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Abstract

Let K be a proper ideal of a commutative ring 8. Then K is a strongly irreducible
(SI) ideal if for any two ideals Aand B of S, AN B € K impliesA € KorB < K.
We say a ring is strongly irreducible (SI) if all its proper ideals are strongly
irreducible. In this paper, some properties and characterizations of such rings are
given. The relations between SI rings and some types of rings are also studied. For an
SI ring 8, the S strongly irreducible spectrum X = S.spec(8) of § is the set
S.spec(8)={l: lis an ideal of §} and the S variety of a subset E of § is the set V; (E)
={/€ S.spec(8): E € I}. Then the family F = {V,(E): E € 8} satisfies the axioms
for closed sets of a topology on X = S.spec(§). Consequently, if X (E) =
S.spec(S)\V;(E), then the family H = {X,(E): E < 8} forms a topology on X =
S.spec(8). This topology is said to be S. spec(S) topology or S Zariski topology. In
this work, some properties of S. spec(S) topology are also studied.
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1. Introduction

Throughout this paper, we consider that § is a commutative ring with identity. A proper
ideal K of § is an SI ideal if for any two ideals C and D of §,Cn D € K implies C <
KorD < K[1],[2]. Inthis work, we introduce and study the concept of an SI ring. In section
two, some characterizations of such rings are given. In Proposition 2.3 and Theorem2.4, some
properties of SI rings are discussed. Furthermore, the relations between SI ring and each the
arithmetical ring, local ring, Bezout ring, clean ring, r-clean ring, divided ring and pseudo-
valuation ring are studied in Proposition 2.5, Corollary 2.6 and Proposition 2.8. For aring §,
the S strongly irreducible spectrum X = S. spec(8) of § is the set S. spec(8)={l: | is a strongly
irreducible ideal of § } and the S variety of a subset E of § is the set V; (E) = {/ € S.spec(S):
E < [} Then the family F = {V,(E): E < 8} is closed under finite union and arbitrary
intersection. Clearly that V; (@) = S.spec(S8) and V; (§) = @ so that F satisfies the axioms for
closed sets of a topology on X = S.spec(S). Let X;(E) = S.spec(8)\V;(E). Then the family
= {X,(E): E < §} forms atopology on X = S. spec(S). This topology is said to be S. spec(S)
topology or S Zariski topology [2]. In section three, S.spec(S8) of an SI ring 8§ and S. spec(S)
topology are studied. It is shown that for an SI ring §, the S.spec(S) topology is connected,
locally connected, ultraconnected, hyperconnected, strongly zero-dimensional, normal space
and sober space but it is not a zero-dimensional space and it does not satisfy most of separation
axioms.

2. Strongly irreducible rings
In this section, some properties and characterizations of SI rings are studied and given as
well as the relations between SI rings and some other types of rings are studied.

Definition 2.1. Aring § is said to be an SI ring if every proper ideal of § is an SI ideal.

Recall that if R is a commutative ring with identity and S is multiplicatively closed subset
of R containing 1 (0 € S, 1€ Sand ifa,b € S, then ab € S), then the localization of R at S is
thering Ry = {E :7 € R, s € S} where the addition and the multiplication of the formal fractions

at+bs a

gare defined according to the natural rules, §+ % =— and T % = %, respectively [3].

In fact R is a subring of Rs. Now, let P be a prime ideal of R. Then R — p is multiplicatively
closed subset of R. Then the localization of R at the prime ideal P is the ring RP:{% :a €ER,b €

R — P} where the addition and multiplication are defined as the same as above.

Examples 2.2.
1. The localization of Z at the prime ideal Q =< q > of Z, q is a prime number is Z_,- = {% €

Q: q 1 b}. The nonzero proper ideals of Z., are of the form [;, =< q" > where k € Z™, these
ideals are ordered by inclusion as follows: < g >>< g? >> --- o< ¢* >>< ¢**! >> ---and
clearly Z.g, isan SIring and < q > is its maximal ideal [3, p. 706].
2. Consider the ring 8§ =7Z,[t]/<t3>>={0,1,t, 1+¢t t3,1+t% t+t3 1+t+t%}
The proper ideals of § are I; = {0}, I, =< t? >={0,t?}, and I; =<t >= {0,¢,t?,t + t*}.
Clearly, each of these ideals is an S ideal. Therefore, § is an SI ring.
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The following is the multiplication table of the ring § = 7Z,[t]/< t3 >.

* 0 1 t 1+t t2 1+ t? t + t? iif

0 0 0 0 0 0 0 0 0

1 0 1 t 1+t t? 1+ t? t + t? iy

t 0 t t? t+t* 0 t t? t +t?
1+t 0| 1+t t + t? 1+ t? t? thth t 1

t? 0 t? 0 t? 0 t2 0 t?
1+t | 0] 1+¢t? t i“:zt t? 1 t? 1+t
t+t> | 0| t+t? t? t 0 t t2 t
_1|_"t'2t 0 _1|_"t'2t t+t? 1 t2 1+t t 1+ t?

Proposition 2.3. Let § be a ring. Then the following statements are equivalent:

1. Sisan SIring.

2. Every two ideals of § are comparable(The two ideals I and J of a ring are said to be
comparableif I S JorJ cI).

3. Foreacha,b €8, <a>S<b>o0or <b>C<a>.

4. Ifa,b € 8§, then a|b or b|a.

5. For any two ideals C and B of §, C n D is an S ideal of §.

6. For any two ideals C and D of §, C U D is an ideal of §.

Proof.

(1) & (2). This follows from [4, pp. 150, Lemma 3.5].

(2) & (3). If every two ideals of § are comparable, then for each a,b € §, < a >S<b > or
< b >CS < a >. For the converse, let I and J be any two ideals of § and suppose I € J. Then
thereisa € J and a € I. Hence, a €< b > for each b € J, consequently < a >Z< b >. Then
<b>CE<a> foreachb € .Sothat] < I.

(3) & (4). Itis obvious.

(2) & (5) Let € and D be any two ideals of § and C n D be an SI ideal. SinceCNnD € CN D,
then CScCnDorD < CnD.SothatC € D or D < C. For the converse, suppose that C and
D are any two ideals of § and let I and J be two ideals with I nJ € C n D. From the assumption
Icjorjc, consequentlyInj=IcCcnDorinJ=]<SCnD.

(2) & (6) is well known.

Theorem 2.4. Let § be an SI ring. Then

1. Any localization of § is an S/ ring.

Every finitely generated ideal of § is principal.

If § is Noetherian, then § is a principal ideal ring.

If I is a proper ideal of §, then §/1 is an SI ring.

The homomorphic image of an ST ring is an SI ring.

Every nonmaximal proper ideal is contained in a proper principal ideal.

If § is an Artinian ring, then § has a unique prime ideal which is the maximal ideal.
The only idempotents of § are 0 and 1.

If I is an ideal of 8, then I is not an n-sequence prime ideal of §.

©ooNoOO kAW
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Proof.
1. Let S be a nonzero multiplicatively closed subset of § and M, N be two ideals in §s. Then
there are two ideals I,/ in & such that M = I and N = Js. Since § isan SIring, then I c J or

Jcl.ifIcJand x € M. Then x =% where a € I c J,s € S. This means x € N. Therefore,

M c N. Similarly if ] € I, then N c M. Therefore, by Proposition 2.3, § is an SI ring.

2. It is enough to show that every ideal generated by two elements is principal. So let I = <
f,g>beanideal of R. Then< f >C<g>or<g>C<f >s0l =<g>orl =<f >.
3. Let 8§ be Noetherian. Then every ideal of § is finitely generated. By part 2, § is a principal
ideal ring.

4. Let I be a proper ideal of Sand< a+1 >, < b+ 1 > be two ideals of §/1. Since § is an
Siring,then<a >S<b>or<b>C<a>. Sothat<a+1 >S<b+1 >or<b+1 >
C<a+1 >.ByProposition 2.3, § is an SI ring.

5. Let f: 8§, = 8, be a ring homomorphism and 8, be an SI ring. Since ker(f) is an ideal of
81, then 8§, /ker(f) = f(8,) and by part 4, §; /ker(f) is an SI ring, consequently, f(8,) is an
SIring.

6. Let I be a non maximal proper ideal of §. Then there is a maximal ideal M such that I c M.
Thenthereisx € M and x € I. Hence, x €< a > for each a € I, consequently < x >Z€< a >.
By Proposition 2.3, < a >S< x > foreach a € I. Therefore, I €< x >.

7. Let P and Q be two prime ideals of an SI Artinian ring 8. By [3, pp. 752, Theorem 3(3) ],
both P and Q are maximal ideals, but it is well known that two maximal ideals cannot be
comparable. So that there is a unique prime ideal.

8. Let § be an SI ring and e € § be a non-trivial idempotent(e # 0,1). Then 1 — e is a non-
trivial idempotent. Then by Proposition 2.3, either < e >C<1—-e>0r<1—e >C<e >,
This implies either 1 eE<1—e > or1 e<e >. Consequently <1—e >=8or <e >=S,
contradiction.

9. Let I be a proper ideal of 8. By [5, pp. 3677, Theorem 3.10], I is not an n-sequence prime
ideal of §.

Recall from [6], a ring § is said to be arithmetical if for all ideals /,/ and K of §, we have
I+J)NnK=(0UnK+(J n K.

Proposition 2.5. Let § be a ring and M be a maximal ideal of §. Then §,,, the localization of
S at M isan SI ring if and only if § is an arithmetical ring.

Proof. This obtained by [7, pp. 321, Exercises 19] and Proposition 2.3.

Corollary 2.6. Let § be aring. Then

1. If S is an SI ring, then it is arithmetical.

2. If § is an arithmetical ring and its ideals are irreducible, then § is an SI ring.

Proof.

1. Let],] and K be three ideals of an SI ring §. There are six cases, without loss of generality,
wesuppose Ic | c K. ThenIn (J +K)=InK=Iland(U N )+ U NK)=I1+1=
1. The proof of the other cases are similar. Therefore, In (J +K) = (I n J)+ { n K).

2. The proof follows from [6, pp. 269, Lemma 2.2(3)].

Remark 2.7. An arithmetical ring does not need to be an SI ring. For example, the ring of
integers is arithmetical, but it is not an ST ring.

Now we recall some definitions that are used throughout this work:

1. Aring S is called Bezout if every finitely generated ideal I of § is principal [8].

2. Aring 8 is called a local ring if it has a unique maximal ideal [3].
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3. Aring § is called clean if each element of § can be expressed as the sum of a unit element
and an idempotent element and § is called r-clean if each element of § can be expressed as
the sum of a regular element and an idempotent element [9].

4. Aring S is an exchange ring ifforanya €8,a — e € (a?— a) Sforsomee? = e €
§ [10].

5. Aring § is said to be semipotent if each ideal of § that is not contained in its Jacobson
radical contains a nonzero idempotent. A semipotent ring § is said to be potent if idempotents
lift modulo its Jacobson radical [9].

6. A prime ideal P of aring § is called divided if P is comparable to every principal ideal of
S. If every prime ideal of § is divided, then § is called a divided ring [11].

7. A prime ideal P of § is called strongly prime if aP and bS8 are comparable for every a, b €
S. If every prime ideal of a ring § is strongly prime, then § is called a pseudo-valuation ring
[11].

In the following proposition, we give a relation between an SI ring and some other types of
rings.

Proposition 2.8. If § is an ST ring, then

1. §is a Bezout ring.

2. §isalocal ring.

3. S isaclean ring (Resp. exchange ring, semipotent ring, potent ring, r-clean ring).

4. S is a divided ring.

5. § is a pseudo-valuation ring.

Proof.

1. It follows from Theorem 2.4(2).

2. Suppose S has at least two maximal ideals I and /. Then by Proposition 2.3, I c jor] c I,
we get a contradiction since two maximal ideals cannot be comparable. Therefore, § has a
unique maximal ideal.

3. Let § be an SIring. Then from Part 2, § is a local ring. Let M be the maximal ideal of § and
a€S. Ifae M, thenclearlya—1 ¢ M whichmeansu = a — 1isaunit. Then a =u+ 11is
a clean element. If a € M, then a is a unit. Hence, § is a clean ring, consequently, § is r-clean.
By [9, pp. 3, Proposition 1.4], [9, pp. 5, Proposition 1.8] and [9, pp. 5, Corollary 1.9], § is an
exchange ring, semipotent ring and a potent ring.

Parts 4 and 5 are obvious.

The following examples show that the converse of none of the statements given in Proposition
2.8 is true in general.

Examples 2.9.

1. A Bezout ring does not need to be an SI ring. In particular, a principal ideal ring does not
need to be an ST ring. For example, every finitely generated ideal of Z is a principal ideal, but
Z is not an SI ring.

2. Consider the ring § = Z,[x,yl/< x%,y2 >={0,1, x, y, xy, 1 +x, 1 + y, 1 + xy, x +
Yy, x+xy,y+ xy,1+x+y,1+x+xy,1+y+xy,x+y+xy,1+x+y+xy}.  The
nonzero proper ideals of S are I; =< x >= {0, x,xy,x + xy}, [, =<y >={0,y,xy,y + xy},
L=<x+y>={0,x+y,xy, x+y+xy}, Lh,=<xy>={0,xy} and [5=<x,y>=
{0,x,y, xy,x +xy, y+xy,x +y,x +y+ xy}. Since § has only six proper ideals which are
<0> L, L, 151, and Is, and <0 >, I, I,, I3 and I, are contained in Ig, then I is a

3926



Ahmad and Hummadi Iragi Journal of Science, 2024, Vol. 65, No. 7, pp: 3922-3932

maximal ideal of § and there are no other maximal ideals of §. Hence, § is a local ring but §
is not an SI ring since the two ideals I; and I, are not comparable.

3. Consider the group ring § = Z,(G) where G is a cyclic group of order 3 generated by g.
Then § =Z,(G) ={0,1,9,9% 1+ g,1+ g% g + g 1+ g + g*}. The elements 1, g and g*
are units and each of 0,1,g + g%, 1+ g + g is an idempotent element. This means that § is
a clean ring, consequently, § is r-clean. The proper ideals of S are [; =< 0>, [, =< g+
g?>={0, g+g*,1+g%1+ gltandl;=< 1+g+g?>>={0,1+ g+ g?}.Clearly, I,
Is not an S/ ideal. Hence, § is not an ST ring.

The following is the multiplication table of the ring § = Z,(G)

* 0 1 g 1+ g g° 1+g%| g+g% |1+g+g>
0 0 0 0 0 0 0 0 0
1 0 1 g 1+ g g° 1+9%| g+g% |1+g+g°
g 0 g g° g+ g* 1 1+ g 1+ g2 1+g+g°
1+g 0 1+g g+ g° 1+ g2 1+ g2 ‘3_92 1+g 0
g° 0 g° 1 1+ g2 g ﬂgz 1+g 1+g+g°
1+ g2 0 1+ g2 1+g g+g* g+g* 1+g | 1+g° 0
g+g° 0 g+ g° 1+ g2 1+g 1+g 1+9%| g+g° 0
1+g 1+g
2 2 2
1+g+g 0|1+g+g + g? 0 + g2 0 0 1+g+g

4, Let § = Zy[x]/< 2x,x* >=1{0,1,2,3,x,1+ x,2 + x,3 + x}. The proper ideals of § are
L =<0>1,=x2>={0,2}, 5 =<x>={0,x}, , =<2+x>={0,2+x} and I5 =<
2,x >=1{0,2,x,2 + x}. The only prime ideal of § is I5 which is the maximal ideal of § and
contains all other ideals. So § is a divided ring and § is not an SI ring, since < 0 > is not an
SI ideal. Furthermore, § is a pseudo-valuation ring.

Recall that a ring § is said to be regular if for every element r € § there is some element x € §
such that rxr = r [9].

Proposition 2.10. If § is an ST ring which is not a field, then § is not a regular ring.

Proof. Let § be an SI ring which is not a field, then § has a nonzero proper ideal 1. By Theorem
2.4(8), § has no non-trivial idempotent. Now, if § is a regular ring, then by [12, pp. 2671,
Corollary 2.9], I is generated by a non-trivial idempotent, then we get a contradiction.
Therefore, § is not a regular ring.

Recall that a ring S is said to be a Zerlegung prime ideal ring (ZPI-ring) if every proper ideal
of § can be written as a product of prime ideals of § [4], and a commutative ring § is said to
be aprime ring if ab§ =< 0> implies that a =0 or b = 0 such thata,b € § [13].

Remark 2.11.

1. If Sisalocal Zpl ring, then it is an ST ring. This follows from [4, pp. 150, Theorem 3.7]
and Proposition 2.3.

2. A subring of an SI ring does not need to be an SI ring. For example, the subring Z of Q is
not an ST ring since Z has at least two non-comparable ideals but Q is an SI ring since the zero
ideal is the only proper ideal of Q.

3. An SI ring does not need to be a prime ring. For example, the ring Zg is an SI ring but it is
not a prime ring since 2,4 € Zg\{0} and (2)(4)Zg =< 0 >.
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Proposition 2.12. Let §= Z,,, the ring of integers modulo m. Then § is an SI ring if and only
iIf m = p™ for some prime p and positive integer n.

Proof. Let m = p™ for some prime p and positive integer n that is = Z,». Clearly, the ideals
of Z,n are

<p><p?>,..,<p"!> <0> and all these ideals are comparable. Therefore, § an SI
ring. Now, for the converse, suppose that Z,, is an SI ring. Let m = p,™1p,2 ... p," be the
prime factorization of m. Since the additive group H of the ring § is finite, then H=
Ly ny X Ly ha.. Ly by We claim that r is equal to one. If r is greater than one, put A =<
pM >x {0} X {0} X ... x {0} and B = {0} x< p,"2 >x {0} x {0} x .. x {0} ,then4dn

(r—1)— times (r—2)— times

B = {0} x {0}...x {0} but neither A = 0 nor B = 0. Then the zero ideal is not an SI ideal.
Consequently r = 1. Then § = Z,» for some n € Z* and a prime number p.

Remark 2.13. If § is a ring with p™ elements where p is a prime number and n > 1, and the
additive group of § is isomorphic to the additive group (Zyn, +,n), then § is an SI ring. This
statement is true since the additive group of every ideal of § is isomorphic to a subgroup of the
group (Z,n, +,n) and the family of these subgroups is ordered by inclusion. Now, the following
question impose itself “ Is there any ST ring of characteristic p™ different from the ring (Z,n,
+,n, .pn) Whose additive group is isomorphic to the group (Z,n, +,7)?”. In [14], it is shown
that for each prime p and positive integer n < 5 there is only one ring of characteristic p™ which
IS (Zyn, +pn, .pn) itself. So that a partial answer for the previous question is given as follows:
For each prime p and positive integer n < 5 the only ring with characteristic p™ is the ring
(an, +pn, .pn).

The following result is clear so the proof is omitted.
Proposition 2.14. Let § be a local ring of order p™ whose maximal ideal is principal. If § is an
SI ring, then for each 1 < k < n the ring § has at most one ideal of order p*.

Now, we have to mention that there is a finite ring that is not isomorphic to the ring Z,n for
each prime p and n > 1 as it is shown in the following example.

Examples 2.15.

1. Consider the quotient ring § = Z,[x]/< x? >={0,1, x, 1+ x} withx? = 0. Thering §
has three proper ideals I; =< 0 >= {0}, I, =< x >= {0, x}, which are ordered by inclusion
but it is not isomorphic with the ring Z,,» for each prime p and a positive integer n.

2. Consider the quotient ring 8§ = Z,[x]/< x®> >=1{0,1, x,x*1+x,1+x%,x+x%1+
x + x? }with x3 = 0. The proper ideals of S are I; = {0}, I, =< x? >= {0,x%}, [, =< x >=
{0, x, x?, x + x2}. Note that § has 23 elements, one ideal of order 2 and one ideal of order
22, Itis not difficult to show that the additive group (S, +) is isomorphic to the additive group
of the ring Z, X Z, x Z, with usual addition and multiplication. Clearly that § is an SI ring,
and the characteristic of § is 2.

3. S spectrum of ST rings

Let § be a commutative ring and X = Spec(S8) = {J: ] is a prime ideal of §}. Then for any
subset E of 8, V(E) is defined to be the set V(E) = { P: P is a prime ideal of § and E < P} and
X(E) = Spec(S)\V(E) [3, p. 731]. In [2], this concept was generalized to the strongly
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irreducible spectrum X = S.spec(S) of § which is the set S.spec(S) = {J:] is a strongly
irreducible ideal of 8}. For any subset E of 8, the S variety of E, denoted by V,(E), is the set
Vo(E) ={] € S.spec(8):E <]} and X (E)={] €S.spec(§):E £J}. Then by
[2, pp- 125, Proposition 3.2], the family F={ V; (< E >): E S R} satisfies the axioms for
closed sets of a topology on X = S.spec(S) [1]. Now, if § is an SI ring, then each of its proper
ideals is an SI ideal. Then S. spec(S) = {J: ] is aproper ideal of §}. Consequently, the S variety
of E, denoted by V;(E), isthe set V,(E) = {J: J isa proper ideal of Sand E < ] }and X,(E) =
S.spec(8)\V;(E) = {J: ] isaproper ideal of Sand I c< E > }.

From the references [15], [3] and [16] , the topological concepts are taken which are used in
this work such as open set, closed set, clopen set, basis, connected space, locally connected
space, hyperconnected space, ultraconnected space, regular space, normal space, T, space, T;
space, variety, spectrum of a ring, sober space, and generic point.

Remark 3.1. Let § be an SI ring. Then

1. X = S.spec(S) = {I: I is a proper ideal of §}

2. Foreachsubset E of 8§, V,(E) = {J: ] isaproper ideal of § and E < J} equivalently X,(E) =
{J: ] is a proper ideal of § and ] c< E >} where < E > is the ideal generated by E.

3. For each ideal I of 8, V;(I) = {J: ] is a proper ideal of § and I < J} equivalently X (I) =
{J: ] is a proper ideal of S and ] < I}.

4. Let B be a basis for the S.spec(S) topology. For each subset E of S, if @ # X,(E) <
S.spec(8) is an open set, then X,(E) € B.

Proposition 3.2. Let § be an SI ring. Then

1. Every nonempty open subset of S. spec(8) contains the zero ideal.

2. Every nonempty closed subset of S. spec(S) contains the maximal ideal of §.

3. If <0 >€e V. (E) forsome E € §, then V.(E) = S.spec(S).

4. < 0 > isageneric point in S. spec(S8).

Proof.

1. Let X;,(E) # @ be an open subset of S. spec(8). Then there is an ideal ] of 8§, ] € X.(E). By
Remark 3.1, X;,(E) = {I: I is a proper ideal of § and I c< E >}, consequently ] c< E >.
Since < 0>CS ] c<E >, then< 0 >€ X (E).

2. Let V;(E) be anonempty closed subset of S. spec(8). Then there is a proper ideal J of § such
that J € V;(E). By Remark 3.1, V;(E) = {S: S'is a proper ideal of § and E < S}, consequently
E < J. If J is not the maximal ideal of S, then J ¢ M where M is the maximal ideal. So that
E < M, consequently M € V,(E).

3. Let< 0> € V,(E). Then =< 0 >. Therefore, V;(E) = S.spec(S).

4. Clearly {< 0>} = <O>QV " Ve(I). Then by part (3), {< 0>} = S.spec(S). This means

that < 0 > is dense in S. spec(S). Thus < 0 > is a generic point in S. spec(8).

Remark 3.3. Let 8§ be an SI ring. Then the family of all closed subsets of S.spec(S8) and the
family of all open subsets of S. spec(8) are well ordered by inclusion.

Proposition 3.4. Let § be an Artinian SI ring. Then

1. The family of all ideals of § constructs an ascending chain of ideals of the form:
Ihclhc--cl,_;.

2. The family of closed subsets of S.spec(S), construct an ascending chain of closed subsets
of the form: V,(I,,_,) c --- c V(1) < V,(I).

3. The family of open sets of S.spec(S8), construct an ascending chain of open subsets of the
form:

Xs(lp) € Xs(I) € -+ € Xs(—y).
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Proof.

1. Let Ty = {S;}2ea be the family of all ideals of S. Then T, has a minimal ideal under inclusion
which is unique since the ideals are ordered by inclusion. Suppose that I, is the minimal ideal
of Ty. Foreach k € Z*, let I, is the minimal ideal of T,, where T, = Ty_;\{Ix—1}. Then clearly
Ix_1 € I and there is no ideal J in Ty = {S;},ea Such that I,_; < J c I,. Consequently, we
obtain a chain of ideals I, c I, c I, c --- of T,. Since § is Artinian, there exists t € Z* such
that I, = I, = ---. Therefore, the ideals in T, form the following ascending chain of ideals:
Iycl,c--cl,_;.

2 and 3 follow from Remark 3.3.

The following Proposition is easy to prove so the proof is omitted.

Proposition 3.5. Let § be an SI ring. Then

1. The space S.spec(S) is connected.

2. The space S.spec(S) is locally connected.
3. The space S. spec(8) is hyperconnected.
4. The space S. spec(S8) is ultraconnected.

Recall from [12], a space X is zero-dimensional if it has a basis consisting of clopen sets,
and it is strongly zero-dimensional if for any closed set A and an open set U containing A, there
exists a clopenset V suchthat A € V < U.

Proposition 3.6. Let § be an SI ring. Then
1. If § is not a field, then the space S. spec(8) is not zero-dimensional.
2. The space S.spec(S) is strongly zero-dimensional.

Proof.

1. Let B be a basis of the S.spec(S) topology and X,(E) € B for some E < §. By Proposition
3.2(1), either X,(E) = ¢ or < 0 >€ X (E). This means that the space S. spec(S) has only two
clopen subsets which are ¢ and S.spec(S8). Therefore, if § is not a field, then the space
S.spec(8) is not zero-dimensional.

2. Let A = V,(E) be closed set contained inan openset U = X,(F)where E,F € §.If V.(E) =
@ ,takeV =0@,thenA € V < U.If A+ @, then by Proposition 3.2, the maximal ideal M of
S belongs to V;(E). So that M € X.(F), consequently M c< F >. Therefore, X;(F) = U =
S.spec(S).PutV = S.spec(S), thengp #A < V < U.

Recall from [9], aring § is said to be m-regular if for every element r € § there is some
element x € § such that »™xr™ = r™ and recall from [3, p. 750], the Krull dimension of a
commutative ring § is the maximum possible length of a chain P, ¢ P, c ...c P, of distinct
prime ideals in S.

Proposition 3.7. Let 8§ be an ST ring with Krull dimension zero, then

1. §is m-regular.

2. The space Spec(8) is zero-dimensional.

Proof.

1. By Proposition 2.8, § is a clean ring. Since § has Krull dimension zero, then by [12, pp.
2670, Corollary 2.8], § is m-regular.

2. This is a direct consequence of [12, pp. 2669, Theorem 2.3].

Proposition 3.8. Let § be an ST ring which is not a field. Then
1. The space S.spec(S) is T,.
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2. The space S.spec(S) is not T;.

3. The space S.spec(8) is not regular.
4. The space S.spec(S) is normal.

5. The space S.spec(S) is sober.

Proof.

1. It follows from the definition of a T, space.

2. Since § is not a field, then it has at least two proper ideals I and J. Suppose that there are
two open sets X (E) and X (F) such that I € X;(E) and J € X,(F). By Remark 3.3, X;(E) S
X(F) or X,(F) € X,(E). Therefore, the space S.spec(S)is not T;.

3. Since § is not a field, then M =< 0 > where M is the maximal ideal of . Clearly V;(M) =
{M}, then < 0 >¢ V,(M), but by Remark 3.3, there are no disjoint open subsets X(E) and
X(F) such that < 0 >€ X (E) and M € X,(F).

4. By Remark 3.3, every two closed subsets of S.spec(8) are comparable, then the space
S.spec(8) is normal.

5. Every closed subset of S. spec(8) is irreducible since the only clopen subsets of S. spec(S)
are @ and S. spec(8). Now, let A be a closed subset of S.spec(S). So that there is an ideal I of
S such that A =V,(I) ={S:S is a proper ideal of SandI S S} # @. Then clearly {I} =

. IQU)VS(]) = V.(I). If there is another ideal ] # I such that {J} = V;(I), then V,(I) = V,(J). So
EVs

that I € V;(J) and J € V,(I) consequently, I € Jand J < I, contradiction. Therefore, the space
S.spec(8) is sober.

Conclusions

In this paper, the concept of a strongly irreducible ring is introduced. Some properties and
characterizations of strongly irreducible ring are given. Relations between such rings and some
types of other rings are discussed. It is shown that the ring = Z,, is an SI ring if and only if
m = p™ for some prime p and positive integer n. For an SI ring 8, the concepts of V(E), X;(E)
forasubset E of § and S. spec(S) topology are introduced. Some properties of V;(E) and X (E)
are discussed. The maximal ideal of § belongs to every nonempty closed subset V,(E) of
S.spec(8) and the zero ideal of § belongs to every nonempty open subset X, (E) of S. spec(S).
Some properties of S. spec(S) topology are investigated. It is shown that the family of all open
subsets (resp. closed subsets) of S. s(8) is well ordered by inclusion. Moreover, S.spec(S)
topology is T,, normal and sober but it is neither T; nor regular space.

References

[1] P. A. Hummadiand R. S. Rasheed, "Toplogies on Modules," Zanko, vol. 5, no. 4, pp. 59-66,
1992.

[2] P.Hummadi and R. A. Muhammad, "Special Spectrum Topology," Zanko, vol. 22, no. 2, pp.
125-130, 2010.

[3] D.S.Dummitand R. M. Foote , Abstract Algebra, Third Edition, The United States of America:
Wiley Hoboken, 2004.

[4] A. Azizi, "Strongly Irreducible Ideals,” Journal of the Australian Mathematical Society, vol. 84,
no. 2, pp. 145-154, 2008.

[5] H. A. Ahmad and P. A. Hummadi, "N Sequence Prime Ideals," Iragi Journal of Sciencs, vol. 62,
no. 10, pp. 3672-3678, 2021.

[6] W.J. Heinzer, L. J. Ratliff Jr and D. E. Rush, "Strongly Irreducible Ideals of a Commutative
Ring," Journal of Pure and Applied Algebra, vol. 166, no. 3, pp. 267--275, 2002.

[71 R. Gilmer, "Multiplicative Ideal Theory," Queen's Papers in Pure and Applied Mathematics,
vol. 90, pp. 513-516, 1992.

3931



Ahmad and Hummadi Iragi Journal of Science, 2024, Vol. 65, No. 7, pp: 3922-3932

[8] C. Bakkari and K. Ouarghi, "On 2-Bezout Rings," Internationnal Journal of Algebra, vol. 4, no.
5, pp. 241 - 245, 2010.

[9] N. A. Immormino, Clean Rings & Clean Group Rings, Ohio: Bowling Green State University,
2013.

[10] T.-K. Lee, "A Class Of Exchange Rings," Glasgow Mathematical Journal, vol. 50, no. 3, p.
509-522, 2008.

[11] A. Badawi , "On Divided Commutative Rings," Communications in Algebra, vol. 27, no. 3, pp.
1465-1474, 1999.

[12] Dancheng Lu and Weihong Yu, "On Prime Spectrums of Commutative Rings," Communications
in Algebra, vol. 34, no. 7, pp. 2667-2672, 2006.

[13] A. K. Faraj and S. J. Shareef, "Jordan Permuting 3-Derivations of Prime Rings," Iraqgi Journal of
Science, vol. 58, no. 2A, pp. 687-693, 2017.

[14] B. Corbas and G. D. Williams, "Rings of Order P power 5 Part Il. Local rings," Journal of
Algebra, pp. 691-704, 2000.

[15] A. V. Arkhangerskii and V. I. Ponomarev , Fundamentals of general topology: problems and
exercises, vol. 13, Dordrecht / Boston / Lancaster: D. Reidel Publishing Company, 2001.

[16] C. F. Tedd, Ring Constructions On Spectral Spaces, Manchester: The University of Manchester
(United Kingdom), 2017.

3932



