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Abstract  

     The shear wave sonic (S-wave) log data is essential for identifying the reservoir's 

geomechanical properties, which is an important factor for the drilling, completion, 

and optimization processes, where obtaining S-wave requires capital investment and 

reduces the cost. In this paper, we used the multi-layer perceptron (MLPR) and the 

gradient boosting regression (GBR) to predict the missing S-Wave log data for the 

Volve Oil Field in the North Sea. Prescriptive and predictive analysis were carried 

out in series to achieve a high blind data accuracy rate of 0.943 and 0.982 for the 

multi-layer perceptron regression and the gradient boosting regression, respectively. 

It was observed that the gradient-boosting algorithm achieved higher accuracy than 

the MLPR algorithm for the limited dataset. It was also found that hierarchical 

clustering can reveal information regarding the feature's importance similar to the 

relevant AI tools, which makes hierarchical clustering a faster tool in eliminating the 

nonimportant inputs from the dataset while the use of artificial intelligence tools 

showed a significant effect in predicting the missing values of the sonic wave log 

and the neutron porosity log in an efficient way by selecting the relevant important 

features. 

 

Keywords: Artificial Neural Networks, Decision Trees, Gradient Boosting, 

hierarchical clustering, shear wave sonic. 
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الإدراك متعدد الطبقات وانحدار تعزيز التدرج    انحدار  في هذا البحث   استعملنااستثماراً رأسمالياً ولتقليل الكلفة،  
التحليل   إجراء  تم  الشمال.  بحر  في  فولفي  نفط  لحقل  المفقودة  القص  لموجة  الصوتي  السجل  ببيانات  للتنبؤ 

بيانات أعمى   دقة  معدل  لتحقيق  التوالي  والتنبؤي على  بلغ  عالي الوصفي  لانحدار    0.982و  0.943، حيث 
الإدراك متعدد الطبقات وانحدار تعزيز التدرج، على التوالي. لوحظ أن خوارزمية تعزيز التدرج حققت دقة أعلى  

لمجموعة البيانات المحدودة. كما وجد أن التجمع الهرمي يمكن   انحدار الادراك متعدد الطبقاتمن خوارزمية  
يجعل   مما  الصلة،  ذات  الاصطناعي  الذكاء  لأدوات  مماثلة  الميزة  بأهمية  تتعلق  معلومات  عن  يكشف  أن 

أدوات    استعمالبينما أظهر  التجمع الهرمي أداة أسرع في إزالة المدخلات غير المهمة من مجموعة البيانات،  
النيوترون   مسامية  وسجل  الصوتية  الموجة  لسجل  المفقودة  بالقيم  التنبؤ  في  كبيرًا  تأثيرًا  الاصطناعي  الذكاء 

 بطريقة فعالة من خلال اختيار الصفات المهمة ذات الصلة.
 

1. Introduction 

     Fossil fuel is considered one of the most expensive commodities, especially with the 

increase in fossil fuel prices and the global demand for a clean energy transition. Therefore, 

utilizing alternatives associated with the fourth paradigm shift of data-driven science helped 

offer the fossil industry a relatively cheaper and faster decision-making tool in many sectors. 

Artificial intelligence (AI), which is data-driven, has been widely used for data prediction in 

different sectors [1–4], and it has many applications within the oil and gas industry [5–12]. 

Shear Wave Sonic (S-wave) log data is essential for identifying the reservoir geomechanical 

properties [13], which is an important factor for the drilling, completion, and optimization 

processes, where obtaining an S-wave log requires capital investment. At the reservoir's time, 

data quality depends on the wellbore conditions, where unconsolidated formations and shale 

may influence data availability and accuracy due to S-wave refraction from the tool. 

Therefore, as the value of obtaining new information is high, it is essential to employ 

alternatives that model past data to generate synthetic S-wave logs, such as artificial 

intelligence (AI) modeling.  

 

     Lately, different authors have investigated different AI methods for predicting the S-Wave 

log for various fields [14–16]. For example, [15] in 2019 used empirical correlation and two 

AI methods, Support Vector Regression (SVR) and Back-Propagation Neural Network, to 

predict the S-Wave log. Their study concluded that the SVR method was relatively better. On 

the other hand, [9] used regional logging data with SVR, eXtreme Gradient Boosting 

(XGBoost), random forest, linear regression, and ANN to predict the S-Wave log. The 

outcomes demonstrate that XGBoost outperforms the other models with R2 of 0.994 and 

0.964 for training and testing, respectively. Similarly, [17] proposed a new approach to 

predict the S-Wave log and the compressional wave sonic (P-Wave) log in the Volve oil field. 

They used different AI methods such as artificial neural networks (ANN), adaptive neuro-

fuzzy inference systems (ANFIS), and least square support vector machines (LSSVM). Their 

model demonstrated excellent accuracy in predicting the S-wave log of 0.99 R2 with the 

LSSVM outperforming the other methods. 

 

     In this paper, a synthetic shear wave sonic (S-Wave) log is predicted using two AI 

methods: artificial neural networks (ANN) and gradient boosting regression (GBR). We 

exploited the largest open-source oilfield database, the Volve field, in predicting the S-Wave 

log. 

 

2. Methodology 

     In this paper, a prediction system is proposed to predict a missing wave sonic log based on 

the predefined value of a known wave sonic log. The proposed system consists of four main 

https://www.sciencedirect.com/topics/engineering/artificial-neural-network
https://www.sciencedirect.com/topics/engineering/support-vector-machine
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phases. These phases are raw dataset, processed dataset, feature selection, and model 

selection, as shown in Figure 1. 

 
Figure 1: flowchart of methodology. 

 

2.1 Raw dataset 

     Volve is an oil field located in the southern part of the North Sea, 200 kilometers west of 

Stavanger. Volve Field was developed with 24 wells, and a total production of 63 million 

barrels of oil was produced during the eight-year field lifetime starting in 2008. In 2018, 

Equinor published vast amounts of public data, ranging from well data to the entire geological 

model of the Volve field for study, research, and development [18]. This research used the 

available well log data to predict the S-wave log. 

 

2.2 Processed dataset 

     Initially, the total number of wells with well log data was 21, with 19,342,000 bytes of 

data. After dropping the missing cells and keeping the available wells with S-wave logs with 

the basic well log sets, the final well count was 5 with a 481,370 data size that was used for 

training and testing. This model intends to obtain high accuracy to fill the missing S-wave 

data count of 2,161 within the trained five wells. The available well logs after data cleaning 

were: measured depth (MD), true vertical depth (TVD), neutron porosity (NPHI), bulk 

density (RHOB), density correction (DRHO), gamma ray (GR), resistivity (RT), photoelectric 

factor (PEF), calliper (CALI), p-wave (DT), and shear wave (DTS). Figure 1 shows an 

example of 2 out of 5 wells (wells 15/9-F-11 T2 and 15/9-F-1 B) with the logs used for 

building the S-wave predictive model. Figure 2 track 1 contains the GR, which is the total 

formation radioactivity content, measured in API. Track 2 contains RT, which represents the 

formation’s true resistivity, measured in ohms per meter. Track 3 contains RHOB and NPHI, 

which are the formation bulk density, measured in grams per cubic centimeter, and the 

formation porosity, measured in v/v, respectively. Track 4 contains the DRHO, which is the 

RHOB correction factor, measured in grams per cubic centimeter. Track 5 includes DT and 

DTS, the P-Wave log, measured in microseconds per foot, and the S-Wave log travel time, 

respectively. 
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Figure 2: well logs example for two wells (15/9-F-11 T2 and 15/9-F-1 B) used in building the 

predictive model. 
 

2.3 Feature selection  

     Descriptive analytics was performed to find trends within the input data and avoid 

unnecessary data. Hierarchical clustering analysis was performed to approximate input/output 

data relationships. It analyzes large amounts of data by grouping them according to some 

measure of similarity and finding a way to assess how they differ and overlap [19] and [20]. 

Hierarchical clustering is divided into two types: agglomerative, where each observation 

begins in its own cluster, and as one climbs the hierarchy, pairs of clusters are combined 

([20], [22], and [23]); and divisive, in which each observation begins in its own cluster, and as 
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one descends the hierarchy, splits are carried out again ([23], [25], and [26]). Herein, we used 

Euclidean distance ([27], [28], and [29]) as a similarity metric to measure the dissimilarity 

between the sets of data. 

 

     Hierarchical clustering calculation was performed, and results are shown in Figure 5(a) on 

a type of tree diagram called a dendrogram demonstrating the hierarchical grouping. It was 

concluded from the figure that DT (P-wave log) and NPHI share more similarities with DTS 

(S-wave log), whereas GR comes in second in similarity, while RT and RHOB share minor 

similarities with DTS. The mathematical grouping is logical, as DTS is not affected by the 

rock fluids themselves and is a function of the rock matrix, whereas RT and RHOB are 

influenced by both rock fluids and matrix (bulk). 

 

     A different approach was also used to find patterns by using the Random Forest (RF) 

Feature Importance Algorithm of Mean Decrease Impurity (MDI), which calculates the total 

reduction in loss or impurity contributed by all splits for a given feature [30]. The importance 

of the feature classifies the features according to their impact on the model because the 

selected feature is the one that will have the greatest impact on it. They are useful in 

understanding the data, interpreting the model, and improving the model's performance by 

making it simpler and faster because it eliminates lower scores. 

 

     There are several ways to calculate the importance of the feature, including mean decrease 

impurity (MDI), which calculates the impurities of the node and reduces them according to 

the number of samples. MDI calculates the importance of each feature in proportion to the 

number of samples that have been divided, leading to improvements in the model and a better 

understanding of the problem through feature selection. While The feature of permutation 

importance (PIMP) calculates the importance of switching the predictive value of the feature 

by knowing the increase or decrease in the error while switching feature values (i.e., 

measuring the prediction error for the model when the feature is not available). The PIMP 

does not depend on the model but provides insight into the model's behavior through the 

influence of each feature on the model's prediction [31]. RF feature importance results are 

presented in Figure 5 (b), where RF MDI and PIMP estimated that NPHI and DT had the 

highest influence while RT had the least.  

 

2.4 Model selection 

     In this step, we utilized 2 different AI approaches to build the S-wave predictive model: 

the multilayer perceptron regression (MLP) and the gradient boosting regression (GB). Both 

models followed different approaches in terms of data pre-processing and hyperparameter 

selection techniques, while both shared similar data partitioning selection, where 30% of the 

data was set aside to validate the model and 70% of the training data was used for the training 

purpose. The random seed number was 2. It is important to note that the authors tested 

different random seed partitionings to cover a variety of features in order to improve the 

predictive model. 

 

2.4.1 MLPR model 

     Multilayer Perceptron (MLP) is a feedforward ANN made up of successive layers that 

exchange and interconnect data via connections between neurons, which are expressed by an 

adaptative weight. The multilayer network's structure includes an input layer with several 

neurons equivalent to the number of input data attributes (MD, TVD, NPHI, RHOB, DRHO, 

GR, RT, PEF, CALI, and DT) and an output layer where the number of neurons is equal to 

the number of outputs (DTS)  to predict, whereas the calculations are carried through the 
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hidden layers [32] as shown in Figure 2, where each neuron is connected to the adjacent-layer 

neurons, and the weight defines the degree of the connection, where 𝑓𝑌, 𝑓𝐾, and 𝑓𝐽 are the 

activation functions (ReLu) used for the neurons, and 𝑤𝑋𝑚, 𝑤𝐽𝑜 and 𝑤𝐾𝑞 are the weights. The 

coefficients 𝑏𝑋𝑛, 𝑏𝐽𝑝, and 𝑏𝐾𝑟 are the biases assigned to shift the activation function by adding 

a constant within the neurons in the hidden layer (s). 

 

 
Figure 3: Simple MLP topology showing the neurons within the input layer, hidden layer, 

and the output layers. 
 

MLP training was accomplished in two steps: data transformation and hyperparameter 

selection. In the data transformation section, data was normalized using Yeo Jonson power 

transformation, whereas the power parameter lambda (λ) is changed until the best 

approximation of a Gaussian likely distribution is reached [33]: 

 

𝜓(𝜆, 𝑦)

{
 
 

 
 ((𝑦 + 1)

𝜆 − 1) 𝜆⁄                                 𝑖𝑓 𝜆 ≠ 0, 𝑦 ≥ 0

𝑙𝑜𝑔(𝑦 + 1)                                              𝑖𝑓 𝜆 = 0, 𝑦 ≥ 0

−[(−𝑦 + 1)2−𝜆 − 1)] ∕ (2 − 𝜆)      𝑖𝑓 𝜆 ≠ 2, 𝑦 < 0

− 𝑙𝑜𝑔(−𝑦 + 1)                                      𝑖𝑓 𝜆 = 2, 𝑦 < 0

 (1) 

 

Within the hyperparameter selection, a loop of five layers of different hidden neuron 

combination lists was tested to include 35, 60, and 85 hidden neurons with Adam solver and 

ReLu activation functions. An early stopping feature with a 10% validation dataset was used 

to stop the training process when overfitting is expected. where the maximum number of 

iterations is set to 3000. 

 

2.4.2 GBR model 

     Gradient Boosting Regression (GBR) has the advantage of better accuracy, higher 

flexibility, and fewer pre-processing requirements when compared with other regression 

methods. GB computes the variance between the present forecast and the identified true target 

value. This variation is referred to as the residual. After that, a weak model that maps features 

to that residual is trained using gradient boosting regression [34], as illustrated in Figure 4.  
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Figure 4: simple version gradient boosting regression model showing. 

 

     As GB doesn’t require data normalization, it became advantageous over the suggested 

MLPR model; therefore, only hyperparameter selection was needed. The grid search technique 

was used with a cross-validation of 7. The tested parameters are the maximum depth and the 

number of estimators. 400 and 500 estimators were tested, along with 10, 30, 50, 70, 90, and 

100 maximum GB depths. 
 

     It is also important to note that data quality control is essential to ensure data input 

accuracy for an accurate prediction for the missing S-wave log, which involves the wellbore 

condition and the depth of investigation of the input data to cover the targeted wellbore. 

 

3. Results and Discussion 

     In this section, the results of the proposed system are shown and discussed based on 

feature selection results and model selection outcomes. 

  

3.1 The feature selection results 

     The carried descriptive analysis provided insight for improvement within the input data if 

higher accuracy results were not achieved with the initial run by dropping the least influential 

attributes for better results. 
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(a) 

 

(b) 

Figure 5: descriptive analytics with (a) Hierarchical clustering and (b) Random Forest 

Feature Importance (left) and Permutation (right). 
 

3.2 The model selection results 

     The best result yielded 5 layers with 85 hidden neurons, and the highest 𝐑𝟐 values 

achieved for training and testing were 0.96 and 0.94, respectively. While using a single 

hidden layer with up to 100 hidden neurons didn’t achieve good results due to the high 

complexity of the data and the fact that shear wave sonic is more prone to distortion as 

compared to compressional wave sonic. The best results were achieved at 500 estimators and 

10 maximum depths, with 𝐑𝟐 values of 0.99 and 0.98 for training and testing, respectively. 

The final predictive model results are shown in Figure 6, where GB achieved better results 

with less scattered testing data while the MLP predictive model had relatively more noise. 

Both methods’ computation times were large in our runs due to the large GB maximum 

depths and the large number of layers and neurons in the MLP; nevertheless, the MLP was 
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faster than the GB. It is due to the fact that multi-layer perceptron regression trains all the 

neurons in the network at once, whereas gradient-boosting regression trains numerous weak 

learners sequentially. This process will also affect the memory usage, as it is higher for the 

gradient-boosting regression than for the multi-layer perceptron regression. This is so that 

gradient-boosting regression can keep all of the weak learners' predictions during training. 

Figure 7 shows an example of the predictive model S-wave in blue and the predicted missing 

S-wave values in red, where both MLP and GB showed almost similar predictive patterns. 

 

 
Figure 6: 5 wells' S-Wave predictive model accuracy rate for the 70% training and the 30% 

testing data where the red dots represent the training data and the green dots represent the 

blind testing data for MLP (left) and GB (right). 

 

  

Figure 7: wells (15/9-F-11 T2 and 15/9-F-1 B) measured and predicted S-wave logs where 

the black curve represents the actual S-wave log, the blue curve refers to the predicted S-wave 

logs and the red curve is the predicted missing values. 
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4. Conclusion 

     S-wave log descriptive and predictive analytics were performed for the Volve field by 

training five wells with ten inputs. The descriptive analysis showed a great influence of DT 

and NPHI on both hierarchical clustering and random forest feature importance. However, for 

RF feature importance, the tool suggests that RT is the least influential parameter. 

     The GB regression was advantageous over the MLP regression with 0.98 𝐑𝟐 accuracy for 

the testing data, while the MLP S-wave predictive model showed some relative noise where it 

was impossible to achieve higher accuracy for training and testing with a single layer 

regardless of the number of hidden neurons. 
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