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Abstract 

      Let 𝛫 be a proper ideal of a commutative ring 𝓢. Then 𝛫 is a strongly irreducible 

(𝑆𝐼)  ideal if for any two ideals 𝐴 and 𝐵 of 𝓢, 𝐴 ∩ 𝐵 ⊆  𝛫 implies 𝐴 ⊆  𝛫 or 𝐵 ⊆  𝛫. 

We say a ring is strongly irreducible (𝑆𝐼) if all its proper ideals are strongly 

irreducible. In this paper, some properties and characterizations of such rings are 

given. The relations between 𝑆𝐼 rings and some types of rings are also studied. For an 

𝑆𝐼 ring 𝓢, the S strongly irreducible spectrum 𝑋 = 𝑆. 𝑠𝑝𝑒𝑐(𝓢) of 𝓢 is the set 

𝑆. 𝑠𝑝𝑒𝑐(𝓢)= {I: I is an ideal of 𝓢} and the S variety of a subset 𝐸 of 𝓢 is the set 𝑉𝑠 (𝐸) 

= {I ∈ 𝑆. 𝑠𝑝𝑒𝑐(𝓢): 𝐸 ⊆ I }. Then  the family 𝐹 = {𝑉𝑠(𝐸): 𝐸 ⊆ 𝓢} satisfies the axioms 

for closed sets of a topology on 𝑋 = 𝑆. 𝑠𝑝𝑒𝑐(𝓢).  Consequently,  if  𝑋𝑠(𝐸) =
𝑆. 𝑠𝑝𝑒𝑐(𝓢)\𝑉𝑠(𝐸), then the family 𝐻 = {𝑋𝑠(𝐸): 𝐸 ⊆ 𝓢} forms a topology on 𝑋 =
𝑆. 𝑠𝑝𝑒𝑐(𝓢). This topology is said to be 𝑆. 𝑠𝑝𝑒𝑐(𝓢) topology or S Zariski topology. In 

this work, some properties of 𝑆. 𝑠𝑝𝑒𝑐(𝓢) topology are also studied.  
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 للاختزال بقوة و طيفهاقابلة الحلقة غير 
 

  ، بروين حمادي *هيمن عبد الله
 العراق   أربيل،   أربيل، -الدين صلاح  جامعة  التربية،   كلية قسم الرياضيات، 

 
 الخلاصة 

هو مثالي غير قابل للاختزال بقوة  إذا كان لأي    𝛫 . عندئذ    𝓢مثالي فعلي للحلقة الابدالية    𝛫ليكن        
𝓢،Aمن    Bو    Aن  يمثالي ∩ B ⊆  Κ      يؤدى الى  A ⊆ Κ    او B ⊆  Κ .  حلقة غير    انهاما  لحلقة    ىنسم

لاختزال بقوة. في هذا البحث تم  ل إذا كانت كل المثاليات الفعلية للحلقة غير قابلة  قابلة للاختزال بقوة و طيفها  ال
قابلة للاختزال بقوة  الحلقة غير     هذه الحلقة. تمت دراسة العلاقات بينتوصيفات     و إعطاء بعض خصائص  

.𝑆. المجموعة  نعرفقابلة للاختزال بقوة  الحلقة غير    𝓢لتكن    الحلقات. وبعض أنواع  𝑠𝑝𝑒𝑐(𝓢) = {𝐽: 𝐽 is 
an ideal of 𝓢}  جزئيةلكل مجموعة  𝐸  من 𝓢  وعة  ل  متنالمجموعة اليرمز𝐸   من نمط𝑆  ب𝑉𝑠(𝐸)   بأنها

.𝑉𝑠(𝐸) = {I ∈ 𝑆    المجموعة 𝑠𝑝𝑒𝑐(𝓢): 𝐸⊆I}   عندئذ العائلة𝐹 = {𝑉𝑠(𝐸): 𝐸 ⊆ 𝓢}    مغلقة تحت اتحاد
تحقق  بديهيات المجموعات المغلقة لتوبولوجيا على    𝐹 , ولذا ةت العشوائيتقاطعا المن المجموعات و   يعدد منته

𝑋 = 𝑆. 𝑠𝑝𝑒𝑐(𝓢)  الجزئية  وأ المجموعات  تجمع  𝑋𝑠(𝐸)ن  = 𝑆. 𝑠𝑝𝑒𝑐(𝓢)\𝑉𝑠(𝐸) من  𝑆. 𝑠𝑝𝑒𝑐(𝓢) 
.𝑆يجعل من    𝓢 من    𝐸جزئية  العات  مجمو ال  ولكل 𝑠𝑝𝑒𝑐(𝓢)  .نسمي هذا التوبولجي   ب   فضاء توبولوجي   

.𝑺  توبولوجي  𝒔𝒑𝒆𝒄(𝓢) . هذا التوبولوجي.   درسنا بعض خواص   
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1.  Introduction 

     Throughout this paper, we consider that 𝓢 is a commutative ring with identity. A proper 

ideal 𝛫 of 𝓢 is an 𝑆𝐼 ideal if for any two ideals 𝐶 and 𝐷 of 𝓢, 𝐶 ∩  𝐷 ⊆  𝛫 implies 𝐶 ⊆
 𝛫 or 𝐷 ⊆  𝛫 [1], [2]. In this work, we introduce and study the concept of an 𝑆𝐼 ring. In section 

two, some characterizations of such rings are given. In Proposition 2.3 and Theorem2.4, some 

properties of 𝑆𝐼 rings are discussed. Furthermore, the relations between 𝑆𝐼 ring and each the 

arithmetical ring, local ring, Bezout ring, clean ring, 𝑟-clean ring, divided ring and pseudo-

valuation ring are studied in Proposition 2.5, Corollary 2.6 and Proposition 2.8.  For a ring 𝓢,  

the S strongly irreducible spectrum 𝑋 = 𝑆. 𝑠𝑝𝑒𝑐(𝓢) of 𝓢 is the set 𝑆. 𝑠𝑝𝑒𝑐(𝓢)= {I: I is a strongly 

irreducible ideal of 𝓢 } and the S variety of a subset 𝐸 of 𝓢 is the set 𝑉𝑠 (𝐸) = {I ∈ 𝑆. 𝑠𝑝𝑒𝑐(𝓢): 
𝐸 ⊆ I }. Then   the family 𝐹 = {𝑉𝑠(𝐸): 𝐸 ⊆ 𝓢} is closed under finite union and arbitrary 

intersection. Clearly that  𝑉𝑠 (∅) = 𝑆. 𝑠𝑝𝑒𝑐(𝓢) and 𝑉𝑠 (𝓢) = ∅ so that 𝐹 satisfies the axioms for 

closed sets of a topology on 𝑋 = 𝑆. 𝑠𝑝𝑒𝑐(𝓢).  Let 𝑋𝑠(𝐸) = 𝑆. 𝑠𝑝𝑒𝑐(𝓢)\𝑉𝑠(𝐸). Then the family 

= {𝑋𝑠(𝐸): 𝐸 ⊆ 𝓢} forms a topology on 𝑋 = 𝑆. 𝑠𝑝𝑒𝑐(𝓢). This topology is said to be 𝑆. 𝑠𝑝𝑒𝑐(𝓢) 
topology or S Zariski topology [2]. In section three, 𝑆. 𝑠𝑝𝑒𝑐(𝓢) of an 𝑆𝐼 ring 𝓢 and 𝑆. 𝑠𝑝𝑒𝑐(𝓢) 
topology are studied. It is shown that for an 𝑆𝐼 ring 𝓢, the 𝑆. 𝑠𝑝𝑒𝑐(𝓢) topology is connected, 

locally connected, ultraconnected, hyperconnected, strongly zero-dimensional, normal space 

and sober space but it is not a zero-dimensional space and  it does not satisfy most of separation 

axioms.  

 

2. Strongly irreducible rings 

    In this section, some properties and characterizations of 𝑆𝐼 rings are studied and given as 

well as the relations between 𝑆𝐼 rings and some other types of rings are studied. 

 

Definition 2.1.  A ring 𝓢 is said to be an 𝑆𝐼 ring if every proper ideal of 𝓢 is an 𝑆𝐼 ideal. 

     Recall that if 𝑅 is a commutative ring with identity and 𝑆 is multiplicatively closed subset 

of 𝑅 containing 1 (0 ∉ 𝑆, 1∈ 𝑆 and if 𝑎, 𝑏 ∈ 𝑆, then 𝑎𝑏 ∈ 𝑆), then the localization of  𝑅 at 𝑆 is 

the ring 𝑅𝑆 = {
𝑟

𝑠
: 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆} where the addition and the multiplication of the formal fractions 

𝑟

𝑠
 are defined according to the natural rules,   

𝑎

𝑠
+
𝑏

𝑡
=
𝑎𝑡+𝑏𝑠

𝑠𝑡
     and    

𝑎

𝑠
⋅
𝑏

𝑡
=
𝑎𝑏

𝑠𝑡
, respectively [3]. 

In fact 𝑅 is a subring of 𝑅𝑆. Now,  let 𝑃 be a prime ideal of 𝑅. Then 𝑅 − 𝑝 is multiplicatively 

closed subset of 𝑅. Then the localization of 𝑅 at the prime ideal 𝑃 is the ring 𝑅𝑃={
𝑎

𝑏
: 𝑎 ∈ 𝑅, 𝑏 ∈

𝑅 − 𝑃} where the addition and multiplication are defined as the same as above.  

 

Examples 2.2.   

1. The localization of ℤ at the prime ideal 𝑄 =< 𝑞 > of ℤ, 𝑞 is a prime number is ℤ<𝑞> = {
𝑎

𝑏
∈

ℚ : 𝑞 ⫮ 𝑏}. The nonzero proper ideals of  ℤ<𝑞> are of the form 𝐼𝑘 =< 𝑞
𝑘 > where 𝑘 ∈ ℤ+, these 

ideals are ordered by inclusion as follows: < 𝑞 >⊃< 𝑞2 >⊃ ⋯ ⊃< 𝑞𝑘 >⊃< 𝑞𝑘+1 >⊃ ⋯ and 

clearly  ℤ<𝑞> is an 𝑆𝐼 ring and < 𝑞 > is its maximal ideal [3, p. 706].   

2. Consider the ring 𝓢 = ℤ2[𝑡]/< 𝑡
3 >= {0, 1, 𝑡, 1 + 𝑡, 𝑡2, 1 + 𝑡2, 𝑡 + 𝑡2,    1 + 𝑡 + 𝑡2}. 

The proper ideals of 𝓢 are 𝐼1 = {0}, 𝐼2 =< 𝑡
2 >= {0, 𝑡2}, and  𝐼3 =< 𝑡 >= {0, 𝑡, 𝑡

2, 𝑡 + 𝑡2}. 
Clearly, each of these ideals is an 𝑆𝐼 ideal. Therefore, 𝓢 is an 𝑆𝐼 ring. 

 

 

 

 

 

https://en.wikipedia.org/wiki/Ultraconnected
https://en.wikipedia.org/wiki/Hyperconnected
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The following is the multiplication table of the ring 𝓢 = ℤ2[𝑡]/< 𝑡
3 >. 

* 0 1 𝑡 1 +  𝑡 𝑡2 1 + 𝑡2 𝑡 + 𝑡2 
1 + 𝑡
+ 𝑡2 

0 0 0 0 0 0 0 0 0 

1 0 1 𝑡 1 +  𝑡 𝑡2 1 + 𝑡2 𝑡 + 𝑡2 
1 + 𝑡
+ 𝑡2 

𝑡 0 𝑡 𝑡2 𝑡 + 𝑡2 0 𝑡 𝑡2 𝑡 + 𝑡2 

1 + 𝑡 0 1 + 𝑡 𝑡 + 𝑡2 1 + 𝑡2 𝑡2 
1 + 𝑡
+ 𝑡2 

𝑡 1 

𝑡2 0 𝑡2 0 𝑡2 0 𝑡2 0 𝑡2 

1 + 𝑡2 0 1 + 𝑡2 𝑡 
1 + 𝑡
+ 𝑡2 

𝑡2 1 𝑡2 1 + 𝑡 

𝑡 + 𝑡2 0 𝑡 + 𝑡2 𝑡2 𝑡 0 𝑡 𝑡2 𝑡 
1 + 𝑡
+ 𝑡2 

0 
1 + 𝑡
+ 𝑡2 

𝑡 + 𝑡2 1 𝑡2 1 + 𝑡 𝑡 1 + 𝑡2 

 

Proposition 2.3. Let 𝓢 be a ring. Then the following statements are equivalent: 

1. 𝓢 is an 𝑆𝐼 ring.  

2. Every two ideals of 𝓢 are comparable(The two ideals 𝐼 and 𝐽 of a ring are said to be 

comparable if 𝐼 ⊆ J or 𝐽 ⊆ I). 
3. For each 𝑎, 𝑏 ∈ 𝓢, < 𝑎 >⊆< b > or  < b >⊆< 𝑎 >. 

4. If 𝑎, 𝑏 ∈ 𝓢, then 𝑎|𝑏 or 𝑏|𝑎. 

5. For any two ideals 𝐶 and 𝐵 of 𝓢, 𝐶 ∩ 𝐷 is an 𝑆𝐼 ideal of 𝓢. 

6. For any two ideals 𝐶 and 𝐷 of 𝓢, 𝐶 ∪ 𝐷 is an ideal of 𝓢. 

 

Proof. 

(1) ⇔ (2). This follows from [4, pp. 150, Lemma 3.5 ]. 

(2) ⇔ (3). If every two ideals of 𝓢 are comparable, then for each 𝑎, 𝑏 ∈ 𝓢, < 𝑎 >⊆< b > or  

< b >⊆ < 𝑎 >. For the converse, let 𝐼 and 𝐽 be any two ideals of 𝓢 and suppose 𝐼 ⊈ 𝐽. Then 

there is 𝑎 ∈ 𝐽 and 𝑎 ∉ 𝐼. Hence, 𝑎 ∉< b > for each 𝑏 ∈ 𝐽, consequently < 𝑎 >⊈< b >. Then 

< b >⊆< 𝑎 >  for each 𝑏 ∈ 𝐽. So that 𝐽 ⊆ 𝐼.  
(3) ⇔ (4). It is obvious. 
(2) ⇔ (5) Let 𝐶 and 𝐷 be any two ideals of 𝓢 and 𝐶 ∩ 𝐷 be an 𝑆𝐼 ideal. Since 𝐶 ∩ 𝐷 ⊆ 𝐶 ∩ 𝐷, 

then  𝐶 ⊆ 𝐶 ∩ 𝐷 or 𝐷 ⊆ 𝐶 ∩ 𝐷. So that 𝐶 ⊆ 𝐷 or 𝐷 ⊆ C. For the converse, suppose that 𝐶 and 

𝐷 are any two ideals of 𝓢 and let 𝐼 and 𝐽 be two ideals with 𝐼 ∩ 𝐽 ⊆ 𝐶 ∩ 𝐷. From the assumption 

𝐼 ⊆ 𝐽 or 𝐽 ⊆ 𝐼, consequently 𝐼 ∩ 𝐽 = 𝐼 ⊆ 𝐶 ∩ 𝐷 or 𝐼 ∩ 𝐽 = 𝐽 ⊆ 𝐶 ∩ 𝐷.   
(2) ⇔ (6) is well known. 

  

Theorem 2.4. Let 𝓢 be an 𝑆𝐼 ring. Then  

1. Any localization of 𝓢 is an 𝑆𝐼 ring. 

2. Every finitely generated ideal of 𝓢 is principal. 

3. If 𝓢 is Noetherian, then 𝓢 is a principal ideal ring. 

4. If 𝐼 is a proper ideal of 𝓢, then 𝓢/𝐼 is an 𝑆𝐼 ring. 

5. The homomorphic image of an 𝑆𝐼 ring is an 𝑆𝐼 ring. 

6. Every nonmaximal proper ideal is contained in a proper principal ideal. 

7. If 𝓢 is an Artinian ring, then 𝓢 has a unique prime ideal which is the maximal ideal. 

8. The only idempotents of 𝓢 are 0 and 1. 

9. If 𝐼 is an ideal of 𝓢, then 𝐼 is not an 𝑛-sequence prime ideal of 𝓢.  
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Proof.  

1. Let 𝑆 be a nonzero multiplicatively closed subset of 𝓢 and 𝑀,𝑁 be two ideals in 𝓢𝑆. Then 

there are two ideals 𝐼, 𝐽  in 𝓢 such that 𝑀 = 𝐼𝑆 and 𝑁 = 𝐽𝑆. Since 𝓢 is an 𝑆𝐼 ring, then  𝐼 ⊂ 𝐽 or 

𝐽 ⊂ 𝐼. If 𝐼 ⊂ 𝐽 and 𝑥 ∈ 𝑀. Then 𝑥 =
𝑎

𝑠
  where 𝑎 ∈ 𝐼 ⊂ 𝐽, 𝑠 ∈ 𝑆. This means 𝑥 ∈ 𝑁. Therefore, 

𝑀 ⊂ 𝑁. Similarly if 𝐽 ⊂ 𝐼, then 𝑁 ⊂ 𝑀. Therefore, by Proposition 2.3, 𝓢 is an 𝑆𝐼 ring.  

2. It is enough to show that every ideal generated by two elements is principal. So let 𝐼 = <
𝑓, 𝑔 > be an ideal of R. Then < 𝑓 > ⊆ < 𝑔 > or < 𝑔 >⊆ < 𝑓 >, so 𝐼 =< 𝑔 > or 𝐼 =< 𝑓 >.  

3. Let 𝓢 be Noetherian. Then every ideal of 𝓢 is finitely generated. By part 2, 𝓢 is a principal 

ideal ring. 

4. Let 𝐼 be a proper ideal of 𝓢 and < 𝑎 + 𝐼 >, < 𝑏 + 𝐼 > be two ideals of 𝓢/𝐼. Since 𝓢 is an 

𝑆𝐼 ring, then < 𝑎 >⊆< 𝑏 > or < 𝑏 > ⊆< 𝑎 >. So that < 𝑎 + 𝐼 >⊆< 𝑏 + 𝐼 > or < 𝑏 + 𝐼 >
⊆< 𝑎 + 𝐼 >. By Proposition 2.3, 𝓢 is an 𝑆𝐼 ring. 

5. Let 𝑓: 𝓢1 → 𝓢2 be a ring homomorphism and 𝓢1 be an 𝑆𝐼 ring. Since 𝑘𝑒𝑟(𝑓) is an ideal of 

𝓢1, then 𝓢1/𝑘𝑒𝑟(𝑓) ≅ 𝑓(𝓢1) and by part 4, 𝓢1/𝑘𝑒𝑟(𝑓) is an 𝑆𝐼 ring, consequently, 𝑓(𝓢1) is an 

𝑆𝐼 ring. 

6. Let 𝐼 be a non maximal proper ideal of 𝓢. Then there is a maximal ideal 𝑀 such that 𝐼 ⊂ 𝑀. 

Then there is 𝑥 ∈ 𝑀 and 𝑥 ∉ 𝐼. Hence, 𝑥 ∉< 𝑎 > for each 𝑎 ∈ 𝐼, consequently < 𝑥 >⊈< 𝑎 >. 

By Proposition 2.3, < 𝑎 >⊆< 𝑥 >  for each 𝑎 ∈ 𝐼. Therefore, 𝐼 ⊆< 𝑥 >. 

7. Let 𝑃 and 𝑄 be two prime ideals of an 𝑆𝐼 Artinian ring 𝓢. By [3, pp. 752, Theorem 3(3) ], 

both 𝑃 and 𝑄 are maximal ideals, but it is well known that two maximal ideals cannot  be 

comparable. So that there is a unique prime ideal. 

8. Let 𝓢 be an 𝑆𝐼 ring and 𝑒 ∈ 𝓢 be a non-trivial idempotent(𝑒 ≠ 0, 1). Then 1 − 𝑒 is a non-

trivial idempotent. Then by Proposition 2.3, either < 𝑒 >⊆< 1 − 𝑒 > or < 1 − 𝑒 >⊆< 𝑒 >. 

This implies either 1 ∈< 1 − 𝑒 >  or 1 ∈< 𝑒 >. Consequently < 1 − 𝑒 >= 𝓢 or < 𝑒 >= 𝓢, 

contradiction. 

9. Let 𝐼 be a proper ideal of 𝓢. By [5, pp. 3677, Theorem 3.10], 𝐼 is not an 𝑛-sequence prime 

ideal of 𝓢. 
 

Recall from [6], a ring 𝓢 is said to be arithmetical if for all ideals  𝐼, 𝐽  and 𝐾 of 𝓢, we have 

(𝐼 +  𝐽 )  ∩  𝐾 =  (𝐼 ∩  𝐾) + (𝐽 ∩  𝐾). 
Proposition 2.5. Let 𝓢 be a ring and 𝑀 be a maximal ideal of 𝓢. Then 𝓢𝑀,  the localization of 

𝓢 at 𝑀 is an 𝑆𝐼 ring if and only if 𝓢 is an arithmetical ring.  

Proof. This obtained by [7, pp. 321, Exercises 19] and Proposition 2.3.  

 

Corollary 2.6. Let 𝓢 be a ring. Then 

1. If 𝓢 is an 𝑆𝐼 ring, then it is arithmetical. 

2. If 𝓢 is an arithmetical ring and its ideals are irreducible, then 𝓢 is an 𝑆𝐼 ring. 

Proof. 

1. Let 𝐼, 𝐽  and 𝐾 be three ideals of an 𝑆𝐼 ring 𝓢. There are six cases, without loss of generality, 

we suppose 𝐼 ⊂  𝐽  ⊂ 𝐾. Then 𝐼 ∩  (𝐽 + 𝐾 ) = 𝐼 ∩  𝐾 = 𝐼 and (𝐼 ∩  𝐽) + (𝐼 ∩  𝐾) = 𝐼 + 𝐼 =
𝐼. The proof of the other cases are similar. Therefore, 𝐼 ∩ (𝐽 + 𝐾 )  =  (𝐼 ∩  𝐽) + (𝐼 ∩  𝐾).   
2. The proof follows from [6, pp. 269, Lemma 2.2(3)]. 

 

Remark 2.7. An arithmetical ring does not need to be an 𝑆𝐼 ring. For example, the ring of 

integers is arithmetical, but it is not an 𝑆𝐼 ring. 

Now we recall some definitions that are used throughout this work:  

1. A ring 𝓢 is called Bezout if every finitely generated ideal 𝐼 of 𝓢 is principal [8]. 

2. A ring 𝓢 is called a local ring if it has a unique maximal ideal [3]. 

https://mathworld.wolfram.com/Ideal.html
https://mathworld.wolfram.com/FinitelyGenerated.html


Ahmad and Hummadi                               Iraqi Journal of Science, 2024, Vol. 65, No. 7, pp: 3922-3932 

3926 

3. A ring 𝓢 is called clean if each element of 𝓢 can be expressed as the sum of a unit element 

and an idempotent element and 𝓢 is called 𝑟-clean if each element of 𝓢 can be expressed as 

the sum of a regular element and an idempotent element [9]. 

4. A ring 𝓢 is an exchange ring if for any 𝑎 ∈ 𝓢, 𝑎 −  𝑒 ∈  (𝑎2 −  𝑎) 𝓢 for some 𝑒2  =  𝑒 ∈ 
𝓢 [10]. 

5. A ring 𝓢 is said to be semipotent if each ideal of 𝓢 that is not contained in its Jacobson 

radical contains a nonzero idempotent. A semipotent ring 𝓢 is said to be potent if idempotents 

lift modulo its Jacobson radical [9]. 

6. A  prime ideal 𝑃 of a ring 𝓢 is called divided if 𝑃 is comparable to every principal ideal of 

𝓢. If every prime ideal of 𝓢 is divided, then 𝓢 is called a divided ring [11].   

7. A prime ideal 𝑃 of 𝓢 is called strongly prime if 𝑎𝑃 and 𝑏𝓢 are comparable for every 𝑎, 𝑏 ∈ 
𝓢. If every prime ideal of a ring 𝓢 is strongly prime, then 𝓢 is called a pseudo-valuation ring 

[11]. 

 

In the following proposition, we give a relation between an 𝑆𝐼 ring and some other types of 

rings. 

 

Proposition 2.8. If 𝓢 is an 𝑆𝐼 ring, then  

1. 𝓢 is a Bezout ring. 

2. 𝓢 is a local ring. 

3. 𝓢 is a clean ring (Resp. exchange ring, semipotent ring, potent ring, 𝑟-clean ring). 

4. 𝓢 is a divided ring. 

5. 𝓢 is a pseudo-valuation ring. 

Proof.   

1. It follows from Theorem 2.4(2). 

2. Suppose 𝓢 has at least two maximal ideals 𝐼 and 𝐽. Then   by Proposition 2.3,  𝐼 ⊂ 𝐽 or 𝐽 ⊂ 𝐼, 
we get a contradiction since two maximal ideals cannot be comparable. Therefore, 𝓢 has a 

unique maximal ideal.  

3. Let 𝓢 be an 𝑆𝐼 ring. Then from Part 2, 𝓢 is a local ring. Let 𝑀 be the maximal ideal of 𝓢 and 

𝑎 ∈ 𝓢. If 𝑎 ∈ 𝑀, then clearly 𝑎 − 1 ∉ 𝑀 which means 𝑢 = 𝑎 − 1 is a unit. Then  𝑎 = 𝑢 + 1 is 

a clean element. If 𝑎 ∉ 𝑀, then 𝑎 is a unit. Hence, 𝓢 is a clean ring, consequently, 𝓢 is 𝑟-clean. 

By [9, pp. 3, Proposition 1.4], [9, pp. 5, Proposition 1.8] and [9, pp. 5, Corollary 1.9], 𝓢 is an 

exchange ring, semipotent ring and a potent ring.  

Parts 4 and 5 are obvious. 

The following examples show that the converse of none of the statements given in Proposition 

2.8 is true in general. 

 

Examples 2.9.  

1. A Bezout ring does not need to be an 𝑆𝐼 ring. In particular, a principal ideal ring does not 

need to be an 𝑆𝐼 ring. For example, every finitely generated ideal of ℤ is a principal ideal, but 

ℤ is not an 𝑆𝐼 ring. 

2. Consider the ring 𝓢 = ℤ2[𝑥, 𝑦]/< 𝑥
2, 𝑦2 >= {0, 1,  𝑥,  𝑦, 𝑥𝑦, 1 + 𝑥, 1 + 𝑦, 1 + 𝑥𝑦, 𝑥 +

𝑦,  𝑥 + 𝑥𝑦, 𝑦 +  𝑥𝑦, 1 + 𝑥 + 𝑦, 1 + 𝑥 + 𝑥𝑦, 1 + 𝑦 + 𝑥𝑦, 𝑥 + 𝑦 + 𝑥𝑦, 1 + 𝑥 + 𝑦 + 𝑥𝑦}. The 

nonzero proper ideals of 𝓢 are 𝐼1 =< 𝑥 >= {0, 𝑥, 𝑥𝑦, 𝑥 + 𝑥𝑦}, 𝐼2 =< 𝑦 >= {0, 𝑦, 𝑥𝑦, 𝑦 + 𝑥𝑦}, 
𝐼3 =< 𝑥 + 𝑦 >= {0, 𝑥 + 𝑦, 𝑥𝑦, 𝑥 + 𝑦 + 𝑥𝑦}, 𝐼4 =< 𝑥𝑦 >= {0, 𝑥𝑦} and 𝐼5 =< 𝑥, 𝑦 >=
{0, 𝑥, 𝑦, 𝑥𝑦, 𝑥 + 𝑥𝑦, 𝑦 + 𝑥𝑦, 𝑥 + 𝑦, 𝑥 + 𝑦 + 𝑥𝑦}. Since 𝓢 has only six proper ideals which are  

< 0 >, 𝐼1, 𝐼2,  𝐼3, 𝐼4  and 𝐼5, and < 0 >, 𝐼1, 𝐼2,  𝐼3 and 𝐼4   are contained in 𝐼5, then 𝐼5 is a 
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maximal ideal of 𝓢 and there are no other maximal  ideals  of 𝓢. Hence, 𝓢 is a local ring but 𝓢 

is not an 𝑆𝐼 ring since the two ideals  𝐼1  and 𝐼2 are not comparable.  

3. Consider the group ring  𝓢 = ℤ2(𝐺) where G is a cyclic group of order 3 generated by 𝑔. 

Then 𝓢 = ℤ2(𝐺) = {0, 1, 𝑔, 𝑔
2, 1 + 𝑔, 1 + 𝑔2, 𝑔 + 𝑔2, 1 + 𝑔 + 𝑔2}. The elements 1, 𝑔 and 𝑔2 

are units and each of  0, 1, 𝑔 + 𝑔2, 1 + 𝑔 + 𝑔2 is an idempotent element. This means that 𝓢 is 

a clean ring, consequently, 𝓢 is 𝑟-clean. The proper ideals of 𝓢 are 𝐼1 =< 0 >, 𝐼2 =<  𝑔 +
𝑔2 >= {0,   𝑔 + 𝑔2 , 1 + 𝑔2, 1 +  𝑔 } and 𝐼3 =<  1 + 𝑔 + 𝑔

2 >= { 0, 1 + 𝑔 + 𝑔2 }. Clearly, 𝐼1 

is not an 𝑆𝐼 ideal. Hence, 𝓢 is not an 𝑆𝐼 ring.  

 

The following is the multiplication table of the ring 𝓢 = ℤ2(𝐺) 
* 0 1 𝑔 1 +  𝑔 𝑔2 1 + 𝑔2 𝑔 + 𝑔2 1 + 𝑔 + 𝑔2 

0 0 0 0 0 0 0 0 0 

1 0 1 𝑔 1 +  𝑔 𝑔2 1 + 𝑔2 𝑔 + 𝑔2 1 + 𝑔 + 𝑔2 

𝑔 0 𝑔 𝑔2 𝑔 + 𝑔2 1 1 +  𝑔 1 + 𝑔2 1 + 𝑔 + 𝑔2 

1 + 𝑔 0 1 + 𝑔 𝑔 + 𝑔2 1 + 𝑔2 1 + 𝑔2 
𝑔
+ 𝑔2 

1 + 𝑔 0 

𝑔2 0 𝑔2 1 1 + 𝑔2 𝑔 
𝑔
+ 𝑔2 

1 + 𝑔 1 + 𝑔 + 𝑔2 

1 + 𝑔2 0 1 + 𝑔2 1 + 𝑔 𝑔 + 𝑔2 𝑔 + 𝑔2 1 + 𝑔 1 + 𝑔2 0 

𝑔 + 𝑔2 0 𝑔 + 𝑔2 1 + 𝑔2 1 + 𝑔 1 + 𝑔 1 + 𝑔2 𝑔 + 𝑔2 0 

1 + 𝑔 + 𝑔2 0 1 + 𝑔 + 𝑔2 
1 + 𝑔
+ 𝑔2 

0 
1 + 𝑔
+ 𝑔2 

0 0 1 + 𝑔 + 𝑔2 

 

4. Let 𝓢 = ℤ4[𝑥]/< 2𝑥, 𝑥
2 >= {0, 1, 2, 3, 𝑥, 1 + 𝑥, 2 + 𝑥, 3 + 𝑥}. The proper ideals of 𝓢 are 

𝐼1 =< 0 >, 𝐼2 =< 2 >= {0, 2} , 𝐼3 =< 𝑥 >= {0, 𝑥}, 𝐼4 =< 2 + 𝑥 >= {0, 2 + 𝑥}  and 𝐼5 =<
2, 𝑥 >= {0, 2, 𝑥, 2 + 𝑥}. The only prime ideal of 𝓢 is 𝐼5 which is the maximal ideal of 𝓢 and 

contains all other ideals.  So 𝓢 is a divided ring and 𝓢 is not an 𝑆𝐼 ring, since < 0 > is not an 

𝑆𝐼 ideal. Furthermore, 𝓢 is a pseudo-valuation ring. 

 

Recall that a ring 𝓢 is said to be regular if for every element 𝑟 ∈ 𝓢 there is some element 𝑥 ∈ 𝓢 

such that 𝑟𝑥𝑟 =  𝑟  [9]. 

 

Proposition 2.10.  If 𝓢 is an 𝑆𝐼 ring which is not a field, then 𝓢 is not a regular ring.  

Proof. Let 𝓢 be an 𝑆𝐼 ring which is not a field, then 𝓢 has a nonzero proper ideal 𝐼. By Theorem 

2.4(8), 𝓢 has no non-trivial idempotent. Now, if 𝓢 is a regular ring, then by [12, pp. 2671, 

Corollary 2.9],  𝐼 is generated by a non-trivial idempotent, then we get a contradiction. 

Therefore, 𝓢 is not a regular ring. 

 

Recall that a ring 𝓢 is said to be a Zerlegung prime ideal  ring (ZPI-ring) if every proper ideal 

of 𝓢 can be written as a product of prime ideals of 𝓢  [4], and a commutative ring 𝓢 is said to 

be  a prime  ring  if  𝑎𝑏𝓢 =< 0 >  implies  that  𝑎 = 0  or  𝑏 = 0  such  that 𝑎, 𝑏 ∈ 𝓢  [13]. 

 

Remark 2.11.  

1. If 𝓢 is a local 𝑍𝑝𝐼 ring, then it is an 𝑆𝐼 ring. This follows from [4, pp. 150, Theorem 3.7] 

and Proposition 2.3.  

2. A subring of an 𝑆𝐼 ring does not need to be an 𝑆𝐼 ring. For example, the subring ℤ  of ℚ is 

not an 𝑆𝐼 ring since   ℤ has at least two non-comparable ideals but ℚ is an 𝑆𝐼 ring since the  zero 

ideal is the only proper ideal of ℚ. 

3. An 𝑆𝐼 ring does not need to be a prime ring. For example, the ring ℤ8 is an 𝑆𝐼 ring but it is 

not a prime  ring since 2, 4 ∈ ℤ8\{0} and (2)(4)ℤ8 =< 0 >. 
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Proposition 2.12.  Let 𝓢= ℤ𝑚, the ring of integers modulo 𝑚. Then 𝓢 is an 𝑆𝐼 ring if and only 

if 𝑚 = 𝑝𝑛 for some prime 𝑝 and positive integer 𝑛. 

 

Proof. Let 𝑚 = 𝑝𝑛 for some prime 𝑝 and positive integer 𝑛 that is 𝓢= ℤ𝑝𝑛. Clearly, the ideals 

of ℤ𝑝𝑛  are  

< 𝑝 >,< 𝑝2 >,… ,< 𝑝𝑛−1 >, < 0 >  and all these ideals are comparable. Therefore, 𝓢 an 𝑆𝐼 
ring. Now, for the converse, suppose that  ℤ𝑚 is an 𝑆𝐼 ring. Let  𝑚 = 𝑝1

ℎ1𝑝2
ℎ2 …𝑝𝑟

ℎ𝑟 be the 

prime factorization of 𝑚. Since the additive group H of the ring 𝓢 is finite, then H≃
ℤ𝑝1ℎ1 × ℤ𝑝2ℎ2 . . . ℤ𝑝𝑟ℎ𝑟 . We claim that 𝑟 is equal to one. If 𝑟 is greater than one, put 𝐴 =<

𝑝1
ℎ1 >× {0} × {0} × … × {0} ⏟            

                               (𝑟−1)− 𝑡𝑖𝑚𝑒𝑠 

 and 𝐵 = {0} ×< 𝑝2
ℎ2 >× {0} × {0} × … × {0} ⏟            

                               (𝑟−2)− 𝑡𝑖𝑚𝑒𝑠 

, then 𝐴 ∩

𝐵 = {0} × {0}. . .× {0} but neither 𝐴 = 0 nor 𝐵 = 0. Then the zero ideal is not an 𝑆𝐼 ideal. 

Consequently 𝑟 = 1. Then 𝓢 ≃ ℤ𝑝𝑛 for some 𝑛 ∈ ℤ+ and a prime number 𝑝. 

 

Remark 2.13. If 𝓢 is a ring with 𝑝𝑛 elements where 𝑝 is a prime number and 𝑛 > 1, and the 

additive group of 𝓢 is isomorphic to the additive group (ℤ𝑝𝑛, +𝑝𝑛), then 𝓢 is an 𝑆𝐼 ring. This 

statement is true since the additive group of every ideal of 𝓢 is isomorphic to a subgroup of the 

group (ℤ𝑝𝑛, +𝑝𝑛) and the family of these subgroups is ordered by inclusion. Now, the following 

question impose itself “ Is there any 𝑆𝐼 ring of characteristic  𝑝𝑛 different from the ring (ℤ𝑝𝑛, 

+𝑝𝑛, .𝑝𝑛) whose additive group is isomorphic to the group (ℤ𝑝𝑛, +𝑝𝑛)?”. In [14], it is shown 

that for each prime 𝑝 and positive integer 𝑛 ≤ 5 there is only one ring of characteristic 𝑝𝑛 which 

is (ℤ𝑝𝑛, +𝑝𝑛, .𝑝𝑛) itself. So that a partial answer for the previous question is given as follows: 

For each prime p and positive integer 𝑛 ≤ 5 the only   ring with characteristic 𝑝𝑛 is the ring 

(ℤ𝑝𝑛, +𝑝𝑛, .𝑝𝑛). 

 

The following result is clear so the proof is omitted. 

Proposition 2.14. Let 𝓢 be a local ring of order 𝑝𝑛 whose maximal ideal is principal. If 𝓢 is an 

𝑆𝐼 ring, then for each 1 ≤ 𝑘 < 𝑛 the ring 𝓢 has at most one ideal of order 𝑝𝑘.  

 

Now, we have to mention that there is a finite   ring that is not isomorphic to the ring ℤ𝑝𝑛 for 

each prime 𝑝 and 𝑛 > 1 as it is shown in the following example. 

 

Examples 2.15.  

1. Consider the quotient ring 𝓢 = ℤ2[𝑥]/< 𝑥
2 >= {0, 1, 𝑥, 1 + 𝑥} with 𝑥2 = 0. The ring 𝓢 

has three proper ideals 𝐼1 =< 0 >= {0}, 𝐼2 =< 𝑥 >= {0, 𝑥}, which are ordered by inclusion 

but it is not isomorphic with the ring ℤ𝑝𝑛 for each prime 𝑝 and a positive integer 𝑛. 

2. Consider the quotient ring 𝓢 = ℤ2[𝑥]/< 𝑥
3 >= {0, 1, 𝑥, 𝑥2, 1 + 𝑥, 1 + 𝑥2, 𝑥 + 𝑥2, 1 +

𝑥 + 𝑥2 } with 𝑥3 = 0. The proper ideals of 𝓢 are 𝐼1 = {𝟎}, 𝐼2 =< 𝑥
2 >= {𝟎, 𝑥2}, 𝐼2 =< 𝑥 >=

{𝟎, 𝑥, 𝑥2 , 𝑥 + 𝑥2}. Note that 𝓢 has 23 elements, one ideal of order 2 and one ideal of order 

22. It is not difficult  to show that the additive group (𝓢, +) is isomorphic to the additive group 

of the ring ℤ2 × ℤ2 × ℤ2 with usual addition  and multiplication. Clearly that 𝓢 is an 𝑆𝐼 ring, 

and the characteristic of 𝓢 is 2.  

 

3. S spectrum of 𝑆𝐼 rings 

     Let 𝓢 be a commutative ring  and 𝑋 = 𝑆𝑝𝑒𝑐(𝓢) = {𝐽: 𝐽 is a prime ideal of 𝓢}. Then for any 

subset 𝐸 of 𝓢, 𝑉(𝐸) is defined to be the set 𝑉(𝐸) = { 𝑃: 𝑃 is a prime ideal of 𝓢 and 𝐸 ⊆ 𝑃} and 

𝑋(𝐸) = 𝑆𝑝𝑒𝑐(𝓢)\𝑉(𝐸) [3, p. 731]. In [2], this concept was  generalized to the strongly 
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irreducible spectrum 𝑋 = 𝑆. 𝑠𝑝𝑒𝑐(𝓢) of 𝓢 which  is the set 𝑆. 𝑠𝑝𝑒𝑐(𝓢) = {𝐽: 𝐽 is a strongly 

irreducible ideal of 𝓢}. For any subset E of 𝓢, the S variety of  E, denoted by 𝑉𝑠(𝐸), is the set 

𝑉𝑠(𝐸) = {𝐽 ∈ 𝑆. 𝑠𝑝𝑒𝑐(𝓢): 𝐸 ⊆ 𝐽} and 𝑋𝑠(𝐸) = {𝐽 ∈ 𝑆. 𝑠𝑝𝑒𝑐(𝓢): 𝐸 ⊈ 𝐽}. Then by 

[2, pp. 125, Proposition 3.2],  the family 𝐹={ 𝑉𝑠 (< 𝐸 >): 𝐸 ⊆ 𝑅} satisfies the axioms for 

closed sets of a topology on 𝑋 = 𝑆. 𝑠𝑝𝑒𝑐(𝓢) [1]. Now, if 𝓢 is an 𝑆𝐼 ring, then each of its proper 

ideals is an 𝑆𝐼 ideal. Then 𝑆. 𝑠𝑝𝑒𝑐(𝓢) = {𝐽: 𝐽 is a proper ideal of 𝓢}. Consequently, the S variety 

of  E, denoted by 𝑉𝑠(𝐸), is the set 𝑉𝑠(𝐸) = {𝐽: 𝐽 is a proper ideal of 𝓢 and 𝐸 ⊆ 𝐽 } and 𝑋𝑠(𝐸) =
𝑆. 𝑠𝑝𝑒𝑐(𝓢)\𝑉𝑠(𝐸) = {𝐽: 𝐽 is a proper ideal of 𝓢 and  𝐼 ⊂< 𝐸 > }. 

From the references [15], [3] and [16] , the topological concepts are taken which are used in 

this work such as open set, closed set, clopen set, basis, connected space, locally connected 

space, hyperconnected space, ultraconnected space, regular space, normal space,  𝑇0 space, 𝑇1 

space, variety, spectrum of a ring, sober space, and generic point. 

 

Remark 3.1. Let 𝓢 be an 𝑆𝐼 ring. Then  

1. 𝑋 = 𝑆. 𝑠𝑝𝑒𝑐(𝓢) = {𝐼: 𝐼 is a proper ideal of 𝓢}  

2. For each subset 𝐸 of 𝓢, 𝑉𝑠(𝐸) = {𝐽: 𝐽 is a proper ideal of 𝓢 and 𝐸 ⊆ 𝐽} equivalently  𝑋𝑠(𝐸) =
{𝐽: 𝐽 is a proper ideal of 𝓢 and 𝐽 ⊂< 𝐸 >} where < 𝐸 > is the ideal generated by 𝐸. 

3. For each ideal 𝐼 of 𝓢, 𝑉𝑠(𝐼) = {𝐽: 𝐽 is a proper ideal of 𝓢 and 𝐼 ⊆ 𝐽} equivalently  𝑋𝑠(𝐼) =
{𝐽: 𝐽 is a proper ideal of 𝓢 and 𝐽 ⊂ 𝐼}.   

4. Let 𝐵 be a basis for the 𝑆. 𝑠𝑝𝑒𝑐(𝓢) topology. For each subset 𝐸 of 𝓢, if ∅ ≠ 𝑋𝑠(𝐸)  ⊆
𝑆. 𝑠𝑝𝑒𝑐(𝓢) is an open set, then 𝑋𝑠(𝐸) ∈ 𝐵.  

 

Proposition 3.2. Let 𝓢 be an 𝑆𝐼 ring. Then  

1. Every nonempty open subset of S. 𝑠𝑝𝑒𝑐(𝓢) contains the zero ideal. 

2. Every nonempty closed subset of S. 𝑠𝑝𝑒𝑐(𝓢) contains the maximal ideal of 𝓢. 

3. If < 0 >∈ 𝑉𝑠(𝐸) for some 𝐸 ⊆ 𝓢, then 𝑉𝑠(𝐸) = S. 𝑠𝑝𝑒𝑐(𝓢). 
4. < 0 > is a generic point in S. 𝑠𝑝𝑒𝑐(𝓢).  
Proof.  

1. Let 𝑋𝑠(𝐸) ≠ ∅ be an open subset of S. 𝑠𝑝𝑒𝑐(𝓢). Then there is an ideal 𝐽 of 𝓢, 𝐽 ∈ 𝑋𝑠(𝐸). By 

Remark 3.1, 𝑋𝑠(𝐸) = {𝐼: 𝐼 is a proper ideal of 𝓢 and 𝐼 ⊂< 𝐸 >}, consequently 𝐽 ⊂< 𝐸 >.  

Since  < 0 >⊆ 𝐽 ⊂< 𝐸 >, then < 0 >∈ 𝑋𝑠(𝐸). 
2. Let 𝑉𝑠(𝐸) be a nonempty closed subset of S. 𝑠𝑝𝑒𝑐(𝓢). Then there is a proper ideal 𝐽 of 𝓢 such 

that 𝐽 ∈ 𝑉𝑠(𝐸).  By Remark 3.1, 𝑉𝑠(𝐸) = {𝑆: 𝑆 is a proper ideal of 𝓢 and 𝐸 ⊆ 𝑆}, consequently 

𝐸 ⊆ 𝐽. If 𝐽 is not the maximal ideal of 𝓢, then 𝐽 ⊂ 𝑀  where M is the maximal ideal. So that 

𝐸 ⊆ 𝑀, consequently 𝑀 ∈ 𝑉𝑠(𝐸). 
3. Let < 0 > ∈ 𝑉𝑠(𝐸). Then  =< 0 >. Therefore, 𝑉𝑠(𝐸) = S. 𝑠𝑝𝑒𝑐(𝓢). 
4. Clearly {< 0 > }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ⋂

<0> ∈𝑉𝑠(𝐼)
𝑉𝑠(𝐼). Then by part (3),  {< 0 > }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆. 𝑠𝑝𝑒𝑐(𝓢). This means 

that < 0 > is dense in S. 𝑠𝑝𝑒𝑐(𝓢). Thus < 0 > is a generic point in S. 𝑠𝑝𝑒𝑐(𝓢). 
 

Remark 3.3. Let 𝓢 be an 𝑆𝐼 ring. Then the family of all closed subsets of 𝑆. 𝑠𝑝𝑒𝑐(𝓢) and the 

family of all open subsets of 𝑆. 𝑠𝑝𝑒𝑐(𝓢) are well ordered by inclusion.   

Proposition 3.4. Let 𝓢 be an Artinian 𝑆𝐼 ring. Then  

1. The family of all ideals of 𝓢 constructs an ascending chain of ideals of the form:  

𝐼0 ⊂ 𝐼1 ⊂ ⋯ ⊂ 𝐼𝑛−1. 
2. The family of closed subsets of 𝑆. 𝑠𝑝𝑒𝑐(𝓢),  construct an ascending chain of closed subsets 

of the form: 𝑉𝑠(𝐼𝑛−1) ⊂ ⋯ ⊂ 𝑉𝑠(𝐼1) ⊂ 𝑉𝑠(𝐼0). 
3. The family of open sets of 𝑆. 𝑠𝑝𝑒𝑐(𝓢),  construct an ascending chain of open subsets of the 

form: 

𝑋𝑠(𝐼0) ⊂ 𝑋𝑠(𝐼1) ⊂ ⋯ ⊂ 𝑋𝑠(𝐼𝑛−1). 
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Proof.  

1. Let 𝑇0 = {𝑆𝜆}𝜆∈Λ be the family of all ideals of 𝓢. Then 𝑇0 has a minimal ideal under inclusion 

which is unique since the ideals are ordered by inclusion. Suppose that 𝐼0 is the minimal ideal 

of 𝑇0. For each 𝑘 ∈ ℤ+, let  𝐼𝑘 is the minimal ideal of 𝑇𝑘  where  𝑇𝑘 = 𝑇𝑘−1\{𝐼𝑘−1}. Then clearly 

 𝐼𝑘−1 ⊂  𝐼𝑘 and there is no ideal 𝐽 in 𝑇0 = {𝑆𝜆}𝜆∈Λ such that  𝐼𝑘−1 ⊂ 𝐽 ⊂  𝐼𝑘. Consequently, we 

obtain a chain of ideals 𝐼0 ⊂ 𝐼1 ⊂ 𝐼2 ⊂ ⋯  of  𝑇0.  Since 𝓢 is Artinian, there exists 𝑡 ∈ ℤ+ such 

that 𝐼t = 𝐼t+1 = ⋯. Therefore, the ideals in 𝑇0 form the following ascending chain of ideals: 

𝐼0 ⊂ 𝐼1 ⊂ ⋯ ⊂ 𝐼𝑛−1. 
2 and 3 follow from Remark 3.3. 

The following Proposition is easy to prove so the proof is omitted. 

 

Proposition 3.5. Let 𝓢 be an 𝑆𝐼 ring. Then  

1. The space 𝑆. 𝑠𝑝𝑒𝑐(𝓢) is connected. 

2. The space 𝑆. 𝑠𝑝𝑒𝑐(𝓢) is locally connected. 

3. The space 𝑆. 𝑠𝑝𝑒𝑐(𝓢) is hyperconnected. 

4. The space 𝑆. 𝑠𝑝𝑒𝑐(𝓢) is ultraconnected. 

 

      Recall from [12], a space 𝑋 is zero-dimensional if it has a basis consisting of clopen sets, 

and it is strongly zero-dimensional if for any closed set 𝐴 and an open set 𝑈 containing 𝐴, there 

exists a clopen set 𝑉 such that 𝐴 ⊆  𝑉 ⊆  𝑈. 

 

Proposition 3.6. Let 𝓢 be an 𝑆𝐼 ring. Then  

1. If 𝓢 is not a field, then the space 𝑆. 𝑠𝑝𝑒𝑐(𝓢) is not zero-dimensional. 

2. The space 𝑆. 𝑠𝑝𝑒𝑐(𝓢) is strongly zero-dimensional. 

 

Proof.  

1. Let 𝐵 be a basis of the  𝑆. 𝑠𝑝𝑒𝑐(𝓢) topology and 𝑋𝑠(𝐸) ∈ 𝐵 for some 𝐸 ⊆ 𝓢. By Proposition 

3.2(1), either  𝑋𝑠(𝐸) = 𝜙 or < 0 >∈ 𝑋𝑠(𝐸). This means that the space 𝑆. 𝑠𝑝𝑒𝑐(𝓢) has only two 

clopen subsets which are  𝜙 and 𝑆. 𝑠𝑝𝑒𝑐(𝓢).  Therefore, if 𝓢 is not a field, then the space 

𝑆. 𝑠𝑝𝑒𝑐(𝓢) is not zero-dimensional. 

2. Let 𝐴 = 𝑉𝑠(𝐸) be closed set contained in an open set 𝑈 = 𝑋𝑠(𝐹) where 𝐸, 𝐹 ⊆ 𝓢. If  𝑉𝑠(𝐸) =
∅ , take 𝑉 = ∅, then 𝐴 ⊆  𝑉 ⊆  𝑈. If 𝐴 ≠ ∅ , then by Proposition 3.2, the maximal ideal M of 

𝓢 belongs to 𝑉𝑠(𝐸). So that 𝑀 ∈ 𝑋𝑠(𝐹), consequently 𝑀 ⊂< 𝐹 >. Therefore, 𝑋𝑠(𝐹) = 𝑈 =
𝑆. 𝑠𝑝𝑒𝑐(𝓢). Put 𝑉 = 𝑆. 𝑠𝑝𝑒𝑐(𝓢),  then 𝜙 ≠ 𝐴 ⊆  𝑉 ⊆  𝑈. 

 

       Recall from [9], a ring 𝓢 is said to be 𝜋-regular if for every element 𝑟 ∈ 𝓢 there is some 

element 𝑥 ∈ 𝓢 such that 𝑟𝑛𝑥𝑟𝑛  =  𝑟𝑛 and recall from [3, p. 750],  the Krull dimension of a 

commutative ring 𝓢 is the maximum possible length of a chain 𝑃1 ⊂ 𝑃2 ⊂ …⊂ 𝑃𝑛 of distinct 

prime ideals in 𝓢.  

 

Proposition 3.7. Let 𝓢 be an 𝑆𝐼 ring with Krull dimension zero, then   

1. 𝓢 is 𝜋-regular.  

2. The space 𝑆𝑝𝑒𝑐(𝓢) is zero-dimensional. 

Proof.  

1. By Proposition 2.8, 𝓢 is a clean ring. Since 𝓢 has Krull dimension zero, then by [12, pp. 

2670, Corollary 2.8], 𝓢 is 𝜋-regular. 

2. This is a direct consequence of [12, pp. 2669, Theorem 2.3].  

 

Proposition 3.8. Let 𝓢 be an 𝑆𝐼 ring which is not a field. Then  

1. The space S.𝑠𝑝𝑒𝑐(𝓢) is 𝑇0. 

https://en.wikipedia.org/wiki/Hyperconnected
https://en.wikipedia.org/wiki/Ultraconnected
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2. The space S.𝑠𝑝𝑒𝑐(𝓢) is not 𝑇1. 

3. The space S.𝑠𝑝𝑒𝑐(𝓢) is not regular. 

4. The space S.𝑠𝑝𝑒𝑐(𝓢) is normal. 

5. The space S.𝑠𝑝𝑒𝑐(𝓢) is sober. 

 

Proof.  

1. It follows from the definition of a 𝑇0 space. 

2. Since 𝓢 is not a field, then it has at least two proper ideals 𝐼  and 𝐽. Suppose that there are 

two open sets 𝑋𝑠(𝐸) and 𝑋𝑠(𝐹) such that 𝐼 ∈ 𝑋𝑠(𝐸) and 𝐽 ∈ 𝑋𝑠(𝐹). By Remark 3.3, 𝑋𝑠(𝐸) ⊆
𝑋𝑠(𝐹) or 𝑋𝑠(𝐹) ⊆ 𝑋𝑠(𝐸). Therefore, the space S.𝑠𝑝𝑒𝑐(𝓢)is not 𝑇1. 

3. Since 𝓢 is not a field, then 𝑀 ≠< 0 > where M is the maximal ideal of  . Clearly 𝑉𝑠(𝑀) =
{𝑀}, then < 0 >∉ 𝑉𝑠(𝑀), but by Remark 3.3, there are no disjoint open subsets 𝑋𝑠(𝐸) and 

𝑋𝑠(𝐹) such that < 0 >∈ 𝑋𝑠(𝐸) and 𝑀 ∈ 𝑋𝑠(𝐹). 
4. By Remark 3.3, every two closed subsets of 𝑆. 𝑠𝑝𝑒𝑐(𝓢)  are comparable, then the space 

S.𝑠𝑝𝑒𝑐(𝓢) is normal. 

5. Every closed subset of 𝑆. 𝑠𝑝𝑒𝑐(𝓢) is irreducible since the only clopen subsets of 𝑆. 𝑠𝑝𝑒𝑐(𝓢) 
are ∅ and 𝑆. 𝑠𝑝𝑒𝑐(𝓢). Now, let 𝐴 be a closed subset of 𝑆. 𝑠𝑝𝑒𝑐(𝓢). So that there is an ideal 𝐼 of 

𝓢 such that 𝐴 = 𝑉𝑠(𝐼) = {𝑆: 𝑆 is a proper ideal of 𝓢 and 𝐼 ⊆ 𝑆} ≠ ∅. Then clearly {𝐼}̅̅̅̅ =
⋂

𝐼∈𝑉𝑠(𝐽)
𝑉𝑠(𝐽) = 𝑉𝑠(𝐼). If there is another ideal 𝐽 ≠ 𝐼 such that {𝐽}̅̅̅̅ = 𝑉𝑠(𝐼), then 𝑉𝑠(𝐼) = 𝑉𝑠(𝐽). So 

that 𝐼 ∈ 𝑉𝑠(𝐽) and  𝐽 ∈ 𝑉𝑠(𝐼) consequently, 𝐼 ⊆ 𝐽 and 𝐽 ⊆ 𝐼, contradiction. Therefore, the space 

S.𝑠𝑝𝑒𝑐(𝓢) is sober.  

 

Conclusions   

      In this paper, the concept of a strongly irreducible ring is introduced. Some properties and 

characterizations of strongly irreducible ring are given. Relations between such rings and some 

types of other rings are discussed. It is shown that the ring  = ℤ𝑚 is an 𝑆𝐼 ring if and only if 

𝑚 = 𝑝𝑛 for some prime 𝑝 and positive integer 𝑛. For an 𝑆𝐼 ring 𝓢, the concepts of 𝑉𝑠(𝐸), 𝑋𝑠(𝐸) 
for a subset 𝐸 of 𝓢 and 𝑆. 𝑠𝑝𝑒𝑐(𝓢) topology are introduced. Some properties of 𝑉𝑠(𝐸) and 𝑋𝑠(𝐸) 
are discussed. The maximal ideal of 𝓢 belongs to every nonempty closed subset 𝑉𝑠(𝐸)  of 

𝑆. 𝑠𝑝𝑒𝑐(𝓢) and the zero ideal of 𝓢 belongs to every nonempty open subset 𝑋𝑠(𝐸) of 𝑆. 𝑠𝑝𝑒𝑐(𝓢). 
Some properties of 𝑆. 𝑠𝑝𝑒𝑐(𝓢) topology are investigated. It is shown that the family of all open 

subsets (resp. closed subsets) of 𝑆. 𝑠(𝓢) is well ordered by inclusion. Moreover, 𝑆. 𝑠𝑝𝑒𝑐(𝓢) 
topology is  𝑇0, normal and sober but it is neither 𝑇1 nor  regular space.   
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