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Abstract  

    The conjugated gradient methods can solve smooth functions with large-scale 

variables in the specified number of iterations for that they are highly important 

methods compared to concerning other iterative methods. In this paper, we propose 

two new conjugate gradient methods, namely the PMDL-1 and PMDL-2. However, 

for non-smooth functions, which are called conjugate gradient-free derivative methods 

depending on the projection technique. The two methods give  great results compared 

to the basic PDL method. Moreover, we provide theorems that prove the global 

convergence between these two methods. 

 

Keywords: Conjugate gradient; Smooth functions; Projection technique; Free 

derivative methods.  

 
   الخطية غير أنظمة المعادلات لحل المترافق التدرج لطريقة جديدة معلمات

 
 2البياتي الياس يونس عباس*, 1الكواز يونس زيدان رنا

 العراق  الموصل،  تلعفر، جامعة  الاساسية،  التربية  كلية  الرياضيات، قسم 1
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  الخلاصة 

يمكن أن تحل طرائق التدرج المترافق دوال قابلة للاشتقاق ومستمرة وذات متغيرات بأبعاد كبيرة من خلال      
ق التكرارية الأخرى التي تقوم  ائعالية فيما يتعلق بالطر عدد محدد من التكرارات، مما يجعلها طرقًا ذات أهمية  

في هذ  البحث بذلك.  لطر ا  اقترحنا طريقتين جديدتين  المائ،  التدرج  ولكن  PMDL-2و    PMDL-1)   ترافقق   )
لقد  عتماد على تقنية الإسقاط.  التدرج الخالية من المشتقة بالاق  ائ التي تسمى طر   القابلة للاشتقاق غير    دوال لل

بالطريقة الأساسية   نتائج رائعة مقارنة  بين    PDLأعطتنا الطريقتان  ، وقدمنا نظريات لإثبات التقارب العالمي 
 .هاتين الطريقتين

 
1. Introduction 

      Let 𝐹 be a non-linear mapping, continuous and monotone function which is defined by  

𝐹: Ω ⊂ ℝ𝑛 → ℝ𝑛, where Ω  is a nonempty closed and convex set and ℝ𝑛 is the n-dimensional 

Euclidean space. We say that 𝐹 is a monotone function if for any 𝑥, 𝑦 ∈ Ω, we have  
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                                                   (𝐹(𝑥) − 𝐹(𝑦))
𝑇

(𝑥 − 𝑦)  ≥  0.                                         (1) 

    In this paper, we will find the solution to the following non-linear equation: 

                                                                         𝐹(𝑥) = 0, 𝑥 ∈ Ω.                                             (2) 

    

      The methods for solving monotonous, non-linear, and unconstrained problems in case Ω =
ℝ𝑛 are divided into Newton's method and semi-Newton methods. Their variables are very 

popular as a result of the convergence of local lines in them to the second and local degrees [1]-

[6]. Whereas, the monotonic, non-linear equations are widespread, these methods are not good 

because they require solving a linear system of equations which means, the Jacobian matrix of 

𝐹(𝑥) or rounding them in each iteration is used [7], [8]. Therefore, researchers examined to use 

the methods of the conjugate gradient for solving (2). We use the conjugate gradient algorithms 

to solve non-linear problems with large dimensions. These methods are well suited to these 

problems because of their demand for low memory, in addition to strong global convergence 

as an important feature of these algorithms. The iterative method for solving (2) usually has the 

general form: 

                                                                    𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘.                                                (3) 

    Where 𝑠𝑘 = 𝛼𝑘𝑑𝑘, 𝛼𝑘 is the step length obtained by a suitable line search and 𝑑𝑘 is the search 

direction. Examples of the first conjugated gradient algorithms can be found in [9]-[12]. These 

formulas were later developed by several researchers. Dai and Liao [13] gave the following 

formula  

                                                                   𝛽𝑘
𝐷𝐿 =

𝑔𝑘
𝑇(𝑦𝑘−1−𝜏 𝑠𝑘−1)

𝑑𝑘−1
𝑇 𝑦𝑘−1

.                                            (4) 

    It is flexible due to the use of positive and different values of 𝜏 and to change the direction 

of the search to obtain sufficient descent and global convergence properties [14]-[16]. Solodov 

and Svaiter [17] combined the Newton method and projection strategy, they proposed Newton's 

non-convergent, comprehensive method of a system of monotone equations without assuming 

contrast. Wang et. al. [18] extended Solodov and Svaiter's work to solve the constrained convex 

monotonic equations. Later, Ma and Wang [19] proposed a modified projection method to solve 

a system of monotonic equations with convex constraints. Although the projection methods for 

the restricted convex routine equations are proposed in [18] and [19] that have a very good 

numerical performance, however, they are not suitable for solving extensive monotonic 

equations because they require matrix storage. Recently, Liu and Li proposed a gradient 

multivariate synchronous spectrum projection algorithm for constraints in nonlinear monotony 

equations by combining a multivariate spectral gradient method with the Dai and Yuan (DY) 

conjugated gradient method. In addition, several methods have been proposed to solve the 

system of nonlinear monotone equations; for more details, see [20]-[26]. 

 

This paper is divided into the following sections: Section 2 gives the two suggested 

methods and their algorithms. Section 3: Some assumptions and conditions are applied to obtain 

global convergence. Finally, in Section 4, we present the numerical results of these algorithms. 

 

2. Two new Parameters 

    In this section, we introduce two new updates to the modified Dai-Liao method (4) based on 

several changes that are shown in the following steps: 

a) Modify and damped the parameter values 𝜏 and 𝑦. Consider this model for the following 

quadratic function: 

                                   𝑞𝑘(𝜏) = 𝑓𝑘−1 + 𝜏𝑔𝑘−1
𝑇 𝑑𝑘−1 +

𝜏2

2
𝑑𝑘−1

𝑇 ∇2𝑓𝑘−1𝑑𝑘−1.                                   

    Since 𝜀 is a very positive and small quantity, then the second derivative of the square function 

becomes: 
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                                         ∇2𝑓𝑘−1𝑑𝑘−1 ≈
𝑦𝑘−1

𝜀
=

𝑔(𝑥𝑘−1+𝜀𝑑𝑘−1)−𝑔(𝑥𝑘−1)

𝜀
  .                                      

We replace  

                             𝑦𝑘−1 = ∇𝑓(𝑥𝑘) − ∇𝑓(𝑥𝑘−1) = 𝑔(𝑥𝑘−1 + 𝜀𝑑𝑘−1) − 𝑔(𝑥𝑘−1).                        

With damped techniques [23-25] for 𝑦𝑘 that is 

                                          𝑦𝑘−1
𝐷 = 𝜔𝑘−1𝑦𝑘−1 + (1 − 𝜔𝑘−1) 𝐵𝑘−1𝑠𝑘−1.                                        

so, we get: 

                     ∇2𝑓𝑘−1𝑑𝑘−1 ≈
𝑦𝑘−1

𝐷

𝜀
=

1

𝜀
(𝜔𝑘−1𝑦𝑘−1 + (1 − 𝜔𝑘−1)𝐵𝑘−1𝑠𝑘−1) = �̅�𝑘−1

𝐷 . 

If 𝑎 = 𝑠𝑘−1
𝑇 𝑦𝑘−1  , 𝑏 = 𝑠𝑘−1

𝑇 𝐵𝑘−1𝑠𝑘−1 and 

                                                𝜔𝑘−1 = {
1                 𝑖𝑓 𝑎 ≥ 0.2 𝑏
0.8 𝑏 

𝑏−𝑎
            𝑖𝑓 𝑎 < 0.2 𝑏

 

The model becomes 

                                              𝑞𝑘(𝜏) = 𝑓𝑘−1 + 𝜏𝑔𝑘−1
𝑇 𝑑𝑘−1 +

𝜏2

2
𝑑𝑘−1

𝑇 �̅�𝑘−1
𝐷 , 

which implies 

                                                     𝑞𝑘
′ (𝜏) = 𝑔𝑘−1

𝑇 𝑑𝑘−1 + 𝜏𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 , 

                                                             0 = 𝑔𝑘−1
𝑇 𝑑𝑘−1 + 𝜏𝑑𝑘−1

𝑇 �̅�𝑘−1
𝐷 . 

Hence, 

                                                            𝜏𝑘
𝐷 =

−𝑔𝑘−1
𝑇 𝑑𝑘−1

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 =
−𝑔𝑘−1

𝑇 𝑑𝑘−1

𝑠𝑘−1
𝑇 �̅�𝑘−1

𝐷  , 

and    𝑠𝑘−1
𝑇 �̅�𝑘−1

𝐷 =
0.2

𝜀
 𝑏  implies          𝜏𝑘−1

𝐷 =
𝜀|𝑔𝑘−1

𝑇 𝑑𝑘−1|

0.2 𝑏
  

If  𝐵𝑘−1 = 𝐼 ,   then                    

                                                     𝜏𝑘−1
𝐷 =

𝜀|𝑔𝑘−1
𝑇 𝑑𝑘−1|

0.2 𝑠𝑘−1
𝑇 𝑠𝑘−1

   .                                              (5) 

This 𝜏𝑘−1
𝐷  is very suitable for parameter Dai-Liao Eq. (4). 

b) Using the projection strategy for monotonic equations, the process needs to be accelerated using 

the monotonicity condition of 𝐹. By monotonicity of 𝐹 and letting 𝑧𝑘 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, the 

hyperplane  

                                                 𝐻𝑘 = {𝑥 ∈ ℝ𝑛|𝐹(𝑧𝑘)𝑇(𝑥 − 𝑧𝑘) = 0} .                                  (6) 

     

      Separates strictly 𝑥𝑘 from the solution set of Eq. (2). Through [17] where the next iteration 

𝑥𝑘+1 is to be the projection of 𝑥𝑘 onto the hyperplane 𝐻𝑘. So, 𝑥𝑘+1 can be evaluated as: 

                                     𝑥𝑘+1 = 𝑃Ω[𝑥𝑘 − 𝜁𝑘𝐹(𝑧𝑘)] = 𝑥𝑘 −
𝐹(𝑧𝑘)𝑇(𝑥−𝑧𝑘)𝐹(𝑧𝑘)

‖𝐹(𝑧𝑘)‖2   .                       (7) 

Where 𝜁𝑘 =
𝐹(𝑧𝑘)𝑇(𝑥𝑘−𝑧𝑘)

‖𝐹(𝑧𝑘)‖2 , 

    Now, using the projection and damping technology, we can propose the new development of 

Dai-Liao as in the formula: 

                                                         𝛽𝑘
𝑃𝑀𝐷𝐿−1 =

𝐹𝑘
𝑇(�̅�𝑘−1

𝐷 −𝜏𝑘−1
𝐷 𝑠𝑘−1)

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷    ,                                      (8) 

and �̅�𝑘−1
𝐷 =

(𝜔𝑘−1𝑦𝑘−1+(1−𝜔𝑘−1)𝐵𝑘−1𝑠𝑘−1)

𝜁𝑘
, 

                                                               𝜏𝑘−1
𝐷 =

𝜁𝑘|−𝐹𝑘−1
𝑇 𝑑𝑘−1|

0.2 𝑠𝑘−1
𝑇 𝑠𝑘−1

                                                 (9) 

    We have to note that it is possible to add an update to the denominator of the fraction in the 

first new formula Eq. (8) and get good results as well, which we will present in the numerical 

results section of these two methods. 

                                                       𝛽𝑘
𝑃𝑀𝐷𝐿−2 =

𝐹𝑘
𝑇(�̅�𝑘−1

𝐷 −𝜏𝑘−1
𝐷 𝑠𝑘−1)

𝛿 ‖𝐹𝑘−1‖2+(1−𝛿) ‖𝑑𝑘−1‖2
    .                             (10) 

So, the new search direction will be: 
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                                                  𝑑𝑘 = {
−𝐹(𝑥𝑘)                                𝑖𝑓 𝑘 = 0

−𝐹(𝑥𝑘) + 𝛽𝑘
𝑃𝑀𝐷𝐿−𝑖𝑑𝑘−1, 𝑖𝑓 𝑘 ≥ 1

                           (11) 

    

 Where i=1,2. Now we can suggest the steps of the two new algorithms: 

 

2.1 Algorithm (PMDL-1) 

Step 1: Given 𝑥0 ∈ Ω, 𝜑, 𝜎 ∈ (0,1), stop test 𝜖 > 0, set 𝑘 = 0. 

Step 2: Evaluate 𝐹(𝑥𝑘) and test if ‖𝐹(𝑥𝑘)‖ ≤ 𝜖 stop, else go to Step 3. 

Step 3: Compute 𝜏𝑘−1
𝐷  and  𝛽𝑘

𝑃𝑀𝐷𝐿−1 from Eq. (9), (8) respectively. 

Step 4: Compute 𝑑𝑘 by Eq. (11) and stop if 𝑑𝑘 = 0. 
Step 5: Set 𝑧𝑘 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, where 𝛼𝑘 = 𝜑𝑚𝑘  with 𝑚𝑘 being the smallest positive integer m 

such that 

                                                     𝐹 (𝑥𝑘 +
𝜑𝑚

𝜀
𝑑𝑘)

𝑇

𝑑𝑘 > −𝜎
𝜑𝑚

𝜀

‖𝑑𝑘‖2

‖𝐹𝑘‖2
  .                              (12) 

 

Step 6: If  𝑧𝑘 ∈ Ω and ‖𝐹(𝑧𝑘)‖ ≤ 𝜖 stop, else compute the next point 𝑥𝑘+1 from Eq. (7). 

Step 7: Let 𝑘 = 𝑘 + 1 and go to Step 1. 

 

2.2 Algorithm (PMDL-2) 

Step 1: Given 𝑥0 ∈ Ω, 𝜑, 𝛿, 𝜎 ∈ (0,1), stop test 𝜖 > 0, set 𝑘 = 0. 

Step 2: Evaluate 𝐹(𝑥𝑘) and test if ‖𝐹(𝑥𝑘)‖ ≤ 𝜖 stop, else go to Step 3. 

Step 3: Compute 𝜏𝑘−1
𝐷  and  𝛽𝑘

𝑃𝑀𝐷𝐿−2 from Eq. (9) and  (10), respectively. 

Step 4: Compute 𝑑𝑘 by (11) and stop if 𝑑𝑘 = 0. 
Step 5: Set 𝑧𝑘 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, where 𝛼𝑘 = 𝜑𝑚𝑘  with 𝑚𝑘 being the smallest positive integer m 

from Eq. (12). 

Step 6: If  𝑧𝑘 ∈ Ω and ‖𝐹(𝑧𝑘)‖ ≤ 𝜖 stop, else compute the next point 𝑥𝑘+1 from Eq. (7). 

Step 7: Let 𝑘 = 𝑘 + 1 and go to Step 1. 

 

3. Convergence Analysis 

      In this section, we establish the global convergence of the two new methods by using the 

following assumptions: 

 

3.1 Assumptions 

    Suppose 𝐹 fulfills the following assumptions: 

(i) The solution group of the equation for Eq. (2) is non-empty. 

(ii) The function 𝐹 is Lipschitz continuous, i.e., there exists a positive constant L such that: 

                                          ‖𝐹(𝑥) − 𝐹(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖, ∀ 𝑥, 𝑦 ∈ ℝ𝑛                                  (13) 

(iii) 𝐹 is uniformly monotone, that is, 

                                〈𝐹(𝑥) − 𝐹(𝑦), 𝑥 − 𝑦〉 ≥ 𝑐‖𝑥 − 𝑦‖2, ∀ 𝑥, 𝑦 ∈ ℝ𝑛, c > 0 .                     (14) 

 

3.2 Lemma 

    Using Assumptions 4.1 and 𝑑𝑘 is known by Eq. (10), then the sufficient descent condition is 

held i.e. 

                                                              𝑑𝑘
𝑇𝐹𝑘 ≤ − 𝜌𝑘 ‖𝐹𝑘‖2  .                                              (15) 

Proof: 

    If k = 0 then 𝑑𝑘
𝑇𝐹𝑘 = −𝐹𝑘

𝑇𝐹𝑘 = −‖𝐹𝑘‖2. For k > 0, 

                            𝑑𝑘
𝑇𝐹𝑘 = −‖𝐹𝑘‖2 +

(𝐹𝑘
𝑇�̅�𝑘−1

𝐷 𝑑𝑘−1)
𝑇

𝐹𝑘

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 −
𝜏𝑘−1

𝐷 (𝐹𝑘
𝑇𝑠𝑘−1𝑑𝑘−1)

𝑇
𝐹𝑘

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷  , 

                            𝑑𝑘
𝑇𝐹𝑘 = −‖𝐹𝑘‖2 +

(𝐹𝑘
𝑇�̅�𝑘−1

𝐷 )(𝑑𝑘−1
𝑇𝐹𝑘)

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 −
𝜏𝑘−1

𝐷 (𝐹𝑘
𝑇𝑠𝑘−1)(𝑑𝑘−1

𝑇𝐹𝑘)

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 , 
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                            𝑑𝑘
𝑇𝐹𝑘 = −‖𝐹𝑘‖2 +

(𝐹𝑘
𝑇�̅�𝑘−1

𝐷 )

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 (𝑑𝑘−1
𝑇𝐹𝑘) −

𝜏𝑘−1
𝐷 (𝐹𝑘

𝑇𝑠𝑘−1)

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 (𝑑𝑘−1
𝑇𝐹𝑘), 

Since, 

                                    𝐹𝑘
𝑇�̅�𝑘−1

𝐷 =
1

𝜁𝑘
(𝜔𝑘−1𝐹𝑘

𝑇𝑦𝑘−1 + (1 − 𝜔𝑘−1)𝐹𝑘
𝑇𝑠𝑘−1), 

                      𝑑𝑘
𝑇𝐹𝑘 = −‖𝐹𝑘‖2 +

1

𝜁𝑘

𝜔𝑘−1𝐹𝑘
𝑇𝑦𝑘−1

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 𝑑𝑘−1
𝑇𝐹𝑘 +

1

𝜁𝑘

(1−𝜔𝑘−1)𝐹𝑘
𝑇𝑠𝑘−1

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 𝑑𝑘−1
𝑇𝐹𝑘 

                                   −
𝜏𝑘−1

𝐷 (𝐹𝑘
𝑇𝑠𝑘−1)

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 (𝑑𝑘−1
𝑇𝐹𝑘)  

                      𝑑𝑘
𝑇𝐹𝑘 = −‖𝐹𝑘‖2 +

𝜔𝑘−1

𝜁𝑘

𝐹𝑘
𝑇𝑦𝑘−1

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 𝑑𝑘−1
𝑇𝐹𝑘 +

1

𝜁𝑘

(1−𝜔𝑘−1)𝐹𝑘
𝑇𝑠𝑘−1

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 𝑑𝑘−1
𝑇𝐹𝑘 

                                   −
𝜏𝑘−1

𝐷 𝐹𝑘
𝑇𝑠𝑘−1

𝑑𝑘−1
𝑇 �̅�𝑘−1

𝐷 𝑑𝑘−1
𝑇𝐹𝑘, 

                      𝑑𝑘
𝑇𝐹𝑘 = −‖𝐹𝑘‖2 +

𝜔𝑘−1(𝐹𝑘
𝑇𝑦𝑘−1)

0.2 ‖𝑠𝑘−1‖2
(𝑑𝑘−1

𝑇𝐹𝑘) +
(1−𝜔𝑘−1)(𝐹𝑘

𝑇𝑠𝑘−1)

0.2 ‖𝑠𝑘−1‖2
(𝑑𝑘−1

𝑇𝐹𝑘) 

                                   −
𝜁𝑘

2|−𝐹𝑘−1
𝑇 𝑑𝑘−1|

0.04 ‖𝑠𝑘−1‖4
(𝐹𝑘

𝑇𝑠𝑘−1)(𝑑𝑘−1
𝑇𝐹𝑘) 

From the line search in Eq. (12) and the inequality  

                                  −𝐹𝑘
𝑇(𝐹𝑘 − 𝐹𝑘−1) = 𝐹𝑘

𝑇𝐹𝑘−1−‖𝐹𝑘‖2 > −‖𝐹𝑘‖2 

So,  

                      𝑑𝑘
𝑇𝐹𝑘 > −‖𝐹𝑘‖2 −

𝜎𝜔𝑘−1‖𝐹𝑘‖2

0.2
𝜑𝑚

𝜀
 ‖𝑠𝑘−1‖2

‖𝑠𝑘−1‖2

‖𝐹𝑘−1‖2 − 𝜎
𝜑𝑚

𝜀

𝜎(𝜔𝑘−1−1)

0.2
𝜑𝑚

𝜀
 ‖𝑠𝑘−1‖2

‖𝑠𝑘−1‖4

‖𝐹𝑘−1‖4 

                                   +𝜎
𝜑𝑚

𝜀

𝜁𝑘
2𝜎|−𝐹𝑘−1

𝑇 𝑑𝑘−1|

0.04 
𝜑𝑚

𝜀
‖𝑠𝑘−1‖4

‖𝑠𝑘−1‖4

‖𝐹𝑘−1‖4, 

                       𝑑𝑘
𝑇𝐹𝑘 > −‖𝐹𝑘‖2 −

𝜀𝜎𝜔𝑘−1‖𝐹𝑘‖2

0.2𝜑𝑚 ‖𝐹𝑘−1‖2  −
𝜎2(𝜔𝑘−1−1)‖𝑠𝑘−1‖2

0.2 ‖𝐹𝑘−1‖4 +
𝜁𝑘

2𝜎2|−𝐹𝑘−1
𝑇 𝑑𝑘−1|

0.04 ‖𝐹𝑘−1‖4  

                                                            𝑑𝑘
𝑇𝐹𝑘 > −𝜌𝑘 ‖𝐹𝑘‖2 

𝑖. 𝑒.,  

                      𝜌𝑘 = (1 +
𝜀𝜎𝜔𝑘−1

0.2𝜑𝑚 ‖𝐹𝑘−1‖2  +
𝜎2(𝜔𝑘−1−1)‖𝑠𝑘−1‖2

0.2 ‖𝐹𝑘−1‖4‖𝐹𝑘‖2 −
𝜁𝑘

2𝜎2|−𝐹𝑘−1
𝑇 𝑑𝑘−1|

0.04 ‖𝐹𝑘−1‖4‖𝐹𝑘‖2) > 0. 

    This proves for the parameter-based algorithm 𝛽𝑘
𝑃𝑀𝐷𝐿−1 , we use the same steps for the 

second new algorithm 𝛽𝑘
𝑃𝑀𝐷𝐿−2. 

 

3.3 Lemma 

    Using Assumptions 4.1 and the sequence {𝑑𝑘} is known by Eq. (10), then the bounded search 

direction is held i.e. 

                                                          ‖𝐹𝑘‖ ≤ ‖𝑑𝑘‖ ≤  ‖𝐹𝑘‖                                              (16) 

Proof: 

 ‖𝑑𝑘‖ = ‖−𝐹𝑘 + 𝛽𝑘
𝑃𝑀𝐷𝐿−1𝑑𝑘−1‖  

‖𝑑𝑘‖ ≤ ‖𝐹𝑘‖ +
‖𝐹𝑘

𝑇�̅�𝑘−1
𝐷 −𝜏𝑘−1

𝐷 𝐹𝑘
𝑇𝑠𝑘−1‖‖𝑑𝑘−1‖

‖𝑑𝑘−1‖‖�̅�𝑘−1
𝐷 ‖

  

           ‖𝑑𝑘‖ ≤ ‖𝐹𝑘‖ +
‖𝐹𝑘

𝑇�̅�𝑘−1
𝐷 ‖

‖�̅�𝑘−1
𝐷 ‖

+
|𝜏𝑘−1

𝐷 |‖𝐹𝑘
𝑇𝑠𝑘−1‖

‖�̅�𝑘−1
𝐷 ‖

  

         ‖𝑑𝑘‖ ≤ ‖𝐹𝑘‖ +
‖𝐹𝑘‖‖�̅�𝑘−1

𝐷 ‖

‖�̅�𝑘−1
𝐷 ‖

+
|𝜏𝑘−1

𝐷 |‖𝐹𝑘‖‖𝑠𝑘−1‖

‖�̅�𝑘−1
𝐷 ‖

  

                                                ‖𝑑𝑘‖ ≤ 2‖𝐹𝑘‖ + ‖𝐹𝑘‖
|𝜏𝑘−1

𝐷 |‖𝑠𝑘−1‖

‖�̅�𝑘−1
𝐷 ‖

                                   (17) 

By using |𝜏𝑘−1
𝐷 | =

|𝜁𝑘|‖𝐹𝑘−1‖

0.2𝛼𝑘 ‖𝑠𝑘−1‖
 and |𝜁𝑘| > 0, 

 ‖�̅�𝑘−1
𝐷 ‖ =

1

|𝜁𝑘|
(|𝜔𝑘−1|‖𝑦𝑘−1‖ + (1 + |𝜔𝑘−1|)‖𝑠𝑘−1‖)  

then the Eq. (17) turn to: 
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‖𝑑𝑘‖ ≤ ‖𝐹𝑘‖ [2 +
𝜁𝑘

2‖𝐹𝑘−1‖

0.2(𝛼𝑘|𝜔𝑘−1|‖𝑦𝑘−1‖+(1+|𝜔𝑘−1|)‖𝑠𝑘−1‖)
]  

From Assumption 4.1 (ii) then: 

 ‖𝑑𝑘‖ ≤ ‖𝐹𝑘‖ [2 +
𝜁𝑘

2‖𝐹𝑘−1‖

0.2𝛼𝑘‖𝑠𝑘−1‖(1+(1+L)|𝜔𝑘−1|)
] 

and  |𝜔𝑘−1| =
0.8 

1+𝐿
 

‖𝑑𝑘‖ ≤ ‖𝐹𝑘‖ [2 +
𝜁𝑘

2‖𝐹𝑘−1‖

0.2𝛼𝑘‖𝑠𝑘−1‖(1.8)
]  

‖𝑑𝑘‖ ≤ ‖𝐹𝑘‖ [2 +
𝜁𝑘

2‖𝐹𝑘−1‖

0.36‖𝑑𝑘−1‖
]  

From the Dai-Liao search direction we can put (𝑑𝑘−1 = −𝐹𝑘−1): 

 ‖𝑑𝑘‖ ≤ 𝐶‖𝐹𝑘‖,    𝑖. 𝑒.    𝐶 = 2 +
𝜁𝑘

2

0.36
  

    The last result, which gives a sequence of search direction, is restricted by C. This proves for 

the parameter-based algorithm 𝛽𝑘
𝑃𝑀𝐷𝐿−1 , we use the same steps for the second new algorithm 

𝛽𝑘
𝑃𝑀𝐷𝐿−2. 

 

3.4 Lemma [17] 

    If  (�̌� ∈ ℝ𝑛) satisfy 𝐹(�̌�) = 0 and {𝑥} is generated by Algorithm 1 and 2 that check Lemma 

4.3, then 

‖𝑥𝑘+1 − �̌�‖2 ≤ ‖𝑥𝑘 − �̌�‖2 − ‖𝑥𝑘+1 − 𝑥𝑘‖2. 

Specifically,  {𝑥} is bounded and  

                                                       ∑ ‖𝑥𝑘+1 − 𝑥𝑘‖∞
𝑘=0 < ∞ .                                              (18) 

 

3.5 Lemma 

    Suppose {𝑥} is generated by Algorithms 1 and 2, then 

                                                               lim
𝑘→∞

𝛼𝑘‖𝑑𝑘‖ = 0                                      (19) 

Proof: 

    From Lemma 4.4, which leads to the sequence {‖𝑥𝑘 − �̌�‖}  which does not increase, 

convergent, and thus constrained. As well, {𝑥𝑘} is bounded and lim
𝑘→∞

‖𝑥𝑘+1 − 𝑥𝑘‖ = 0. From 

Eq. (15) and the line search Eq. (12), we have: 

‖𝑥𝑘+1 − 𝑥𝑘‖ =
|𝐹(𝑧𝑘)𝑇(𝑥−𝑧𝑘)|

‖𝐹(𝑧𝑘)‖2
‖𝐹(𝑧𝑘)‖ =

|𝛼𝑘𝐹(𝑧𝑘)𝑇𝑑𝑘|

‖𝐹(𝑧𝑘)‖
  

          ≥
𝛼𝑘‖𝐹(𝑧𝑘)‖‖𝑑𝑘‖

‖𝐹(𝑧𝑘)‖
= 𝛼𝑘‖𝑑𝑘‖ ≥ 0  

Finally, we get: 

lim
𝑘→∞

𝛼𝑘‖𝑑𝑘‖ = 0. 

    Now we use all the previous Lemmas to demonstrate the global convergence of the two new 

algorithms. 

 

3.6 Theorem 

    Let {𝑥𝑘} and {𝑧𝑘} be the sequences that are generated by Algorithms 1 and 2, then 

                                                        lim inf  
𝑘→∞

‖𝐹(𝑥𝑘)‖ = 0                      (20) 

 

Proof:  

The proof will be divided into two cases: 

 

 

Case I: If lim inf ‖𝑑𝑘‖
𝑘→∞

= 0, we have                  lim inf  
𝑘→∞

‖𝐹(𝑥𝑘)‖ = 0. 
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     If one uses the continuity of 𝐹, then the sequence {𝑥𝑘} has some accumulation point �̌� such 

that 𝐹(�̌�) = 0. Since {‖𝑥𝑘 − �̌�‖} converges and �̌� is an accumulation point of {𝑥𝑘}, it follows 

that it converges to �̌�. 
 

Case II: If lim inf ‖𝑑𝑘‖
𝑘→∞

> 0, we have lim inf  
𝑘→∞

‖𝐹(𝑥𝑘)‖ > 0 and by (19), it holds that 

lim
𝑘→∞

𝛼𝑘 = 0. Using the line search  

 −𝐹 (𝑥𝑘 +
𝜑𝑚

𝜀
𝑑𝑘)

𝑇

𝑑𝑘 < 𝜎
𝜑𝑚

𝜀

‖𝑑𝑘‖2

‖𝐹𝑘‖2 

    and the boundedness of {𝑥𝑘}, {𝑑𝑘}, we can choose a subsequence such that allowing k to go 

infinity in the above inequality results 

                                                              −𝐹(�̌�)𝑇�̌� ≤ 0 .                                               (21) 

 

On the other hand, from Eq. (15), we get  

 

                                               −𝐹(�̌�)𝑇�̌� ≥ 𝜌𝑘  ‖𝐹(�̌�)‖2 > 0   .                                     (22) 

    However, Eq. (21) and (22) imply a contradiction. So, it is lim inf  
𝑘→∞

‖𝐹(𝑥𝑘)‖ > 0 does not 

hold and the proof is complete. 

 

4. Numerical Tests 

     In this section, we present the results of the implementation of the two new algorithms 

(PMDL-1 & PMDL-2), respectively, and compare the resulting values with the implementation 

of the same projection technique with the basic conventional Dai-Liao algorithm that is given 

by Eq. (4). All codes were implemented in the MATLAB R2018b program and were managed 

on the laptop with an intel COREi5 processor with 4GB of RAM and a CPU of 2.5GHZ. 

Program data for each algorithm 𝜑 = 0.9, 𝛿 = 0.1, 𝜏(PDL) = 0.26 , 𝜎 = 0.2. The results were 

compared by applying the 3 initial points i.e.:  

𝑥1 = (1,1,1, . . ,1)𝑇 , 𝑥2 = (
1

2
,

1

2
,

1

2
, . . ,

1

2
)𝑇 , 𝑥3 = (

1

10
,

1

10
,

1

10
, . . ,

1

10
)𝑇 

that was implemented on 8 problems and tried these algorithms for several dimensions n (1000, 

5000, 7000, 12000). The stopping scale for the three algorithms is ‖𝐹(𝑥𝑘)‖ < 10−8. 

Algorithms are distinguished by their performance in (Iter) the number of iterations., (Eval-F) 

the number of function evaluations, (Time) CPU time in seconds, and (Norm) the norm of the 

approximation solution. The test problems 𝐹(𝑥) = (𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛)𝑇 where 𝑥 =
(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)𝑇, are listed as follows: 

Problem 1 [28]: 𝐹𝑖(𝑥) = 2 𝑥𝑖 − sin|𝑥𝑖| , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛  𝑎𝑛𝑑   Ω = ℝ+
𝑛  . 

Problem 2 [29]: 𝐹𝑖(𝑥) =  𝑒𝑥𝑖 − 1 , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛  𝑎𝑛𝑑   Ω = ℝ+
𝑛  .  

Problem 3[29]: 𝐹𝑖(𝑥) = ln( |𝑥𝑖| + 1) −
𝑥𝑖

𝑛
 , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛   𝑎𝑛𝑑   Ω = ℝ+

𝑛 . 

Problem 4 [30]: 𝐹𝑖(𝑥) = min(min(|𝑥𝑖|, 𝑥𝑖
2) , max(|𝑥𝑖|, 𝑥𝑖

3)) , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛  𝑎𝑛𝑑 Ω = ℝ+
𝑛  

Problem 5 [31]:  𝐹1(𝑥) = 𝑒𝑥1 − 1, 𝐹𝑖(𝑥) =  𝑒𝑥𝑖 − 𝑥𝑖−1 − 1 , 𝑓𝑜𝑟 𝑖 = 2, … , 𝑛 − 1  

Problem 6 [32]:  𝐹𝑖(𝑥) = ∑ |𝑥𝑖|
𝑛
𝑖=1   , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛    𝑎𝑛𝑑   Ω = ℝ+

𝑛  

Problem 7 [32]: 𝐹𝑖(𝑥) = max
𝑖=1,..,𝑛

|𝑥𝑖|   , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛    𝑎𝑛𝑑   Ω = ℝ+
𝑛    

Problem 8 [32]: 𝐹𝑖(𝑥) = ∑ |𝑥𝑖|
𝑛
𝑖=1  𝑒− ∑ sin(𝑥𝑖

2)𝑛
𝑖=  , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛    𝑎𝑛𝑑   Ω = ℝ+

𝑛  
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Figure 1: Performance results through several times calculation iterations 

 

 
Figure 2: Performance results through several times calculation functions 

 

 
Figure 3: Performance of results concerning the time taken to implement the algorithm 
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    In this paper, we have implemented several (96) tests of these presented problems. We 

noticed that the performance of the two algorithms has alternated in terms of these 

characteristics: 

1- As for the initial points, the third point is considered the best in most functions. 

2- About dimensions, we notice that the second initial point is better for more n. 

    In general, the two new algorithms were the best for the points and dimensions that are given 

in this paper. Figures 1-3 show the performance of the first starting point in terms of dimensions 

and functions, and they also give a better performance. 

 

5. Conclusions  

      In this paper, we have been able to demonstrate that the two new algorithms (Modified for 

Dai-Liao) are better for the 8 problems that are used within the paper and with the starting 

points that are suggested in the previous section. Through Figures 1 to 3, we can say that the 

two algorithms are the best according to the explained conditions for problems in achieving 

global convergence faster and with the least number of iterations compared to the basic 

algorithm and the projected method adopted within the paper. Also, theories used to prove the 

convergence of the two new methods gave greater efficiency to them. 
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