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Abstract
A submodule N is called rational in M if HomR(%, E(M))=0, where E(M) is the

injective hull of M. Rational submodules have been studied and discussed by many
authors such as H.H. Storrer, H. Khabazian, E. Ghashghaei, A. Hajikarimi and A.R.
Naghipour, M.S. Abbas and M.A. Ahmed. The main objective of this paper is to give
a new class of submodules named P-rational submodules. This class is contained
properly in the class of rational submodules. Several properties of this concept are
introduced. The relationships between this class of submodules and some other related
concepts are discussed such as essential and quasi-invertible submodules. Other
characterizations of the P-rational submodule analogous to those which is known in
the concept of the rational submodule are given.

Keywords: Rational submodules, Pure submodules, P-rational submodules, Essential
submodules
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1. Introduction:

Rational submodules played a large and important role in the module theory. Many authors
studied the concept of rational submodules such as H.H. Storrer, H. Khabazian, E. Ghashghaei,
A. Hajikarimi & A.R. Naghipour, M.S. Abbas & M.A. Ahmed. Other features of rational
submodules have also been explored. Furthermore, those researchers found new types
containing or contained in the class of rational submodules. In addition to that, the rationality
property has appeared as an additional condition with other concepts to introduce other new
concepts. However, there are few findings on the concept of rational submodules compared to
its important role in module theory.

An R-module M is called injective if for every monomorphism f: M —B and every
homomorphism g: M —C there exists a homomorphism h: B —C with g=hef, [1, P.116]. A
non-zero submodule N of M is said to be essential (briefly N<,M) if NNL#0 for every non-
zero submodule L of M, [2, P.15]. An injective hull of any R-module M is denoted by E(M),
and it is defined as a monomorphism f: M—E(M) such that E(M) is an injective module and f
is an essential monomorphism, [1, P.124]. A submodule N of an R-module M is called rational

(simply, N<, M), if Homg s, E(M))=0, [3, P.274].

Our main goal is to introduce a class of submodules which contained properly in the class
of rational submodules, which we named the P-rational submodule. A submodule N of M is
called pure if NnIM=IN for every ideal | of R, [4, P.18]. We define the P-rational submodule

as a pure submodule N which satisfies HomR(%, E(M)) =0.

This paper is divided into three sections. In Section Two, we study P-rational submodules.
Various characteristics of the P-rational submodule are given and discussed that are analogous
to the results which are known in the concept of the rational submodule. Among these results:
e Let A<, .B<C with B having PIP. If A; <, B;<C then ANA; <,,.BNBy, see Propositions
2.8.

e For any chain of modules, A< B< C with B is a pure submodule of C, A<,,,.C if and only if

A<,,B and B<,,C, see Theorem 2.11.

e Let L be a non-zero pure submodule of an R-module M. If for any 0#meM, annR(%) €

anng(m), then L<,,,.M, see Proposition 2.21.

pr

In addition, we present several characterizations for this type of submodule such as the
following:

e LetN beapure submodule of an R-module M. Then N<,,,.

L of M with N<L<M, HomR(ﬁ, M)=0, see Theorem 2.7.
e Let N be apure submodule of M. Then the following statements are equivalent.
i. Homg (5, M)=0 for each submodule L of M with NcLcM.

ii. Forall yeM and xe M\{0} there exists reR such that rx#0 and ryeN.
See Theorem 2.13.
e For any R-module M, with N is a pure submodule of M, the following statements are
equivalent:
i. For all yeM and xe M\{0}, there exists reR such that rx#0 and ryeN.
i. N <, M.
iii. For any submodule P of M with NEPCM, HomR(g, M)=0.

M if and only if for all submodules
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See Theorem 2.16.

In Section Three we study the relationships between this class of modules and other related
concepts, among these results are the following:
e Let N be a submodule of an R-module M. Consider the following statements.
a. N<,,M.
b. N<, M.
c. N M.
Then (a) = (b) = (c) and if M is a nonsingular module and N pure then (c) = (a).
See Proposition 3.4.
e Let M be a multiplication module with a prime annihilator. Consider the following
statements.
I.N<,,.M.
i N<, ;M.
. N<g, M.
iv. N< M.
V. N<,M.
Then (i) = (ii) = (iii) & (iv) =(v), and if M is a fully P-essential module then (v) = (iv).
See Proposition 3.7.

It is worth remembering that all rings R in this paper are commutative with identity, and
all modules are unitary left R-modules.

2. P-Rational Submodules

This section is devoted to examining a new concept that we call the P-rational submodules.
It is a special class of rational submodules. The comparison of the results according to the
results in our new concept has been found which are analogues of the properties which satisfied
in rational submodules.

Definition 2.1: A submodule N of an R-module M is said to be P-rational if N is pure and
HomR(%, E(M))=0, where E(M) is the injective hull of M. It denoted by N<,.M. An ideal | of
aring R is said to be P-rational if I is a P-rational R-submodule.

Remark 2.2: It is clear that every P-rational submodule is rational, but the converse is not
correct, as the following examples show:

1. Consider the ring of rational numbers @, and let Q(x,y) be the polynomial ring of two
independent variables x and y. Since Q is a field then Q(X,y) is an integral domain. Let
A=<(x,y)> be an ideal of Q(X,y) generated by (X,y), so that A={xf; + yf,|f;, f,EQ(X,y)}, A#0.

We claim that A<, Q(x,y). In fact, Homg (@. E(Q(, Y)))=H0mR (Q(I):Y), Qx, y)). Note

that, Q(x, y) is an integral domain. This implies that Homg (@, Q(x, y)>=0, [5, Example 1.3
(1), P.6], that is A<, Q(x,y). In contrast, A is not P-rational in Q(x,y), to show that: let
B={feQ(x,y)| f(x,y)=a, where x,yeQ and ae2Z}, then AB={axf;+ayf,| f;.f, € Q(x,y)}. Itis
clear that AB#(0), but ANBQ=0. Therefore, A is not pure ideal of Q(x,y), hence A is not P-
rational ideal in Q(x,y).
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2. Consider the Z-module Q, where Q is the set of all rational numbers. We claim that, Z <,. Q.
Let L be a submodule of Q with Z <L< Q, we have to show that Homg (%, E(Q))zo. Note
that E(Q)=Q since Q is injective. Let f: % — Q be a homomorphism. Note that f(%+Z):nf(i +
Z), for all % € Q, m=0. We are done if we can show that f(i+Z)=0. Note that mf($+Z)=f(2 +

Z)=f(Z)=0. But m and f(——+Z)eQ, m#0, thus f(—+Z)=0, hence f(>+Z)=0. That is f=0. In
contrast, Z £p, Q, since Z is not pure submodule of Q.

Examples and Remarks 2.3:
1. Any non-zero R-module M is a P-rational submodule of itself since M is pure in itself and

Homg (% E(M))zo.

M

oL E(M));&o.
3. N=2Z is not P-rational in M=Z. In fact, any P-rational submodule must be pure and rational,
but N=2Z is not pure in M=Z. In fact, if I=<6> is an ideal of R=Z then IN=<6>(2Z)=127Z and
NNIM=2Z Nn<6>7Z =6 Z, so that IN= NNIM.

4. N=<2> is not P-rational in the Z-module M=Z,, since < 2 > is not pure submodule of

Z, and Homgy (ZT‘;,E(Z4)): Homy (ﬂ,zzm), [6, P.21] and clearly Homy (%,Zzoo)i().

2. If 0#M, then (0) is not P-rational in M. In fact, (0) is pure in M but HomR<

<2 <2>
Now, to show that N=< 2 > is not pure in Z,, consider the ideal I=< 2 > of Z, note that 2 €
2Z,N<2>=<2> but2 ¢ 2 <2 >=(0).
5. Every P-rational submodule is essential. This follows from Remark 2.2.
6. A direct summand of any R-module may not be P-rational, for example: let M=Z,, A=<
2 >, since < 2 > is a direct summand of Z, then < 2 > is a pure submodule of Z. But < 2 >

is not P-rational of Z, since Homy (<ZZT‘5>,E(Z6)):HomZ (M, E(Z6)) = Homy(< 3 >

<2>
,E(< 2> @ <3 >)) =Homg(< 3 >,2°@3%)#0.
7. Adirect summand N of any R-module M is P-rational in M if and only if N=M.
Proof: For the necessity, assume that N is a direct summand of M, since N<,,,.M, then N<.M.
But it is known that any module M is equal to any essential and direct summand of M, thus
N=M. The sufficiently is straightforward.
An R-module M is called semisimple if every submodule of M is a direct summand of M, [1,
P.107].

8. If M is a semisimple module, then M is the only P-rational submodule of M.
Proof: Since every proper submodule N of M is a direct summand, then %EL, where L is a

direct summand of M. But L<M<E(M), therefore Homg (% E(M))

= Homg(L, E(M))#£0, so that M is the only P-rational submodule of itself.

Recall that a non-zero module M is called pure simple if the only pure submodules of M are:
(0) and M itself, [7].
9. If M is a pure simple R-module, then the only P-rational submodules in M is M itself.
Proof: Let N be a P-rational submodule of M. Since M is a pure simple module, then the only
pure submodules are (0) and M itself, if N=(0), then by (2), N is not P-rational. If N=M, then
by (1), N is a P-rational submodule.

An R- module M is called F-regular if every submodule of M is pure, [8].
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10. Let M be an F-regular module. Then N<,M if and only if N<,.M.

Proof: Assume that N<,M. Since M is F-regular, then every submodule of M is pure, thus
N<,,M. The converse is clear.

A ring R is said to be regular if VreR there exists xeR such that r=rxr, [2, P.10].

11. Let M be an R-module over a regular ring R. Then N is a rational submodule in M if and
only if N is P-rational in M.

Proof: Since R is a regular ring, then M is F-regular R-module, [4, Remark 1.2 (2), P.29]. By
(10), the result is obtained. The converse is clear.

12. Homomorphic image of a P-rational submodule may not be P-rational. For example:
consider the Z-modules Z, and Zy. Let f:Zs — Z, be a homomorphism defined by
f(0)=f(2)=f(4)=0, f(1)=Ff(3)=f(5)=2, let N=Z, it is clear that N is P-rational in Z, but
f(N)=<{0,2}>=< 2 > is not P-rational submodule of Z,.

13. Let A and B be submodules of an R-module M with A=B. If A is P-rational in M, then B
may not be P-rational in M, for example: in the Z-module Z, note that Z =27, and clearly Z is
P-rational in Z, but 27 is not P-rational in Z, since 2Z is not pure submodule of Z.

14. It is known that in any integral domain R, every non-zero ideal is rational. However, this
statement is not satisfying for a P-rational submodule, to show that, take R=Z, and the ideal 27
of Z. Since Z is pure simple so by (9), the only non-zero P-rational ideal in Z is only Z, thus 2Z
is not P-rational ideal in Z.

15. Let M=M1®M: be an R-module and let N be a P-rational submodule of M; for some i=1,2.
16. Then N is not necessarily P-rational in M. For example, consider the Z-module M=Z®Z,

and the submodule N=Z, of the Z-module Z,. We observe that Z, is P-rational in Z,, but not

P-rational in Z@®Z,, since Homz(%,(E(ZEBZ‘})), which is isomorphic to
4

Homy(Z, E(Z®Z,)). In addition, Homy(Z, E(Z®Z,))=Homy(Z, E(Z)®E(Z,)), [3, P.77].

But E(Z,)= Zy, [3, P.21], therefore Homy(Z, E(Z)DE(Z,)) = Homy(Z, QBZ,). Itis clear

that Homy(Z, Q®Z,») # 0. Thus Z, is not P-rational submodule of ZDZ,.

Recall that an R-module M is called multiplication, if every submodule of M is of the form
IM, for some ideal 1 of R, [9] and M is called faithful if for any non-zero reR there is an element
meM such that rm#0, [2, P.4].

Proposition 2.4: Let M be a finitely generated multiplication and faithful module over an
integral domain R. If N is a P-rational submodule of M, then (N:zM) is a P-rational ideal of R,
where (N:xM)={reR\rM < N}, [10].

Proof: Since R is an integral domain, and it is known that every non-zero ideal over any integral
domain is rational, so that (N:xM)<,.R. On the other hand, N is a pure submodule of M, and M
is a finitely generated multiplication and faithful module, therefore (N:xM) is a pure ideal of R,
[10] hence (N:xM)<,,R.

Proposition 2.5: The annihilator of any P-rational submodule of an R-module M is equal to
annihilator M.

Proof: Assume that N is a P-rational submodule of M, that is Homg (%, E(M)) =0. It is clear
that anng (M) < anng(N), to prove anng(N) < anng(M): let reanng(N), and define f: % -

E(M) by f(m+N)=rm, for all m+Ne % Clearly, f is well-defined and homomorphism. Because
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N is P-rational in M, then f=0, therefore rm=0, hence r eanng(M). So that anng(N) =
anng(M).

The condition of Proposition 2.5 is necessary but not sufficient to imply that N<,,.M, as we
take the Z-module Z®Z, and the submodule Z&(0). Note that anny(Z@Z)= annz;(Z&(0))=0.
While Z&(0) is not P-rational in Z@®Z. In fact, Z(0) is pure in ZBZ, but HomZ(ﬂ

Z&®(0)’
E(ZBZ))=Homy(0PZ, QP Q)+0.

Since anng(R)=0, so as a consequence of Proposition 2.5, we have the following.
Corollary 2.6: Let I be an ideal of aring R. If I is a P-rational ideal in R then anng(1)=0.

The converse of Corollary 2.6 is not true, for example: let R=Z, 1=2Z, then anny(27Z)=0,
while 2Z is not P-rational submodule in Z as we saw in Example 2.3 (3).

In the following theorem, we introduce another characterization of the definition of P-
rational submodules. Compare with [11, Proposition 4.8, P.33].

Theorem 2.7: Let N be a pure submodule of an R-module M. Then N<,,.M if and only if for
all submodules L of M with N<L<M, HomR(ﬁ, M)=0.

Proof: For the necessity, let L<M such that N<L<M. Suppose there exists a non-zero
homomorphism f: % —M. Consider the following diagram:

0 . L Fa— ::
|
M &
N
(ML)

where E(M) is the injective hull of M and i, j are the inclusion homomorphism. Since E(M) is
injective, then there exists a homomorphism g: % — E(M) such that g ci=jof. Now, since f#0
so there exists a non-zero element We% such that f(w)#0, hence (j of)(w)#0. Since the diagram
is commutative, then (g oi)(w)=0, hence g#0. That is HomR(%, E(M))=0, but this contradicts
our assumption. Thus HomR(ﬁ, M)=0. For sufficiency, suppose there exists a non-zero
homomorphism g: %—> E(M). Now, g}(M) is a submodule of % Put gt(M)= % where N<
L <M. Define h: & —M by h(x+N)=g(x+N) for all x+Ne <. Note that the function h is well-
defined and homomorphism. In fact, x+Neg™*(M), xeL, so that g(x+N)eM. Moreover, g#0, so
there exists m+N e% such that g(m+N)#0. Now, g(m+N)eE(M), and since M<_.E(M), then
there exists reR such that 0#rg(m+N)eM, [2, P.55]. This implies that 0# g(rm+N)eM, hence
(r+m)+Neg(M)= <. So that h(rm-+N)=g(rm+N)#0. We conclude that h0, that is Homg (%,

M)=0, which is a contradiction. Thus g=0. Additionally, N is pure, therefore N is a P-rational
submodule in M.
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An R-module M has the Pure Intersection Property (simply, PIP) if the intersection of any
two pure submodules is a pure submodule, [12, P.33].

Proposition 2.8: Let A<,,,.B< C with B having PIP. If A; <, B;< C then ANA; <,,.BNB;.
Proof: Let ANA;cNcBNB;, and let f: N

— BNB; be a homomorphism, consider the chain

ANA;
of submodules, A;,c(NNA)+ A;cB;, and define g: (Nniﬁ — B; by g(x+Ar)=f(x+ ANA,)
1

VXxe NNA. To show that g is well-defined, let x+A;=x;+A, X, X, € NNA, then x- X, €A;. Since
XeNNA, then x- x; € ANA;, hence x+ ANA; =x;+ ANA4, that is f(x+ ANA,)=f(x;+ ANA,).
Also, g is a homomorphism. Since A; <,, B, then g(x+A)=0 ¥xeNNA, hence

f(x+ ANA;)=0 YXeNNA ............ 1)

which will be used later. Let AcN+AcB. Define h: %—)B by h(y+A)=f(y+ ANA;)

Vy+Ae¥. To show that h is well-defined, let y+A=y,+A, then y-y; eNNA. By (1), fl[(y-y,+
ANA;]=0, so that fl[(y+ ANA;-y;+ ANA,]. This implies that f(y+ANA,)=f(y;+ANA;),
therefore h(y+A)=h(y,+ A). In addition, h is a homomorphism. Since A<,,,.B then h=0, hence
f=0. On the other hand, B has PIP, then ANA; is a pure submodule of B, and then ANA,is pure

in BNB,, [13, Remark 1.4, P.37]. So we have Homg (ﬁ, BN Bl)zo and An A; is a pure
1
submodule of BNBy, thus ANA; <,,.BNB;.

As a consequence of Proposition 2.8, we conclude the following.

Corollary 2.9: Let M be a module satisfying the PIP. If both A and B are P-rational submodules
in M, then ANB<,,,M.
Since every multiplication module has PIP then we have the following.

Corollary 2.10: Let A<, B<C and A; <, B;< C then ANA; <, BNB,, provided that B is a
multiplication module.

Theorem 2.11: For any chain of modules A<B<C with B is a pure submodule of C, A<,,,.C if

<pr
and only if A<,.B and B<,,,C.

Proof: For the necessity, assume that A<,

following sequence of homomorphisms:

C, and let f: % —B, where A<K<B. Consider the

KfBiC
——>B-
A

where i is the inclusion homomorphism. Since A<,,C, then iof=0, so that (iof)(g):f(g):o,
hence f=0. On the other hand, A is a pure submodule of C, this implies that A is pure in B, [13,

Remark 1.4, P.37]. Thus A<,,B. Now, we have to show that B<,,C, let h: §—>C be a

homomorphism, and define j: %—) % by j(x+A)=x+B for each x+Ae%. It can be easily show
that j is well-defined and homomorphism. Consider the following:
L jLn

-5 = >

hojeHomg (% c). Since A<,,.C, then hoj=0, this means (hoj)(i):h(g):o, thus h=0. Besides
that B is a pure submodule of C, therefore B<,,,.C. For the converse direction, Suppose that

A<,,B and B<,,C, and f: % — C be any homomorphism set f‘l(B)zg where K<M. Now,
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ANBcMNBNKcB means AcMNBNKcB. We will construct a map that has a codomain B.

The homomaorphism f restricts to a map g: Mnjm( — B by g(x+A)=f(x+A) Yxe MNBNK. Note

that g is well-defined, in fact, xeK, implies x+Ae§ =f~1(B), hence f(x+A)eB, that is the image
MNBNK

of any element of

belongs to B. Also, g is a homomorphism. Now, since A<,,,.B, then

g=0, therefore f(x+A)=0 Yxe MNBNK, hence:
F(ER)=0, (1)
we claim that f(¥)0B=O. Let wef(?)ﬂB, then weB and wef (%). This implies that

w=f(t+A), where teMNB, therefore t+Aef~1(B), since weB. So that t+Ae§, that is tekK,
hence

MnNBNK .
teMNBNK. By (1), f(t+A)ef( A ):O, therefore f(t+A)=0, which means w=0. Thus,

f (%)OBZO. Since B<,,,.C, then by Remark (2.3)(5), B<.C, hence
f(55)=0, )

Now, define h: === —C by h(m+b+B)=h(m+B)=f(m+A)¥YmeM. To prove h is well-defined,

let m,+B=m,, then m;-m,eBNM. By (2), we obtain f(in;-m,)+A=0, therefore f (m,;+A) =
f(m,+A), thus h is well-defined. Since B<,,.C, then h=0, that is f(m+A)=0 YmeM, hence f=0,

that is Homg (% C):O. On the other hand, A is pure in B and B is pure in C, then A is pure in

C, [13, Remark 1.4, P.37]. Thus A<,,.C.

Corollary 2.12: For any two of submodules A and B of M with B is a pure submodule of M, if
ANB<,,M then ANB<,,,B.

Proof: Since ANBcBcM, and B pure in M then the result follows directly from Theorem 2.11.

Note: In Corollary 2.12, if we replace the condition (B is pure in M) with the condition (A is
pure in M), then we conclude that ANB<,,.A.
Compare the following with [2, Proposition 2.25, P.55].

Theorem 2.13: Let N be a pure submodule of M. Then the following statements are equivalent.
1. HomR(ﬁ, M)=0 for each submodule L of M with NcLcM.

2. For all yeM and xe M\{0} there exists reR such that rx#0 and ryeN.
Proof:
(1) = (2): Given (1), and let yeM, xeM\{0}. Set J={reR such that ryeN}. Note that J£Q,

since 0eJ. We are done if we can show that Mi1={beM: Jb=0} is equal to zero. Suppose that

M1#£0, so that there exists a non-zero element meM such that Jm=0. Define ¥: % — M by

Y(ry+N)=rm for all reR. W is well-defined, to verify that, let ry+N=sy+N, then ry-syeN. This
implies that (r-s)yeN, and according to the constriction of J we deduce that r-s€J. But Jm=0,
thus (r-s)m=0, so that rm=sm. Also, ¥ is a homomorphism, so by assumption ¥=0, but this is
a contradiction, since W(y+N)=m#0. Thus M1=0, so Jx#£0, hence for a suitable element reJ we
obtain rx#0 and ryeN.

(2) = (1) Suppose the converse, that is there exists a submodule K of M with NcKcM and

HOHIR(% , M)#0. This means the existence of a non-zero homomorphism (D:E — M, that is there
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exists yeEK such that 0# ®(y+N)eM. Put ®(y+N)=x#£0. Let reR, rd(y+N) = &(ry+N)=rx. If
ryeN then @(ry+N) = ®(N)=0, therefore rx=0. But according to (2), rx#0, so we have a

contradiction, thus ®=0, and hence HomR(E, M)=0.
Note that Proposition 2.9 can be obtained as a conclusion of Theorem 2.13 as follows.

Corollary 2.14: Let M be a module having PIP. If A and B are P-rational submodules of M,
then ANB<,, M.

Proof: Let X,y €M, where x#0. Since A<,,-M, so by Theorem 2.13, there exists reR such that
rx#0 and ry€A. Now, rx, ryéM and rx#0, since B<,,,M, again by Theorem 2.13, there exists
teR such that trx#0 and try€B. But tryeA, therefore trye ANB. Thus Vx,yeM we find treR
such that trx#0 and trye ANB. Moreover, both A and B are pure submodules of M, and M has
PIP, therefore ANB is pure in M, thus ANB<,.M.

Corollary 2.15: In any multiplication module, the intersection of any two P-rational
submodules is also a P-rational submodule.

Proof: Since any multiplication module has PIP, [12, Proposition 2.3, P.33] then the result
follows directly from Proposition 2.14.

The following Theorem is an analogue of [3, Proposition 8.6, P.274]

Theorem 2.16: For any R-module M, with N is a pure submodule of M, the following
statements are equivalent:
1. For all yeM and xe M\{0}, there exists reR such that rx#0 and ryeN.

2. N <,,M.

3. For any submodule P of M with NEPSM, Homg(r, M)=0.

Proof:

(1) = (2): If N£,,M, that is HomR(%, E(M))#£0, then there exists a non-zero homomorphism f:
M- E(M) with f(N)=0. Since f(M)< E(M), and M<_.E(M)), Then MNf(M)#£0, so that there
exist x,yeM\{0}such that f(y)=x. By (1), there exists reR such that rx#0 and ryeN. Since
f(N)=0, then f(ry)=0, and we obtain the following:

0=f(ry)=rf(y)=rx,

hence rx=0, which is a contradiction. Thus Homg (% E(M))zo.

(2) = (3): It immediately follows from Theorem 2.7.
(3) = (2): It follows directly from Theorem 2.13.
As an application of Theorem 2.16, we have the following.

Example 2.17: Consider the Z-module M=Z®Z, and the submodule N=2Z®Z, of M=Z®Z,.
2LD®Ly £pr LOZ,. In fact, if we take the non-zero element y=(0,1)e2Z®Z, and

x=(0,1) e Z@Z,, so for each reR, if r(0,1) e 2Z®Z,, then r must be even. Therefore r(0,1)=0, so
by Theorem 2.16, 2Z®Z, *, ZOZL,, and hence 2ZOZ, %,, ZDL,.

Proposition 2.18: Let f: M—M be an R-monomorphism. If LsprM' then f~1(L)<,, M,

provided that the inverse image of any pure submodule of M is pure in M.
Proof: Assume that L<,,.M, and let x,yeM with x#0, so that f(x)f(y)e M. Since f is a
monomorphism, then f(x)#0. By Theorem 2.16, there exists reR such that rf(y) eL and rf(x)#0,

so we conclude f(ry) eL and f(rx)#0. This implies that ryef~1(L) and rx¢ f~1(0)=kerf=0, that
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is rx#0, hence f (L)<, M, [2, Proposition 2.25, P.55]. In addition, f (L) is a pure submodule
of M by assumption. Thus f~*(L)<,,M.

In the following proposition, we use a different condition to get the same result in
Proposition 2.18.

Proposition 2.19: For any isomorphism f: M— M’, where M and M’ be R-modules, if L<,,,
M’ then f~*(L)<,,M.
Proof: Assume that L<,,-M. By the same argument of Proposition 2.18, we obtain f ~*(L)<, M.

On the other hand, we have L is pure in M’ and since f is epimorphism then f=1(L) is a pure
submodule of M, [14, Lemma 2.8]. Thus f~1(L)<,,-M.

An R-module M is said to be cohopfian if every injective endomorphism of M is an
isomorphism, [3, P.17].

Corollary 2.20: Let f: M—M’ be a monomorphism, where M, M’ be R-modules, and M is

cohopfian. If L<,,, M’ then f~1(L)<,,M.

Proof: Since f is a monomorphism and M is cohopfian then f is an isomorphism, and by
Proposition 2.19, we deduce f~*(L)<,,M.

Compare the following with [15, Lemma 2.10].

Proposition 2.21: Let L be a non-zero pure submodule of an R-module M. If for any 0#meM,
annR(%) & anng(m), then L<,,,. M.

Proof: We depend on Theorem 2.16, so let m,seM with m+0. annR(%):{re RI rMcL}, this
means there exists reR such that rMcL. It follows that rseL. Since annR(%) ¢ anng(m) and
reannR(%), then rg anng(m), that is rm+0. Thus, we deduce that rseL and rm+0. On the other

hand, L is a pure submodule of M, so by Theorem 2.16, HomR(%, E(M))=0, that is L<,,M.
Corollary 2.22: Let M be an R-module. If I is a pure ideal of R such that (0:y1)=0 (i.e
anng(1)=0). Then IM<,,,. M.

Proof: Assume that IM is not P-rational submodule in M. By the contrapositive of Proposition

2.21, annR(%)gannR(x) for some 0£xeM. This implies that Ix=0. But (0:y1)=0, so we get a

contradiction, therefore IM<,,.M.

3. P-Rational Submodules and Related Concepts

In this section, the relationships of P-rational submodules with some classes of related
submodules are investigated such as quasi-invertible, purely quasi-invertible, essential, P-
essential and SQI submodules.

A submodule N of an R-module M is called purely quasi-invertible (briefly we use the

symbol N<,,,,, M) if N is pure and HomR(%,M):O, [14].

Proposition 3.1: Every P-rational submodule is purely guasi-invertible.
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Proof: Let N be a P-rational submodule of an R-module M, by Remark 2.2, N<,M. This
implies that N <,,M, [5, Proposition 3.3, P.14]. But N is pure in M, then N<,,.,,M, [14].

Recall that A submodule N of an R-module M is P-essential if for every pure submodule
L of M with NnL=(0), implying that L=(0), [16].

Following [16], every essential submodule is P-essential, so we have the following.

Proposition 3.2: Each P-rational submodule is P-essential.
Proof: Let N be a P-rational submodule of M, so N is a rational submodule. This implies that
N is essential. But every essential submodule is P-essential, thus the result follows.

An R-module M is nonsingular if Z(M)=0, where Z(M)={xeM \ anng(X)<.R}, [2, P.31].

Proposition 3.3: Let M be a nonsingular module, and N be a pure submodule of M. Then
N<,,-Mif and only if N<.M.

Proof: The necessity follows by Remark 2.3 (5). For the converse, let K<M with NcKcM, we
depend on the Theorem 2.7, so we have to show that HomR(g, M)=0. Since N<,M then N<_K,

[2, Proposition 1.1, P.16]. Therefore, % is singular. But M is nonsingular, then Homg (g, M)=0,

[2, Proposition 1.20, P.31]. Besides that, N is a pure submodule of M, so by Theorem 2.7,
N<, M.

Proposition 3.4: Let N be a submodule of an R-module M. Consider the following statements.
1. N<, M.

2. N<, M.

3. N< M.

Then (1) = (2) = (3) and if M is nonsingular and N is a pure submodule of M then (3) = (1)
Proof:

(1) =(2): It is obvious.

(2) =(3): Itisclear.

(3) =(1): Since M is a nonsingular module and N is pure in M, so by Proposition 3.3, the result
follows.

We need to introduce the following definition.

Definition 3.5: An R-module M is called fully P-essential if every P-essential submodule of M
Is essential in M.

Remark 3.6: If M is a fully P-essential module then N<,M if and only if N<, .M.
Proof: It is straightforward.

Proposition 3.7: Let M be a multiplication module with a prime annihilator. Consider the
following statements.
LN<,, M.
_!!.NquuM.
H.N<,, M.
IV.N< M.

V.N<,. M.
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Then (i) = (i) = (iii) © (iv) = (v), and if M is a fully P-essential module then (v) = (iv).
Proof:

(i) = (ii): It is just Proposition 3.1.

(it) = (iii): It is obvious.

(iii) = (iv): Since M is multiplication with a prime annihilator, then the two submodules quasi-

invertible and essential coincide, [5, Theorem 3.11, P.18].

(iv) & (v): Itis clear

Remember that a submodule N of M is called SQI-submodule if for each fe HomR(%, M),
then f(£)<M, [17, P.44].

Proposition 3.8: Every P-rational is an SQI submodule.
Proof: Since every P-rational is purely quasi-invertible, and every purely quasi-invertible is an
SQI submodule, [14]. So, the result is obtained.

The converse of Proposition 3.8 is not true in general, for example, the submodule < 2 >
of the Z-module Z, is SQI, [17] but it is not P-rational as we saw in Example 2.3 (4).

Finally, it is important to remember that, as we noted earlier, there are relatively few
references that have been concerned with studying rational submodules such as [15] and [18-
22], which is what motivated us to carry out this study.

4. Conclusions:

In this article, the class of rational submodules has been restricted to a new class of
submodules. It is called P-rational submodules. The main results of this work can be
summarized as follows:

1. The main characteristics of the P-rational submodules are studied, and the emphasis is on
the analogue of the known results in the concept of rational submodules.

2. Other characterizations of P-rational submodules are investigated and they were compared
with those in the concept of rational submodules.

3. Sufficient conditions under which P-rational and rational submodules are identical are given.

The connections between P-rational and other related concepts were established, such as
essential, P-essential, quasi-invertible, purely quasi-invertible and SQI submodules. However,
all of these relationships can be represented in the following diagram:

P-Rational submodule = Rational submodule =Essential submodule = P-essential submodule

|

Rational submodule = Purely quasi-invertible submodule = Quasi-invertible submodule = SQI

In our future work, we will obtain more results about the class of P-Rational submodules
and study its important influence on module theory.
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