒M. 

 

      Then (i)  (ii)  (iii) ⇔ (iv) (v), and if M is a fully P-essential module then (v)  (iv). 

     See Proposition 3.7. 

 

       It is worth remembering that all rings R in this paper are commutative with identity, and 

all modules are unitary left R-modules.  

 

2. P-Rational Submodules 

     This section is devoted to examining a new concept that we call the P-rational submodules. 

It is a special class of rational submodules. The comparison of the results according to the 

results in our new concept has been found which are analogues of the properties which satisfied 

in rational submodules. 

 

Definition 2.1: A submodule N of an R-module M is said to be P-rational if N is pure and 

HomR(
M

N
, E(M))=0, where E(M) is the injective hull of M. It denoted by N≤𝑝𝑟M. An ideal I of 

a ring R is said to be P-rational if I is a P-rational R-submodule. 

 

Remark 2.2: It is clear that every P-rational submodule is rational, but the converse is not 

correct, as the following examples show: 

1. Consider the ring of rational numbers ℚ, and let ℚ(x,y) be the polynomial ring of two 

independent variables x and y. Since ℚ is a field then ℚ(x,y) is an integral domain. Let 

A=<(x,y)> be an ideal of ℚ(x,y) generated by (x,y), so that A={xf1 + yf2|f1, f2∈ℚ(x,y)}, A≠0. 

We claim that A≤𝑟 ℚ(x,y). In fact, HomR (
ℚ(x,y)

A
, E(ℚ(x, y)))=HomR (

ℚ(x,y)

A
, ℚ(x, y)). Note 

that, ℚ(x, y) is an integral domain. This implies that HomR (
ℚ(x,y)

A
, ℚ(x, y))=0, [5, Example 1.3 

(1), P.6], that is  A≤𝑟 ℚ(x, y). In contrast, A is not P-rational in ℚ(x, y), to show that: let 

B={f∈ℚ(x,y)| f(x,y)=a, where x,yℚ and a2ℤ}, then AB={axf1+ayf2| f1,f2 ∈ ℚ(x, y)}. It is 

clear that AB≠(0), but A∩Bℚ=0. Therefore, A is not pure ideal of ℚ(x, y), hence A is not P-

rational ideal in ℚ(x, y). 
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2. Consider the ℤ-module ℚ, where ℚ is the set of all rational numbers. We claim that,  ℤ ≤𝑟 ℚ. 

Let L be a submodule of ℚ with  ℤ ≤L≤ ℚ, we have to show that HomR (
ℚ

ℤ
, E(ℚ))=0. Note 

that E(ℚ)=ℚ since ℚ is injective. Let f: 
ℚ

ℤ
⟶ ℚ be a homomorphism. Note that f(

n

m
+ℤ)=nf(

1

m
+

ℤ), for all 
n

m
∈ ℚ, m≠0. We are done if we can show that f(

1

m
+ℤ)=0. Note that mf(

1

m
+ℤ) =f(

m

m
+

ℤ)=f(ℤ)=0. But m and f(
1

m
+ℤ)ℚ, m≠0, thus f(

1

m
+ℤ)=0, hence f(

n

m
+ℤ)=0. That is f=0. In 

contrast, ℤ ≰𝑃𝑟 ℚ, since ℤ is not pure submodule of ℚ. 

 

Examples and Remarks 2.3: 

1. Any non-zero R-module M is a P-rational submodule of itself since M is pure in itself and 

HomR (
M

M
, E(M))=0. 

2. If 0≠M, then (0) is not P-rational in M. In fact, (0) is pure in M but HomR (
M

(0)
, E(M))≠0. 

3. N=2ℤ is not P-rational in M=ℤ. In fact, any P-rational submodule must be pure and rational, 

but N=2ℤ is not pure in M=ℤ. In fact, if I=6 is an ideal of R=ℤ then IN=6(2ℤ)=12ℤ and 

N∩IM=2ℤ ∩6 ℤ =6 ℤ, so that IN N∩IM. 

4. N=2̅ is not P-rational in the ℤ-module M=ℤ4, since < 2̅ >  is not pure submodule of 

ℤ4 and Homℤ (
ℤ4

<2̅>
, E(ℤ4))= Homℤ (

ℤ4

<2̅>
, ℤ2), [6, P.21] and clearly Homℤ (

ℤ4

<2̅>
, ℤ2)≠0. 

Now, to show that N=< 2̅ > is not pure in ℤ4, consider the ideal I =< 2 > of ℤ, note that 2̅ ∈ 

2ℤ4 ∩< 2̅ >=< 2̅ >  but 2̅ ∉ 2 < 2̅ >=(0̅). 

5. Every P-rational submodule is essential. This follows from Remark 2.2. 

6. A direct summand of any R-module may not be P-rational, for example: let M=ℤ6, A=<
2̅ >, since < 2̅ > is a direct summand of ℤ6, then < 2̅ > is a pure submodule of ℤ6. But < 2̅ > 

is not P-rational of ℤ6 since Homℤ (
ℤ6

<2̅>
, E(ℤ6))=Homℤ (

<2̅>⨁<3̅>

<2̅>
, E(ℤ6)) = Homℤ(< 3̅ >

, E(< 2̅ > ⨁ < 3̅ >)) =Hom𝑅(< 3̅ >, 2∞⨁3∞)≠0. 

7. A direct summand N of any R-module M is P-rational in M if and only if N=M. 

Proof: For the necessity, assume that N is a direct summand of M, since N≤𝑝𝑟M, then N≤𝑒M. 

But it is known that any module M is equal to any essential and direct summand of M, thus 

N=M. The sufficiently is straightforward. 

An R-module M is called semisimple if every submodule of M is a direct summand of M, [1, 

P.107]. 

8. If M is a semisimple module, then M is the only P-rational submodule of M.                                                                                                               

Proof: Since every proper submodule N of M is a direct summand, then 
M

N
≅L, where L is a 

direct summand of M. But L≤M≤E(M), therefore HomR (
M

N
, E(M)) 

≅ HomR(L, E(M))≠0, so that M is the only P-rational submodule of itself. 

     Recall that a non-zero module M is called pure simple if the only pure submodules of M are: 

(0) and M itself, [7].  

9. If M is a pure simple R-module, then the only P-rational submodules in M is M itself.                                                                                                                                                   

Proof: Let N be a P-rational submodule of M. Since M is a pure simple module, then the only 

pure submodules are (0) and M itself, if N=(0), then by (2), N is not P-rational. If N=M, then 

by (1), N is a P-rational submodule.  

       

      An R- module M is called F-regular if every submodule of M is pure, [8]. 
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10. Let M be an F-regular module. Then N≤𝑟M if and only if N≤𝑝𝑟M.                                                                                                     

Proof: Assume that N≤𝑟M. Since M is F-regular, then every submodule of M is pure, thus 

N≤𝑝𝑟M. The converse is clear. 

 

        A ring R is said to be regular if rR there exists xR such that r=rxr, [2, P.10]. 

 

11. Let M be an R-module over a regular ring R. Then N is a rational submodule in M if and 

only if N is P-rational in M.                                                                    

Proof: Since R is a regular ring, then M is F-regular R-module, [4, Remark 1.2 (2), P.29]. By 

(10), the result is obtained. The converse is clear. 

12.  Homomorphic image of a P-rational submodule may not be P-rational. For example: 

consider the ℤ-modules ℤ4 and ℤ6. Let f: ℤ6 ⟶ ℤ4 be a homomorphism defined by 

f(0̅)=f(2̅)=f(4̅)=0̅, f(1̅)=f(3̅)=f(5̅)=2̅, let N=ℤ6, it is clear that N is P-rational in ℤ6, but 

f(N)=<{0̅,2̅}>=< 2̅ >  is not P-rational submodule of ℤ4.    

13. Let A and B be submodules of an R-module M with A≅B. If A is P-rational in M, then B 

may not be P-rational in M, for example: in the  ℤ-module ℤ, note that ℤ ≅2ℤ, and clearly ℤ is 

P-rational in ℤ, but 2ℤ is not P-rational in ℤ, since 2ℤ is not pure submodule of ℤ.   

14.  It is known that in any integral domain R, every non-zero ideal is rational. However, this 

statement is not satisfying for a P-rational submodule, to show that, take Rℤ, and the ideal 2ℤ 

of ℤ. Since ℤ is pure simple so by (9), the only non-zero P-rational ideal in ℤ is only ℤ, thus 2ℤ 

is not P-rational ideal in ℤ.  

15. Let M=M1M2 be an R-module and let N be a P-rational submodule of Mi for some i=1,2.  

16. Then N is not necessarily P-rational in M. For example, consider the ℤ-module M=ℤ⨁ℤ4 

and the submodule N=ℤ4 of the ℤ-module ℤ4. We observe that ℤ4 is P-rational in ℤ4, but not 

P-rational in ℤ⨁ℤ4, since Homℤ(
ℤ⨁ℤ4

(0)⨁ℤ4
, (E(ℤ⨁ℤ4)), which is isomorphic to 

Homℤ(ℤ, E(ℤ⨁ℤ4)). In addition, Homℤ(ℤ, E(ℤ⨁ℤ4))≅Homℤ(ℤ, E(ℤ)⨁E(ℤ4)), [3, P.77]. 

But  E(ℤ4)= ℤ2∞ , [3, P.21], therefore Homℤ(ℤ, E(ℤ)⨁E(ℤ4)) = Homℤ(ℤ, ℚ⨁ℤ2∞). It is clear 

that Homℤ(ℤ, ℚ⨁ℤ2∞) ≠ 0. Thus ℤ4 is not P-rational submodule of ℤ⨁ℤ4. 

      

       Recall that an R-module M is called multiplication, if every submodule of M is of the form 

IM, for some ideal I of R, [9] and M is called faithful if for any non-zero rR there is an element 

mM such that rm≠0, [2, P.4]. 

  
Proposition 2.4: Let M be a finitely generated multiplication and faithful module over an 

integral domain R. If N is a P-rational submodule of M, then (N:𝑅M) is a P-rational ideal of R, 

where (N:𝑅M)={rR\ rM  N}, [10]. 

Proof: Since R is an integral domain, and it is known that every non-zero ideal over any integral 

domain is rational, so that (N:𝑅M)≤𝑟R. On the other hand, N is a pure submodule of M, and M 

is a finitely generated multiplication and faithful module, therefore (N:𝑅M) is a pure ideal of R, 

[10] hence (N:𝑅M)≤𝑝𝑟R. 

 

Proposition 2.5: The annihilator of any P-rational submodule of an R-module M is equal to 

annihilator M.                                                                                          

Proof: Assume that N is a P-rational submodule of M, that is HomR (
M

N
, E(M)) =0. It is clear 

that annR(M) ≤ annR(N), to prove annR(N) ≤ annR(M): let rannR(N), and define f: 
M

N
→

 E(M) by f(m+N)=rm, for all m+N
M

N
. Clearly, f is well-defined and homomorphism. Because 
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N is P-rational in M, then f=0, therefore rm=0, hence r annR(M). So that annR(N) =
annR(M). 

 

      The condition of Proposition 2.5 is necessary but not sufficient to imply that N≤𝑝𝑟M, as we 

take the ℤ-module ℤ⨁ℤ, and the submodule ℤ⨁(0). Note that annℤ(ℤ⨁ℤ)= annℤ(ℤ⨁(0))=0. 

While ℤ⨁(0) is not P-rational in ℤ⨁ℤ. In fact, ℤ⨁(0) is pure in ℤ⨁ℤ, but Homℤ(
ℤ⨁ℤ

ℤ⨁(0)
, 

E(ℤ⨁ℤ))≅Homℤ(0⨁ℤ, ℚ⨁ℚ)≠0.  

 

Since annR(R)=0, so as a consequence of Proposition 2.5, we have the following. 

Corollary 2.6: Let I be an ideal of a ring R. If I is a P-rational ideal in R then annR(I)=0.  

 

       The converse of Corollary 2.6 is not true, for example: let R=ℤ, I=2ℤ, then annℤ(2ℤ)=0, 

while  2ℤ is not P-rational submodule in ℤ as we saw in Example 2.3 (3). 

 

      In the following theorem, we introduce another characterization of the definition of P-

rational submodules. Compare with [11, Proposition 4.8, P.33]. 
 

Theorem 2.7: Let N be a pure submodule of an R-module M. Then N≤p𝑟M if and only if for 

all submodules L of M with N≤L≤M, HomR(
L

N
, M)=0. 

 

Proof: For the necessity, let L≤M such that N≤L≤M. Suppose there exists a non-zero 

homomorphism f: 
L

N
⟶M. Consider the following diagram: 

 
where E(M) is the injective hull of M and 𝑖, 𝑗 are the inclusion homomorphism. Since E(M) is 

injective, then there exists a homomorphism g: 
M

N
⟶ E(M) such that g ∘𝑖=𝑗∘f. Now, since f≠0 

so there exists a non-zero element w
L

N
  such that f(w)≠0, hence (𝑗 ∘f)(w)≠0. Since the diagram 

is commutative, then (g ∘𝑖)(w)0, hence g≠0. That is HomR(
M

N
, E(M))0, but this contradicts 

our assumption. Thus HomR(
L

N
, M)=0. For sufficiency, suppose there exists a non-zero 

homomorphism g: 
M

N
⟶ E(M). Now, g-1(M) is a submodule of  

M

N
. Put g-1(M)≡

L

N
 where N≤

L ≤M. Define h: 
L

N
⟶M by h(x+N)=g(x+N) for all x+N

L

N
. Note that the function h is well-

defined and homomorphism. In fact, x+Ng-1(M), xL, so that g(x+N)M. Moreover, g≠0, so 

there exists m+N
M

N
 such that g(m+N)≠0. Now, g(m+N)E(M), and since M≤𝑒E(M), then 

there exists rR such that 0≠rg(m+N)M, [2, P.55]. This implies that 0≠ g(rm+N)M, hence 

(r+m)+Ng-1(M)≡
L

N
. So that h(rm+N)=g(rm+N)≠0. We conclude that h≠0, that is HomR(

L

N
, 

M)0, which is a contradiction. Thus g=0. Additionally, N is pure, therefore N is a P-rational 

submodule in M. 
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        An R-module M has the Pure Intersection Property (simply, PIP) if the intersection of any 

two pure submodules is a pure submodule, [12, P.33].  
 

Proposition 2.8: Let A≤𝑝𝑟B≤ C with B having PIP. If A1 ≤𝑝𝑟 B1≤ C then A∩A1 ≤𝑝𝑟B∩B1.  

Proof: Let A∩A1NB∩B1, and let f: 
N

A∩A1
 → B∩B1 be a homomorphism, consider the chain 

of submodules, A1(N∩A)+ A1B1, and define g: 
(N∩A)+ A1

𝐴1
 → B1 by g(x+A1)=f(x+ A∩A1) 

x N∩A. To show that g is well-defined, let x+A1=x1+A1, x, x1 N∩A, then x- x1A1. Since 

xN∩A, then x- x1 A∩A1, hence x+ A∩A1 =x1+ A∩A1, that is f(x+ A∩A1)=f(x1+ A∩A1). 

Also, g is a homomorphism. Since A1 ≤𝑝𝑟 B1, then g(x+A)=0 xN∩A, hence  

f(x+ A∩A1)=0  xN∩A  ………… (1) 

which will be used later. Let AN+AB. Define h: 
N+A

A
→B by h(y+A)=f(y+ A∩A1) 

y+A
N+A

A
. To show that h is well-defined, let y+A=𝑦1+A, then y-𝑦1N∩A. By (1), f[(y-𝑦1+ 

A∩A1]=0, so that f[(y+ A∩A1-𝑦1+ A∩A1]. This implies that f(y+A∩A1)=f(𝑦1+A∩A1), 

therefore h(y+A)=h(𝑦1+ A). In addition, h is a homomorphism. Since A≤𝑝𝑟B then h=0, hence 

f=0. On the other hand, B has PIP, then A∩A1 is a pure submodule of B, and then A∩A1is pure 

in B∩B1, [13, Remark 1.4, P.37]. So we have HomR (
N

A∩A1
, B ∩ B1)=0 and A ∩ A1 is a pure 

submodule of B∩B1, thus A∩A1 ≤𝑝𝑟B∩B1. 

 

         As a consequence of Proposition 2.8, we conclude the following.  

 

Corollary 2.9: Let M be a module satisfying the PIP. If both A and B are P-rational submodules 

in M, then A∩B≤𝑝𝑟M. 

Since every multiplication module has PIP then we have the following. 

 

Corollary 2.10: Let A≤𝑝𝑟B≤C and A1 ≤𝑝𝑟 B1≤ C then A∩A1 ≤𝑝𝑟B∩B1, provided that B is a 

multiplication module. 

 

Theorem 2.11: For any chain of modules A≤B≤C with B is a pure submodule of C, A≤𝑝𝑟C if 

and only if A≤𝑝𝑟B and B≤𝑝𝑟C. 

Proof: For the necessity, assume that A≤𝑝𝑟C, and let f: 
K

A
 →B, where A≤K≤B. Consider the 

following sequence of homomorphisms: 
K

A

f
→ B

i
→ C 

where i is the inclusion homomorphism. Since A≤𝑝𝑟C, then i∘f=0, so that (i∘f)(
K

A
)=f(

K

A
)=0, 

hence f=0. On the other hand, A is a pure submodule of C, this implies that A is pure in B, [13, 

Remark 1.4, P.37]. Thus A≤𝑝𝑟B. Now, we have to show that B≤𝑝𝑟C, let h: 
L

B
→C be a 

homomorphism, and define j: 
L

A
→ 

L

B
  by j(x+A)=x+B for each x+A

L

A
. It can be easily show 

that j is well-defined and homomorphism. Consider the following: 
L

A
 

j
→  

L

B
 

h
→ C 

h∘jHomR (
L

A
, C). Since A≤𝑝𝑟C, then h∘j=0, this means (h∘j)(

L

A
)=h(

L

B
)=0, thus h=0. Besides 

that B is a pure submodule of C, therefore B≤𝑝𝑟C. For the converse direction, Suppose that 

A≤𝑝𝑟B and B≤𝑝𝑟C, and f: 
M

 A
 → C be any homomorphism set f −1(B)

K

A
 where K≤M. Now, 
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A∩BM∩B∩KB means AM∩B∩KB. We will construct a map that has a codomain B. 

The homomorphism f restricts to a map g: 
M∩B∩K

𝐴
 → B by g(x+A)=f(x+A) x M∩B∩K. Note 

that g is well-defined, in fact, xK, implies x+A
K

A
  f −1(B), hence f(x+A)B, that is the image 

of any element of  
M∩B∩K

A
 belongs to B. Also, g is a homomorphism. Now, since A≤𝑝𝑟B, then 

g=0, therefore f(x+A)=0 x M∩B∩K, hence:  

 

f (
M∩B∩K

A
)=0,                          ……………… (1) 

we claim that f(
M∩B

A
)∩B=0. Let wf(

M∩B

A
)∩B, then wB and wf (

M∩B

A
). This implies that 

w=f(t+A), where tM∩B, therefore t+Af −1(B), since wB. So that t+A
K

A
, that is tK, 

hence  

 tM∩B∩K. By (1), f(t+A)f(
M∩B∩K

A
)=0, therefore f(t+A)=0, which means w=0. Thus, 

f (
M∩B

A
)∩B=0. Since B≤𝑝𝑟C, then by Remark (2.3)(5), B≤𝑒C, hence 

f (
M∩B

A
)=0,                                   ………………..... (2) 

 Now, define h: 
M+B

B
 →C by h(m+b+B)=h(m+B)=f(m+A)mM. To prove h is well-defined, 

let 𝑚1+B=𝑚2, then 𝑚1-𝑚2B∩M. By (2), we obtain f(𝑚1-𝑚2)+A=0, therefore f (𝑚1+A) = 

f(𝑚2+A), thus h is well-defined. Since B≤𝑝𝑟C, then h=0, that is f(m+A)=0 mM, hence f=0, 

that is HomR (
M

A
, C)=0. On the other hand, A is pure in B and B is pure in C, then A is pure in 

C, [13, Remark 1.4, P.37]. Thus A≤𝑝𝑟C. 

 

Corollary 2.12: For any two of submodules A and B of M with B is a pure submodule of M, if 

A∩B≤𝑝𝑟M then A∩B≤𝑝𝑟B. 

Proof: Since A∩BBM, and B pure in M then the result follows directly from Theorem 2.11. 

 

Note: In Corollary 2.12, if we replace the condition (B is pure in M) with the condition (A is 

pure in M), then we conclude that A∩B≤𝑝𝑟A. 

  

        Compare the following with [2, Proposition 2.25, P.55]. 

 

Theorem 2.13: Let N be a pure submodule of M. Then the following statements are equivalent. 

1. HomR(
L

N
, M)=0 for each submodule L of M with NLM. 

2. For all yM and xM\{0} there exists rR such that rx≠0 and ryN. 

Proof:   

(𝟏) ⇒ (𝟐): Given (1), and let yM, xM\{0}. Set J={rR such that ryN}. Note that J≠∅, 

since 0J. We are done if we can show that M1={b∈M: Jb=0} is equal to zero. Suppose that 

M1≠0, so that there exists a non-zero element mM such that Jm=0. Define Ψ: 
N+Ry

N
⟶ M by 

Ψ(ry+N)=rm for all rR. Ψ is well-defined, to verify that, let ry+N=sy+N, then ry-syN. This 

implies that (r-s)yN, and according to the constriction of J we deduce that r-s∈J. But Jm=0, 

thus (r-s)m=0, so that rm=sm. Also, Ψ is a homomorphism, so by assumption Ψ=0, but this is 

a contradiction, since Ψ(y+N)=m≠0. Thus M1=0, so Jx≠0, hence for a suitable element rJ we 

obtain rx≠0 and ryN.  

(𝟐) ⇒ (𝟏) Suppose the converse, that is there exists a submodule K of M with NKM and 

HomR(
K

N
 , M)≠0. This means the existence of a non-zero homomorphism Φ:

K

N
⟶M, that is there 
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exists y∈K such that 0≠ Φ(y+N)M. Put Φ(y+N)≡x≠0. Let r∈R, rΦ(y+N) = Φ(ry+N)=rx. If 

ry∈N then Φ(ry+N) = Φ(N)=0, therefore rx=0. But according to (2), rx0, so we have a 

contradiction, thus Φ=0, and hence HomR(
K

N
, M)=0.  

        Note that Proposition 2.9 can be obtained as a conclusion of Theorem 2.13 as follows. 
 

Corollary 2.14: Let M be a module having PIP. If A and B are P-rational submodules of M, 

then A∩B≤𝑝𝑟M. 

 Proof: Let x,y ∈M, where x≠0. Since A≤𝑝𝑟M, so by Theorem 2.13, there exists r∈R such that 

rx≠0 and ry∈A. Now, rx, ry∈M and rx≠0, since B≤𝑝𝑟M, again by Theorem 2.13, there exists 

t∈R such that trx≠0 and try∈B. But try∈A, therefore try∈A∩B. Thus x,yM we find trR 

such that trx≠0 and try∈A∩B. Moreover, both A and B are pure submodules of M, and M has 

PIP, therefore A∩B is pure in M, thus A∩B≤p𝑟M. 

 

Corollary 2.15: In any multiplication module, the intersection of any two P-rational 

submodules is also a P-rational submodule.  

 Proof: Since any multiplication module has PIP, [12, Proposition  2.3, P.33] then the result 

follows directly from Proposition 2.14. 

 

        The following Theorem is an analogue of [3, Proposition 8.6, P.274]  

 

Theorem 2.16: For any R-module M, with N is a pure submodule of M, the following 

statements are equivalent: 

1. For all 𝑦M and xM\{0}, there exists r∈R such that rx≠0 and ryN. 

2. N ≤𝑝𝑟M. 

3. For any submodule P of M with N⊆P⊆M, HomR(
P

N
, M)=0. 

Proof: 

(1) ⇒ (2): If N≰𝑝𝑟M, that is HomR(
M

N
, E(M))≠0, then there exists a non-zero homomorphism f: 

M→ E(M) with f(N)=0. Since f(M)≤ E(M), and M≤𝑒E(M)), Then M∩f(M)≠0, so that there 

exist x,y∈M\{0}such that f(y)=x. By (1), there exists r∈R such that rx≠0 and ry∈N. Since 

f(N)=0, then f(ry)=0, and we obtain the following:  

0=f(ry)=rf(y)=rx,   

hence rx=0, which is a contradiction. Thus HomR (
M

N
, E(M))=0. 

(2) ⇒ (3): It immediately follows from Theorem 2.7. 

(3) ⇒ (1): It follows directly from Theorem 2.13.  

         As an application of Theorem 2.16, we have the following. 

 

Example 2.17: Consider the ℤ-module M=ℤℤ2 and the submodule N=2ℤℤ2 of M=ℤℤ2. 

2ℤℤ2 ≰𝑝𝑟 ℤℤ2. In fact, if we take the non-zero element y=(0,1̅)2ℤℤ2 and 

x=(0,1̅)ℤℤ2, so for each rR, if r(0,1̅)2ℤℤ2, then r must be even. Therefore r(0,1̅)=0, so 

by Theorem 2.16, 2ℤℤ2 ≰𝑟 ℤℤ2, and hence 2ℤℤ2 ≰𝑝𝑟 ℤℤ2. 

 

Proposition 2.18: Let f: M→M ̀ be an R-monomorphism. If L≤𝑝𝑟M ́ then f −1(L)≤𝑝𝑟 M, 

provided that the inverse image of any pure submodule of M ̀ is pure in M.   

Proof: Assume that L≤𝑝𝑟M, and let x,yM with x≠0, so that f(x)f(y)M ̀. Since f is a 

monomorphism, then f(x)≠0. By Theorem 2.16, there exists rR such that rf(y)L and rf(x)≠0, 

so we conclude f(ry)L and f(rx)≠0. This implies that ryf −1(L) and rx∉ f −1(0)=kerf=0, that 
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is rx≠0, hence f −1(L)≤𝑟M, [2, Proposition 2.25, P.55]. In addition, f −1(L) is a pure submodule 

of M by assumption. Thus f −1(L)≤𝑝𝑟M. 

     

        In the following proposition, we use a different condition to get the same result in 

Proposition 2.18. 

 

Proposition 2.19: For any isomorphism f: M→ M, where M and M be R-modules, if L≤𝑝𝑟 

M then f −1(L)≤𝑝𝑟M. 

Proof: Assume that L≤𝑝𝑟M. By the same argument of Proposition 2.18, we obtain f −1(L)≤𝑟M. 

On the other hand, we have L is pure in M and since f is epimorphism then f −1(L) is a pure 

submodule of M, [14, Lemma 2.8]. Thus f −1(L)≤𝑝𝑟M.  

 

        An R-module M is said to be cohopfian if every injective endomorphism of M is an 

isomorphism, [3, P.17]. 

 

Corollary 2.20: Let f: M→M be a monomorphism, where M, M be R-modules, and M is 

cohopfian. If L≤𝑝𝑟M then f −1(L)≤𝑝𝑟M. 

Proof: Since f is a monomorphism and M is cohopfian then f is an isomorphism, and by 

Proposition 2.19, we deduce f −1(L)≤𝑝𝑟M. 

 

        Compare the following with [15, Lemma 2.10]. 

 

Proposition 2.21: Let L be a non-zero pure submodule of an R-module M. If for any 0≠mM, 

annR(
M

L
) ⊈ annR(m), then L≤𝑝𝑟M. 

Proof: We depend on Theorem 2.16, so let m,sM with m≠0. annR(
M

L
)={rRl rML}, this 

means there exists rR such that rM⊆L. It follows that rsL. Since annR(
M

L
) ⊈ annR(m) and 

rannR(
M

L
), then r annR(m), that is rm≠0. Thus, we deduce that rsL and rm≠0. On the other 

hand, L is a pure submodule of M, so by Theorem 2.16, HomR(
M

L
, E(M))=0, that is L≤𝑝𝑟M.  

 

Corollary 2.22: Let M be an R-module. If I is a pure ideal of R such that (0:MI)=0 (i.e 

annR(I)=0). Then IM≤𝑝𝑟M. 

Proof: Assume that IM is not P-rational submodule in M. By the contrapositive of Proposition 

2.21, annR(
M

IM
)⊆annR(x) for some 0≠x∈M. This implies that Ix=0. But (0:MI)=0, so we get a 

contradiction, therefore IM≤𝑝𝑟M.  

 

3. P-Rational Submodules and Related Concepts 

     In this section, the relationships of P-rational submodules with some classes of related 

submodules are investigated such as quasi-invertible, purely quasi-invertible, essential, P-

essential and SQI submodules. 

 

         A submodule N of an R-module M is called purely quasi-invertible (briefly we use the 

symbol N≤𝑝𝑞𝑢 M) if N is pure and HomR(
M

N
, M)=0, [14]. 

 

Proposition 3.1:  Every P-rational submodule is purely quasi-invertible. 
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Proof: Let N be a P-rational submodule of an R-module M, by Remark 2.2, N≤𝑟M. This 

implies that N ≤𝑞𝑢M, [5, Proposition 3.3, P.14]. But N is pure in M, then N≤𝑝𝑞𝑢M, [14].  

 

        Recall that A submodule N of an R-module M is P-essential if for every pure submodule 

L of M with N∩L=(0), implying that L=(0), [16]. 

 

        Following [16], every essential submodule is P-essential, so we have the following.   

                           

Proposition 3.2: Each P-rational submodule is P-essential. 

Proof: Let N be a P-rational submodule of M, so N is a rational submodule. This implies that 

N is essential. But every essential submodule is P-essential, thus the result follows. 

 

     An R-module M is nonsingular if Z(M)=0, where Z(M)={xM \ annR(x)≤eR}, [2, P.31]. 

 

Proposition 3.3: Let M be a nonsingular module, and N be a pure submodule of M. Then 

N≤𝑝𝑟M if and only if N≤𝑒M. 

Proof: The necessity follows by Remark 2.3 (5). For the converse, let K≤M with NKM, we 

depend on the Theorem 2.7, so we have to show that HomR(
K

N
, M)=0. Since N≤𝑒M then N≤𝑒K, 

[2, Proposition 1.1, P.16]. Therefore, 
K

N
 is singular. But M is nonsingular, then HomR (

K

N
, M)=0, 

[2, Proposition 1.20, P.31]. Besides that, N is a pure submodule of M, so by Theorem 2.7, 

N≤𝑝𝑟M.  

 

Proposition 3.4: Let N be a submodule of an R-module M. Consider the following statements.  

1. N≤𝑝𝑟M. 

2. N≤𝑟M. 

3. N≤𝑒M. 

Then (1)  (2)  (3) and if M is nonsingular and N is a pure submodule of M then (3)  (1) 

Proof: 

(1) ⇒(2): It is obvious. 

(2) ⇒(3): It is clear. 

(3) ⇒(1): Since M is a nonsingular module and N is pure in M, so by Proposition 3.3, the result 

follows. 

 

     We need to introduce the following definition. 

 

Definition 3.5: An R-module M is called fully P-essential if every P-essential submodule of M 

is essential in M. 

 

Remark 3.6: If M is a fully P-essential module then N≤𝑒M if and only if N≤𝑝𝑒M. 

Proof: It is straightforward.  

 

Proposition 3.7: Let M be a multiplication module with a prime annihilator. Consider the 

following statements.  

i.N≤𝑝𝑟M. 

ii.N≤𝑝𝑞𝑢M. 

iii.N≤𝑞𝑢M. 

iv.N≤𝑒M. 

v.N≤𝑝𝑒M. 
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Then (i)  (ii)  (iii) ⇔ (iv)  (v), and if M is a fully P-essential module then (v)  (iv). 

  Proof: 

(i)  (ii): It is just Proposition 3.1. 

(ii)  (iii): It is obvious. 

(iii)  (iv): Since M is multiplication with a prime annihilator, then the two submodules quasi-

invertible and essential coincide, [5, Theorem 3.11, P.18]. 

(iv) ⇔ (v): It is clear   

 

        Remember that a submodule N of M is called SQI-submodule if for each fHomR(
M

N
, M), 

then f(
M

N
)≪M, [17, P.44].  

 

Proposition 3.8: Every P-rational is an SQI submodule. 

Proof: Since every P-rational is purely quasi-invertible, and every purely quasi-invertible is an 

SQI submodule, [14]. So, the result is obtained. 

 

        The converse of Proposition 3.8 is not true in general, for example, the submodule < 2̅ > 

of the ℤ-module ℤ4 is SQI, [17] but it is not P-rational as we saw in Example 2.3 (4). 

 

        Finally, it is important to remember that, as we noted earlier, there are relatively few 

references that have been concerned with studying rational submodules such as [15] and [18-

22], which is what motivated us to carry out this study. 

 

4. Conclusions:  
     In this article, the class of rational submodules has been restricted to a new class of 

submodules. It is called P-rational submodules. The main results of this work can be 

summarized as follows: 

 

1. The main characteristics of the P-rational submodules are studied, and the emphasis is on 

the analogue of the known results in the concept of rational submodules.  

2. Other characterizations of P-rational submodules are investigated and they were compared 

with those in the concept of rational submodules.  

3. Sufficient conditions under which P-rational and rational submodules are identical are given. 

 

     The connections between P-rational and other related concepts were established, such as 

essential, P-essential, quasi-invertible, purely quasi-invertible and SQI submodules. However, 

all of these relationships can be represented in the following diagram: 

 

 
 

     In our future work, we will obtain more results about the class of P-Rational submodules 

and study its important influence on module theory. 
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