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Abstract

Recently, cloud computing has affected a large part of the computer industry,
including software companies and internet service providers. It has proven efficient
in managing tasks for applications. Despite its popularity, cloud computing does not
meet the requirements of applications because it faces many limitations, such as high
latency and bandwidth bottlenecks. These limitations will significantly affect
applications sensitive to delays. To meet this challenge, fog computing is introduced
as an extension to cloud computing. It improves quality of service (QoS) for
applications that suffer from latency by keeping resources and services close to the
end-user. How to efficiently and fairly allocate the available resources, e.g., CPU,
bandwidth, and memory, between different requested tasks is a complex challenge.
The main goal of this paper is to study the concepts of fog computing, architecture,
environment, and metrics that affect resource allocation in fog computing. It also
summarizes the classification of modern resource allocation approaches based on QoS
metrics (2017—2023). On the other hand, highlighting the pros and cons of these
studies as well as future research directions to develop different approaches.

Keywords: Cloud Computing, Fog Computing, Resource Allocation, Fog
Environments, Latency, Quality of service.
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1. Introduction

With the development of the world and the development of different devices and
technologies, this all led to an increasing amount of data that was generated via different
applications and required storage and processing. On the other hand, the number of connected
Internet of Things (1oT) devices will reach 41 billion by 2025, according to estimates by the
International Data Corporation and generators, more than 79 zettabytes [1]. To keep pace with
this growth of applications, cloud computing has been introduced to deal with the requirements
of these applications due to the scalability and flexibility of the services provided to end users
[2]. The cloud computing model is efficient, but at the same time, it has disadvantages such as
high latency because any requested data must be sent to a centralized data center, such as in
applications for smart healthcare and smart grids, as well as in applications that are sensitive to
high latency or high response times [3]. Thus, these applications need specific resources
included in the environment to ensure better quality of service (QoS). With the development of
the world and the development of different devices and technologies, this all led to an increasing
amount of data that was generated via different applications and required storage and
processing. On the other hand, the number of connected Internet of Things (l1oT) devices will
reach 41 billion by 2025, according to estimates by the International Data Corporation and
generators, more than 79 zettabytes [1]. To keep pace with this growth of applications, cloud
computing has been introduced to deal with the requirements of these applications due to the
scalability and flexibility of the services provided to end users [2]. The cloud computing model
is efficient, but at the same time, it has disadvantages such as high latency because any
requested data must be sent to a centralized data center, such as in applications for smart
healthcare and smart grids, as well as in applications that are sensitive to high latency or high
response times [3]. Thus, these applications need specific resources included in the environment
to ensure better quality of service (QoS).

Resource allocation in any environment represents an essential feature of getting economic
benefits. Therefore, the resource allocation mechanism must ensure the fair and efficient
distribution of resources among all devices to provide better QoS. An efficient resource
allocation strategy can promote proper utilization of all resources with a suitable response time,
enhance mobility, and minimize bandwidth [4]. It can be challenging to assign optimal
resources from the available resources, such as CPU, memory, bandwidth, etc., to the end user
fairly and efficiently [5]. Each device considers its bandwidth, RAM, and processing capacity
[6]. To overcome these issues faced by cloud computing, Cisco introduced fog computing in
2012 [7]. Fog computing proposes an extension and solution to cloud computing limitations
and supports many benefits such as sensitivity, better QoS, and being geographically distributed
[8]. It will reduce the amount of data that transfers to the cloud because any request will be sent
to fog nodes at the fog layer. These nodes are close to the end-user on the edge network to make
processing, storage, and computation operations [9]. On the other hand, fog computing does
not replace cloud computing but introduces it to minimize the disadvantages of cloud
computing and enhance the services at the edge of the Internet [7].

Although numerous review papers study resource allocation in the fog computing

environment, such as [6], [L0-12], more deeply investigated research is required in this field.
This can be done by reviewing modern, efficient approaches to resource allocation that can find
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an optimal way to distribute available resources between tasks and consumers. This study seeks
to study, analyze, and classify the innovative approaches developed to address many issues
based on QoS metrics. Further, it highlights several related issues in resource allocation over
fog computing.

Accordingly, this investigation is structured as follows: Section 2 provides a high-level
introduction to fog computing. Section 3 examines how quality of service measurements might
be used to categorize the various strategies for allocating resources in fog computing. The
concept of "“fog computing” is laid forth in Section 4. Section 5 presents the other literature
surveys in this field. The study concludes with Sections 6 and 7, which focus on the central
problem of resource allocation in fog computing and present the paper's findings.

2. Overview and Background
In this section, an overview of fog computing will be displayed, along with its definition,
architecture, and basic differences between cloud computing and fog computing.

2.1. Fog Computing

Fog computing is a decentralized model where requests for data do not need to be sent to
the cloud. Its processing, storage, and computation operations can be done at the fog layer.
Thus, it does not need to be a third party. Fog nodes appear hierarchically between the end-
device layer and the cloud layer [1]. Fog cannot function independently since it is closely related
to the presence of a cloud. This has caused the interactions between the fog and the cloud to get
extra attention [10]. Figure 1 shows the schema of the fog computing model.

End Device . %6 @ '-'T
i O =3 P

Figure 1: Fog Computing Model
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2.2. Fog Architecture
In this part, the architecture of fog computing will be explained. According to Hu et al. [11],
the fog computing architecture comprises three main layers, as illustrated in Figure 2.
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Figure 2: Architecture of Fog Computing [12].

4 Layer 1 (End Device): This is the basic layer that consists of devices such as smartphones,
sensors, smart vehicles, smart watches, etc. These end devices are often called terminal nodes
(TN), and they are supposed to be equipped with the Global Positioning System. These devices
can operate in a heterogeneous environment with different technologies.

+ Layer 2 (fog computing layer): It is the intermediate layer that connects with the cloud layer
from the upper and from the bottom of the end device layer. The layer consists of many fog
nodes and servers, such as routers, switches, and access points. These nodes have capabilities
to share, store, and compute. In fog computing, the end device establishes a connection to the
fog computing layer to obtain various services from the nodes, which may be physically located
in one place or move about with the carrier. In addition, fog computing links to the cloud via
the IP core network to gain access to even more robust processing and data storage resources.
+ Layer 3 (cloud layer): Data centers reside on the cloud layer. This layer consists of many
powerful storage devices and servers. It provides high performance and capabilities for
computation, analysis, and permanent storage of massive data.

In this architecture, any device (smart things) will be connected to either fog node through
wireless technologies such as WiFi, Bluetooth, 3G, 4G, etc. Each node's role in providing
services depends on its position in the architecture. This architecture becomes more appropriate
for 10T applications because it is very close to the end device [13].

2.3. Fog Computing vs Cloud Computing

A main difference between the cloud computing model and the fog computing model is
presented in Table 1.

Table 1: Compression between Fog and Cloud Computing
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Features

Cloud computing

Fog computing

Geographical distribution Centralized Decentralized
Latency High low
Energy consumption
(special the energy High low

consumption of data center
coolant system)

Security Less secure More secure
Reliability High low
Deployment cost High low
Management Easy Hard
Distance to end device Far (multiple hop) Near (single hop)
Mobility limited supported
Number of nodes Thousands Millions
Access Predqminantly Wire and wireless
wireless
Location awareness Partially supported Fully supported
Computation and storage capabilities Strong Weak

More scalable
Direct power

Less scalable
Buttery/direct power

Scalability
Power source

2.4. Resource Allocation in Fog Computing

Each application connected to fog nodes needs many resources, such as memory, CPU,
and networking [14]. To control these resources efficiently and fairly, it must use optimal
resource management approaches that consider the requirements of QoS [6]. Resource
Allocation (RA) aims to optimally and efficiently assign resources to tasks or requests that
come from end devices [15]. The main goal of RA approaches is to provide an optimal
allocation for applications, services, and other activities to minimize or maximize objectives
related to the RA concepts [16]. On the other hand, many reasons make resource management
one of the challenges in fog areas due to the fog environment being unpredictable, highly
variable, heterogeneous, resource-constrained, having a large number of requests that need to
be completed, and having an unpredictable arrival rate [17] [15].

3. Fog Environment and Performance Metrics
3.1. Fog Environment

In fog computing, many popular environments have been employed to simulate resource
allocation approaches. The main environments, including iFogSim, MobFogSim, EmuFog,
FogNetSim++, and YAFS, will be described in this section.
+ iFogSim
It is one of the most common simulators to model and analyze the fog environment and is also
used to estimate the impact of resource management approaches such as latency, energy
consumption, and cost. The sense-process-actuate model is the major application model for
iIFogSim. The basic functions in CloudSim are used to implement functionalities in iFogSim.
To handle events between fog environment components, the core is responsible for this
handling in iFogSim [18]. iFogSim is employed to evaluate many works in 10T systems but
lacks precise modeling of computation scheduling in processing elements [19].
+ MobFogSim
MobFogSim is an add-on to iFogSim that facilitates cloud-to-cloud migration and mobility in
fog computing. The objectives of this simulator are the evaluation of application, behavior, and
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performance. The infrastructure included sensors, actuators, devices, and a data center.
MobFogSim implements three distinct migration algorithms dependent on user location-aware
matrices and location [20].
+ EmuFog
EmuFog designs fog computing scenarios. It is an extensible emulation framework. It enables
researchers to design a fog computing infrastructure from scratch and design network
topologies according to the use case. Although EmuFog provides a default solution for each of
its sub-modules, each of them is easily extendable [21].
+ FogNetSim++
This simulator is introduced as an extension to CloudNetSim++, which uses the available
properties in OMNet++. The main goal of the development of this simulator is that the existing
framework be designed to support many sensors. All the available modules in oMNet++ can be
easily integrated into FogSim++. The infrastructure of this simulator is the mobile device, fog
nodes, broker nodes, sensors, base stations, and geographic data centers. It consists of two
modules: the end device and the broker [22].
+ YAFS
Another Fog Simulator refers to YAFS, a simulation library employed to simulate fog, cloud,
and edge scenarios. This simulator enables analyses related to resource allocation, billing
management, network design, placement, scheduling, and routing. This simulator is set to
reduce the number of classes to seven, which makes the learning curve quite low compared to
other simulators [23].

Table 2 presents the main points based on programming language, topology structure, and
topology definition for each environment.

Table 2: Main Points for each Environment

Simulator Programing language Topology structure  Topology definition ~ Open Source
iFogSim Java Tree API Yes
MobFogSim Java Graph API, formats-Graph No
EmuFog Java Graph API, formats-Graph Yes
FogNetSim++ C++ Graph API Yes
YAFS Python Graph AP, JfSOCr)rI:a(Eraph- Yes

3.2. Performance Evaluation Metrics

The performance evaluation is critical to checking the completed results of any study or
research. Therefore, choosing the right metrics is essential to differentiate in all performance
evaluations. In this study, approaches to resource allocation inside the fog computing
environment were selected and analyzed. Hence, the most popular metrics for evaluating these
approaches were identified according to relevant works. This section presents the main popular
metrics employed to evaluate the proposed resource allocation approaches in fog computing.
+ Response time
Response time (execution time) is called completion time, which represents the time required
to perform tasks. It requires particular cloudlets or activities to fulfill the mission. Response
time is more effective in analyzing performance tests and graphic-intensive workloads [24]
[25].

+ Resource utilization

Resource management is one of the main issues in a fog computing environment. It relates to
the time needed for tasks to be executed by resources. Utilizing resources efficiently aims to
optimize the income and profit of the resource provider while maintaining customer
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satisfaction. Resource utilization is calculated using the following formula: Resource utilization
is the actual time spent by the resource to execute workloads divided by the total uptime of the
resource. [26] [27].

+ Network usage

Network usage refers to the amount of data sent back and forth over the network due to
applications, servers, devices, and network users. In many networks, network usage becomes
high according to many factors, but much of it comes down to frequent activity [28], [29], [25].
+ Energy consumption

Energy is the energy consumed by resources to complete the execution workload. This metric
is more effective in evaluating performance testing workloads. With an increase in the number
of applications, the amount of energy consumed also increases [30] [2].

+ Latency (Delay)

Latency is a synonym for delay. It is a critical metric for applications sensitive to delay in a fog
computing environment. Latency is the expression of how much time it takes for tasks to be
sent from one point to another [21], [25], [28], [29], and [30].

+ Total cost

The total cost of a system can be determined by weighing energy consumption and job
processing latency. The number of end-users per fog node increases the average end-user cost
[31] [32].

+ Load balancing level

In a fog environment, load balancing is important because it avoids the situation of overloaded
or underloaded fog nodes. Better load balancing leads to better QoS metrics such as energy
consumption, resource utilization, throughput, and response time. For better performance, load
balancing should be high to maximize resource utilization [27], since the aim of load balancing
IS to maximize throughput, avoid overload, minimize response time, and optimize resource use.

4. Literature Survey

Several surveys related to fog computing have been published over the past few years. The
next section outlines some of the surveys and the main points touched on in each survey.

Naha et al. [33] in their survey help the industry and research community synthesize and
identify the requirements for fog computing. At first, it defines the concept of fog computing
with architecture in detail. Then a classification of fog computing is introduced based on the
requirements of the fog computing paradigm. Finally, it discusses existing research and gaps in
resource allocation and scheduling, fault tolerance, simulation tools, and fog-based
microservices. Also, it presents some open issues, which will determine the future research
direction for the fog computing paradigm.

Nath et al. [34] discuss in this survey the evaluation of distributed computing, from utility
computing to fog computing. challenges, architecture, features, technology, security, and
privacy in a fog environment. Also, it summarizes the various existing works on fog computing
and critically analyzes their pros and cons. Finally, it reviews the future scopes and open
research areas in fog computing as an enabler for the next generation computing paradigm.

Hu et al. [3] in this survey define fog computing with its hierarchical structure, challenges,
characteristics, and applications. Correspondingly, it reviews the comparison between cloud
computing and fog computing. Some of the fog computing applications presented in this survey
include gaming, healthcare, brain-machine interfaces, and augmented reality. It also highlighted
key technologies such as naming, resource management communication, storage technologies,
security, and privacy. Finally, introduce some challenges and open issues that are worth further
in-depth study and research in fog computing development.

4014



Ali and Alubady Iraqi Journal of Science, 2024, Vol. 65, No. 7, pp: 4008-4029

Mukherjee et al. [35] started this survey with an overview of fog computing, its
fundamentals, and its architecture. It also summarized the resource allocation approach to
address some of the problems, such as latency, energy consumption, and bandwidth. This
survey introduced an extensive overview of state-of-the-art network applications and major
research aspects for designing these networks. In addition, this survey reviews the main open
challenges and research trends in the fog computing environment.

Fahimullah et al. [36] review the resource allocation approaches based on machine learning
(ML) that have been provided in the FC environment. The authors in this paper divided the
resource allocation approaches into six categories: resource provision, application placement,
scheduling, resource allocation, task offloading, and load balancing. It presents the main points
for each category: main approaches, objective matrices, tools, datasets, and comparison.

Tran-Dang et al. [37], in order to allocate computing resources for task computation and
execution in the fog computing environment, conducted a literature review on the subject. It
illustrates the algorithm model and function that assist in the determination of the best decisions
in many real-world applications (such as games, robotics, and finance) based on reinforcement
learning (RL). Then determine and examine these methods in relation to the three main issues
of work scheduling, task offloading, and resource sharing. Finally, the main issues with RL-
based algorithms, the fog computing environment, and the computing jobs in the many practical
applications were also studied and analyzed in the paper. For additional research, the associated
open issues are also mentioned.

Yi et al. [38] examine definitions of fog computing with comparable concepts, provide
examples of applications that will advance fog computing, and explore numerous issues that
may come up when designing and implementing fog computing systems. In addition, issues
relating to QoS, interface, resource management, security, and privacy are emphasized, along
with new opportunities and difficulties in fog computing for related methodologies. With the
underlying loT, edge devices, radio access techniques, SDN, NFV, virtual machines, and
mobile clouds all developing quickly, fog computing will also advance. Although we believe
fog computing to be a promising field, "fog computing” now requires cooperation from the
underlying methodologies.

Matrouk and Alatoun’s [7] study reviews and analyzes the most significant current
scheduling methods in fog computing. The best scheduling algorithms have been chosen after
reading and analyzing the majority of recent articles on scheduling algorithms. Task scheduling,
resource scheduling, resource allocation, job scheduling, and process scheduling are the five
key areas into which this survey divides scheduling issues. According to the results of the
comparison, task scheduling accounts for 57% of all utilization of scheduling algorithms in the
literature. And 36% of the study publications have used the iFogSim program to put the
suggested strategy into practice. By 25%, the makespan is the scheduling algorithm that is most
frequently used.

The proposed study provides an introduction to the concepts of fog computing. It focused
on a previous group of research within a specific time period, some of which highlighted some
of the challenges that exist within the field. However, the differences it concluded can be
summarized in the following points: The core concepts explored in this study differentiate it
from related works by examining the following aspects:

e Modern resource allocation approaches in fog computing in the last five years (2017 —2023).
e Categorization of these approaches based on four metrics that affect the quality of service
(QoS). It provides a unique perspective on their effectiveness in meeting performance criteria.
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¢ A comprehensive summary of all the approaches that were selected is set out in the table to
make it easier for the reader to know the behavior of each approach.

o lllustration of the popular evaluation metrics employed for assessing the efficacy of resource
allocation approaches.

e Investigation and presentation of prevalent simulation techniques primarily utilized within
the fog computing environment enrich our understanding of their applicability and significance.
e Discussion of the primary challenges and issues encountered in the context of resource
allocation within fog computing, addressing distinct aspects that set it apart from other related
works.

5. Classification Resource Allocation Approaches in Fog Computing

In this section, review the resource allocation approaches based on QoS metrics. This study will
review only four metrics: delay and energy consumption, mobility, heterogonous fog nodes,
and scalability.

5.1. Delay and Energy Consumption

Fog computing has emerged to provide better QoS and guarantee to minimize delay,
especially for applications that are sensitive to delay. The network transmission delay and
energy consumption can be improved by using efficient resource allocation methods that
consider these two factors. In the following, some of the resource allocation approaches are
used to minimize delay and energy consumption.

In [39], this study provides resource allocation and management techniques to increase the
fog environment’s reliability in 10T-based systems. Latency and energy efficiency are taken
into consideration while allocating resources. In a fog, users can choose to prioritize cost-
effectiveness over speed. The performance of the simulation was compared with an existing
state-of-the-art strategy using the simulation tool iFogSim2. In the proposed technique called
Reliable Resource Allocation and Management (R2AM), information from fog nodes is
initially kept in queue 2, whereas data from loT devices is initially put in a queue for later use.
The 10T data is then distributed to the fog nodes in accordance with the sorted list after the fog
nodes are rated in decreasing order based on their processing time. Once the 10T data has been
correctly processed, the results are returned. When compared to the existing technique, the
proposed strategy lowered latency by 10.3% and energy consumption by 21.85%, according to
the data.

In [40], this paper discusses the Weighted Greedy Knapsack (WGK) method to supply
specific services and resources in the smart parade scenario. To formulate the resource
allocation problem in fog computing, this study employed a WGK approach. The weighted sum
method was used in the multi-objective approach to create the objective function. This method
allows for speedy processing of the suggested algorithm. Following module installation in fog
devices, the desired modules are allocated the best physical resources of the fog device in
accordance with weighted greedy knapsack (WGK)-based allocation. The suggested method is
examined using pre-existing algorithms based on several setups, including zones, cameras,
mobile devices, and fog devices. According to simulation results, WGK beats concurrent, first-
come, first-served (FCFS), and delay-priority algorithms for the smart parade application in

In [27], the authors introduced an efficient prediction algorithm for resource allocation in
smart healthcare systems called Effective Prediction and Resource Allocation Methodology
(EPRAM). The main goal of the proposed algorithm is to achieve better QoS and reduce
latency. This algorithm consists of three modules: the first is the data processing module, the
second is the resource allocation module, and the last is the efficient prediction module. Unlike
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other resource allocation algorithms, this whole system uses a deep reinforcement learning
algorithm in a new step. It also uses the PNN method to detect the heart attack probability faster
than another multilayer predictor. EPRAM has proven its effectiveness in accurately and
quickly predicting the patient's state. Also, it minimizes average resource utilization.

In [30], this research utilizes a meta-heuristic Particle Swarm Optimization (PSO) technique
to reduce latency and power consumption. This model considers the network delay and serving
rate of fog nodes. It used the iFogSim simulator to set up studies and establish an EEG game-
based case study network. This program'’s output demonstrates that the suggested POS method
performs better than existing algorithms, including First Come, First Serve and the Greedy
Knapsack-based scheduling algorithm. The conclusion of the simulation optimizes latency and
power in terms of energy consumption and overall execution costs.

In [41], this paper suggests a fog-based spider web algorithm (FSWA), a heuristic method
that improves response time (RT) and decreases delay time (DT) during workflow throughout
the fog network's numerous edge nodes. The basic goal is to find and compute on the closest f-
node while minimizing latency between the network's various nodes. The smooth allocation of
resources, the availability of services, and the quality of service (QoS) metrics will all improve
with a reduction in latency. When it comes to problems with resource optimization in remote
computing settings, latency can have a significant impact. Fog computing has significantly
lower latency compared to cloud computing.

In [24], the work introduced a hybrid approach, taking into account network-level and node-
level strategies to minimize delay and energy consumption using caching schemas. In the
proposed approach, the nodes are classified into clusters according to the type of service. When
the request comes in, it is handled by the gateway and sent to a suitable cluster of fog nodes
that will select an active fog node based on the current energy state and capacity to service the
request. Then the fog node will save the popular contents by using a filtration mechanism. The
popular content will be saved by using Zipf distribution. It used a load-balancing algorithm to
distribute the load between fog nodes. Simulation results show that the advanced caching
schema reduces the latency by 85.29% when compared to without caching and by 67.4% when
using the caching schema. Also, the proposed method reduces consumer energy consumption
by 92.6% without caching and by 82.7% when using a caching schema.

In [42], the researchers proposed a resource representation model. This methodology enables
the exposure of device-specific resources via Mobile Edge Computing Application
Programming Interfaces (MECAPI) to improve resource allocation in a fog environment. In
this study, resource allocation was formulated as a Lyapunov optimization problem. The
information obtained from MECAPI, such as CPU, memory, storage, and networking, is
utilized by the fog's supervisory entity to make appropriate judgments regarding the distribution
of jobs to each network node. The outcome reveals that the suggested model, which combines
resource allocation optimization with resource representation, minimizes latency and enhances
system performance.

In [43], the study proposed a device- and human-driven intelligent method to minimize
latency and energy consumption in a fog computing environment. This method was
implemented in two case studies. The first study employed machine learning to identify user
behavior and provide an adaptive, low-latency media access control layer among sensor
devices. The second study focused on task offloading. This technique is developed for
intelligent end-user devices to select the offloading decision in the presence of many fog nodes.
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Additionally, it reduces energy and latency. The findings reveal substantial yet unrealized
intelligence potential for addressing the challenge of fog computing.

In [44], the authors in this paper proposed a load balancing approach to address the trade-off
in F-RANs (fog computing-based radio access networks), with the objective of expanding the
centralized cloud radio access networks' (C-RANS') computation and storage capabilities to the
network edge. However, the proposed approach solved the trade-off problem of transmission
and computing latencies in F-RANs. The simulation results demonstrate that the suggested
strategy outperforms the greedy approach to satisfy the essential objectives, including low-
latency and limited job offloading to the cloud in the F-RAN for low-latency communications.

In [2], this paper introduced a novel technique known as Gaussian Process Regression for
Fog-Cloud Allocation (GPRFCA) for fog and cloud infrastructure. This method anticipates
future demand to prevent requests from being blocked. The result of this algorithm's
performance is that it optimizes energy consumption at an acceptable level, avoids overloading
that minimizes blocking requests, and keeps latency at an acceptable level. This strategy
benefits from good features for both cloud-ward and cloud-forward mechanisms.

5.2. Mobility

When data is generated at the edge, consumption and generation can occur at different places
and times. Cloud computing does not support or take into account mobility, and data processing
can occur at geographically distant data centers [29]. In fog computing, the distribution capacity
allows storage and execution to be modeled at different places. The following are some resource
allocation approaches that consider mobility.

In [45], the capacity planning framework proposed in this work optimizes the deployment
of both fixed and mobile FNs. Utilizing the spatiotemporal variations in demand, it reduces
installation and operational costs while maintaining the required QoS. In this study, we offer a
data-driven capacity planning framework that uses integer linear programming (ILP) and a
heuristic algorithm to generate a cost-optimal deployment plan of CFNs and VFNs from real-
world traffic statistics and application characteristics. The system calculates the quantity and
variety of FNs required in various areas to meet the demand for computing resources, and it
organizes the trajectory and timetables of VFNs based on actual bus schedules. The trial
findings show the framework's capacity to lower expenses. The outcomes also demonstrate that,
at the cost of higher installation costs, the use of mobile FNs reduces operational expenditures.
Furthermore, due to the dense deployment of VFNs, more operational expenses will be reduced
over time in times and locations with higher traffic density and a larger daily variation.

In [20], MobFogSim, an expansion of iFogSim, will be used to overcome the mobility issue.
MobFogSim was tested by comparing simulation results to those produced from a real testbed
in which containers provide fog services. In this study, further MobFogSim trials are conducted
that consider the various mobility patterns of a user influenced by Luxembourg SUMO traffic.
The findings of this study indicate that MobFogSim can provide a valuable foundation for
supporting fog computing for mobile user apps.

In [46], a general three-tiered fog computing architecture was suggested, and the mobility of
user equipment was described by the amount of time spent in each coverage area of fog nodes,
which was found to follow an exponential distribution. An NP-hard mixed-integer nonlinear
programming model was used to describe the issue. The two components of this issue are task
offloading and resource allocation. It used a Gini coefficient-based fog computing selection
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algorithm to get sub-optimal offloading. To solve the computation resource allocation problem,
a resource optimization algorithm based on a genetic algorithm was implemented. The
simulation result indicates the introduced algorithm can achieve optimal revenue performance
compared with other baseline algorithms.

In [29], the scheduling issue in fog and cloud computing’s hierarchical composition was
first introduced. The scheduling algorithm needs to be flexible enough to handle user requests
on the go and various application types by keeping tabs on information in both the local fog
and the cloud. The research looks at how an app’s performance can impact a user’s mobility
and how that can be considered to optimize its implementation. In addition, the difficulties
posed by fog users’ tendency to move around and change locations were highlighted.

5.3. Heterogeneous Fog Nodes

Unlike cloud computing, the fog computing architecture and the devices are heterogeneous
and distributed, so the applications need to be designed to work more easily with fog nodes
[25]. In the following, some resource allocation approaches highlight heterogeneous factors in
fog computing.

The authors in this study [47] reduce network consumption and latency by creating an
algorithm that dynamically assigns the right sensor devices to fog nodes. From the rate of
sensing frequency of the sensor coupled to the edge device, the proposed technique calculates
the volume of information detected by the edge device. The suggested policy considers the
heterogeneity and processing power of the devices when connecting the network nodes. The
comparison's findings demonstrate that the suggested algorithm significantly lowers processing
costs in the cloud, delays, and network consumption. Any application can be executed using
the suggested technique. More applications of the proposed design will be implemented in my
future work, and the proposed method will be modified to allow for the study of numerous
parameters.

In order to reduce the cost per end-user, which is a weighted sum of energy consumption and
processing time, the authors [31] proposed a new offloading approach. In order to complete the
tasks, this study makes use of the fact that the fog computing nodes are not homogeneous and
have varying CPU frequencies. The primary goal of this study is to identify the minimum
amount of data required to complete a task that can be processed locally as well as the maximum
amount of data that can be offloaded to the most desirable fog node and the faraway cloud,
subject to the constraints of available resources and processing time. In this work, the offloading
profile and ideal cost of the offloading are visualized across a wide variety of parameter values
via simulation.

In [25], for diverse resource constraints in a fog computing setting, the authors presented a
policy based on distributed microservices for deploying Internet of Things applications. Putting
microservices as close to the data source as possible uses their decentralized and scalable nature,
reducing latency and network consumption. In addition to the planned decentralized placement,
service discovery, and load balancing, a fog node architecture was proposed to support these
features. A simulation utilizing the iFogSim tool demonstrated that the strategy might reduce
latency and bandwidth consumption by as much as 85%. Simulated findings also show that the
time it takes to deploy a microservice is significantly less than a centralized deployment.

As proposed in [48], an incentive mechanism based on contract theory was used to

incentivize nodes at the network's periphery. The negotiation between fog nodes and the task
publisher must be optimized for the problem to be solved. When a fog node and a task publisher
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work together, they reach Nash equilibrium, the best possible contract. The architecture can
provide user hardware with enough computing units for computation offloading. The ideal
node, as shown by the simulation results, can guarantee the individual rationality and incentive
compatibility of the fog nodes while maximizing the utility for the task publisher.

5.4. Scalability

Scalability requirements in cloud computing are hard to meet in applications such as living
systems [28]. Hence, it needs to propose smart approaches that do not rely on the cloud model
for processing or execution tasks, following some resource allocation approaches that consider
scalability factors.

In [21], this study proposed an extensible and scalable simulation called EmuFog in a fog
computing environment. This simulation embeds fog nodes in the network topology. It executes
Docker-based apps on nodes connected to an emulated network, allowing the researcher to
create the architecture of a network according to the use case. Both synthetic and real-world
network topologies were used to test this emulation’s scalability and effectiveness. The results
showed that it scales well and is effective regardless of the network’s size.

In [49], the authors considered that the computational loads are transferred to an edge device,
and a single edge device is insufficient. In a fog computing network, the analysis, sensing, and
transmissions between edge nodes help to enhance scalability in this environment. This study
analyzes the positive cases of malaria vector-borne disease-affected information from 2001 to
2014 in Maharashtra state, India. The architecture of Fog2Fog enhances the scalability of a
health GIS system.

In [28], this paper presents an expanded cloud 0T architecture for optimizing network
bandwidth and empowering edge devices to do intelligent processing independently of the
cloud. It conforms to the Spin-Leaf network architecture. This research demonstrated that low-
latency, high-bandwidth apps may send and receive data between the cloud and edge devices
without degrading QoS. The Spin-Leaf Fog Computing Network (SL-FCN) was used to lessen
network congestion and delay times. Because it coexists with the cloud computing data center,
this design is scalable. The findings showed that the FCN provided dependable QoS while
maintaining fault tolerance for traffic demands.

Table 3 consists of the following main entries: QoS metrics, research problems, research
objectives, and contributions, as well as the platform and metrics used in the evaluation, as well
as the pros and cons, are also illustrated.

Table 3: Summary of Fog Computing-based Resource Allocation Approaches

Index

S Platform
Ref Of. QOS. Research ObJe.Ct'V?/ and Pros and Cons
Public | Metric Issue Contribution .
- Metris
ations
Goggle Effective Resource Sim(iFogS v'Able to reduce latency
[40] Scholar | delay and resource allocation and . g by 10.3% and energy
. : im2) :
Shaikh. , energy | allocation and management Metc: consumption by 21.85%.
etal. | Scopus, | consump | management strategy take Dela a.n q v'"Manage resource
(2023) WoS tion systems must which into ene): allocation in loT
be designed to consideration 9y transportation.
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accommodate latency and consumpti | e There is a potential for
changing energy on. execution failure due to
user needs. efficiency when limited communication
assigning device range.
resources.
The resources Sim.:
are required Proposed WGK | (iFogSim) v Better energy

[41] Goggle | delay and ec]ct?(r:ai?gr?al algﬁglzt:nn;rzor E'r\1/|eert consumption and
Shruthi | Scholar | energy licati d . . consumption cost .

.etal. , consump ﬁpp_lca}tlgn parade scggarlo consumé)tl v Better performance than
(2022) | Scopus tion that Includes to provide onan FCFS and Delay-priority

several certain services/ total alqorithms
modules to resources. execution g '
run. cost.
Sim.: . . .
. , v'A suitable algorithm in
(I'I:\;I)gt?:”'n) the case of a real-time
. A proposed N system leads to load
Ifffectrlve EPRAM in b :‘?]a?n balancing.

7 Goaale | del q esource ¢ order to ala CI 9 |vEffective in monitoring
'I[ | ],t S c;]ggi € | defay an mar_lag:cemen minimize the _sze ' and predicting the state

alaa cholar ) energy Intog average urn- of a patient accurately

et al. , consump | environment resource around and quickly in the
) WoS tion via real-time utilization and time, healthcare system.
resource . Average L
- increase e More distributed
allocating. resource .
accurately utilization requirement.

Waiting " | o Need to be tested at

time. different levels.

. A suggested
Ad@res.smg PSO algorithm Sim.: v’Locate an optimum
the distributed - . : .

[30] tasks in to be the main (iFogSim) allocation to reduce the
Jabour | Goggle | delay and different part of the Metc.: energy consumption for
and Al- | Scholar | energy anplications of proposed Latency the devices.
Libawy , consump pIF())T via fo approach in and v'The proposed approach
(2021) | Scopus tion nodes cang order to manage | Average particularly enhances the

affect QoS and resources energy. response times of 10T
LT (power and (VRGame) applications.
reaction time. |
atency).
Propose a
Trace and Fog-based
ocate pider We improve the latency an
locat Spider Web Vi the lat d
the nearest f- Algorithm RRT interactions among

[42] Goggle | delay and node for (FSWA), which various nodes in fog
Daret | Scholar | energy computation reduces the computing.

al. , consump | and to reduce delays time v'searches the available
(2020) | Scopus tion the latency (DT) and proximal computing

across the enhances the resources.
various nodes response time v
in a network. (RT).
A pronosed v'Popular contents are
Goggle cpacr?in Simulator found using random

[24] Scholar | delay and Efficient mechanigm (N/A) distribution.
Shahid , energy content based on Metc . VPerforms load balancing

etal. | Scopus, | consump distribution opularity in Ener N mechanism to evenly
(2020) | WoS tion popufarity =Ner9Y. 1 istribute the load in Fog

content delivery | Time taken

fog networks

network to eliminate

energy holes problem.
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v’ Improved energy
efficiency and reduces
Fog network delay.
¢ Random popularity.

Divers?ty of A proposed a v'A problem of resource
physical resource oo allocation had been
resources representation Sim.: formulated as a
[43] Goggle | delay and | available in method that (N/A). Lvanunov obtimization
Amine | Scholar | energy each device qualifies to Metc.: ~¥1Phe im zfct of the '
etal. , consump and expose the Request rODOSE dpmetho don
(2019) | Scopus tion distributing resources of arrival prop latenc
the treatment | each device via rate. Imorove the e);formance
efficiently and | MEC APIs for P of the Sp stem
dynamically. optimizing RA Y '
Sim.:
(OpenMot
(Q\F/Jiré)erigsrf\?e?l e- v'Investigated the benefit
The and human- CC2538). | of intelligence as a factor
. . Metc.: for fog computing.
Goggle requirements driven Delay v Two case studies were
[31] Scholar | delay and | of latency and intelligence Packe"[ employed
Duy et ’ energy Energy approac_h as delivery v/Select its offloéding
al. Scopus, | consump | efficiency for essential ratio radio decision in the presence
(2019) WoS tion time-critical enablers to Dut ' of multiple fod nodes
loT decrease latency cycIZ n[()earbyg
applications. co?]rs],grre]n?irggin Powe,r v'Minimize ene’rgy and
P ptior consumpti latency objectives
0g computing on. and
Goodput.
The
WANSMISSION | | 2q patancing
Goaale betweenyF- scheme to Sim: (N/A) v'Low latency.
[44] Sch%%ar delav and | APs F-AP-to- address the Metc:laten " Minimize task offloading
Mukher eneyrgy endiuser and tradeoff cy and % to the cloud.
jee. et ’ ' between of content Need to optimize the
al. Sssggs, cort1isounmp f:gpe t::”' transmission fetched near-optimal latency to
(2018) stron Iy and computing from the low latency and high-
gly latencies in F- cloud. reliability.
depends on
. RANs
interference
power.
v’ Maintain the energy
consumption at
appropriate levels
Decision A proposed a Sim.: v Avoid overloading the
T i i f i
2] making novel GPRFCA (IFAC/JI%tSCIT). o9 decgtlegsll(r;rg]] grlequests
Rodrig | Goggle | delay and p\:\(/)rf:rsest(())n mect:lzlisrr]n for energy v Kept latency at
eS.et | Scholar | energy allocate infrastructure consumpti appropriate levels,
al. , consump on especially delay-sensitive
A resources to composed of .
(2018) | Scopus tion run the tasks combined blocking ones.
of an clouds and foas ratio e Evaluation of energy
aoplication gs. latency consumption for only to
PP ' end user-device.
¢ Not consideration of
multiple levels of fog
nodes.
[45] Goggle Capacity Propose Sim.: v reduce costs.
Mao.et | Scholar | Mobility planning, a data-driven (N/A.\.) v/ The deployment of
al. , which decides capacity mobile FNs saves
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(2022) | Scopus where and planning Metc: operational costs at
how framework that latency, expense of additional
much optimizes traffic installation cost.
computing the deployment | flow, CDF. | It lacks to short-term on-
resources to of stationary demand scheduling
deploy. and mobile FNs.
v'Significant and
interesting study.
v'Enable modeling of
. device mobility and
Sim.: service migration in fog
(MobFogS -
im) computing.
. v'"MobFogSim is capable
Metc.: .
S to use an user-defined
migration M
time migration method.
S v'Additional investigations
A proposed downtime, . .
: were carried out in
[20] MobFogSim to data - .
.. | Goggle Lo MobFogSim taking
Puliafit - Migration of a | overcome the | transferred, -
Scholar | Mobility . S account of various
o.etal fog service limitation of network bili f
(2020) ’ consumer use moblity pa terns of a
Scopus, mobility avera’ e user, derived from
WoS : g Luxembourg SUMO
number of ;
migrations traffic.
9 v'"MobFogSim supplies a
(live/cold), ;
reasonable basis for
average . o
keeping applications fog
delays A
computing in case of the
consumer is mobile and a
migration method is
required to move the
state.
Sim.:
(N/A)  |v'Reduced the probability
Metc.: of migration so as to
revenue of maximize the total
A proposed time and revenue of UEs.
- mobility-aware energy, [ The proposed algorithm
[46] g&%ﬁﬁ tg:/'ltsg offloading and | computing | was considering mobility
Wang.e Mobilit coverage of computation capacity, can effective.
tal Scc; us y fo comgutin allocation revenue | v'Achieve quasi-optimal
(2019) P g no dss g algorithm in fog with revenue performance
computing different compared with other
networks. mean baseline algorithms
value, o How to reduce the cost
migration of migration for the
cost migrated tasks
v'Address and consider
An investigation . scheduling and resource
. of the Sim.. management strategies
Scheduling . (N/A) -
scheduling g that require types of user
problem . Metc.: S
[29] Goggle . problem in fog applications, the range,
: in the . delay, .
Bittenc | Scholar . . computing o and the mobility of
- hierarchical application
ourt.et , Mobility . concentrates on smart.
composition modules, .
al Scopus how consumer v’ Improved execution
of fog and - total o
(2017) mobility may based on application
cloud : network h -
computing Impact use characteristics.
application ' v'Classified application
performance and user mobility as two

key factors to be
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associated with
scheduling in supplying
efficient resource
management.

The

v'Reduce the processing

cq?nbelctlon of Dynamlcally cost, delay and network
Goaal sul Z etsephsor asmgn;t Sim.: consumption.
[47] S %g% € Het nodes tc; ¢ approgrlq y iFogSim | v'Capable to execute at
Hassan. | 2¢"0'&r eleroge parent og SEnsor devices toolkit. any type of application.
, neous node playsan | to fog nodes to ) .
etal. . . Metc:  |o Need to deploying more
Scopus, Fog essential role achieve a ok
(2022) . L latency and application on the
WoS Nodes in reduction in
. network proposed system.
achieving the network Usage o Need © |
optimum utilization and ge. eg q 0 _morée ana }(/jze
performance latency. ar]l i esign ui hode
of the system, ailure in system.
v'Considering the
Sim.: heterogeneous nature
A proposed an (N/A) (with different CPU
A task offloading Metc.: clock speeds) of the fog
[32] Goaale offloading for | approach to find | total cost computing nodes.
Mukher Sch%ﬂar Heteroge | the end-users the optimal cost per  |v"Minimized the total cost
0. ot neous (task amount of fog node of the system.
) a.l Scd us Fog processing offloaded task average |v'Applied the SDR to the
(2020) P Nodes time) in the data under number of QCQP problem.
fog-cloud energy received e Studying and
environment constraintsand | offloading investigating deadline-
delay. tasks aware task offloading in
fog-cloud networks are
required.
A proposed decentralized
placement algorithm for
. microservices-based 10T
_FSIrr;._: applications in fog
(i I\zgt "_n) networks.
A q | te Co VA support decentralized
q prtipc:_se q a t?lccyI; placement for fog node
[25] Goggle Heteroge Microservices- meig?gso;?vlizcees nt?sa oer architecture along with
Pallewa | Scholar neou? based loT lacement tin?e’ load balancing and
tta. et , Fo applications alporithm for required service discovery.
al. Scopus N dg within Fog d - qf v"Handling service
(2019) odes environments. mlg;cs)zgr\llcl)(_:res- a Iigz:\tion discovery and load
licati PP . balancing-related
applications microservi challenges of the
| ces ¢ microservices
placement, architecture.
» A failure of the fog node
A lower-level fog node is
not considered.
v'The developed optimal
A share idles A proposed Sim.: contract is the Nash
Goaale computing incentive is a (N/A) equilibrium the solution
99 resources to a framework of Metc.: acquired by the task
[48] Scholar | Heteroge . - .
7 fognode ina | contract theory utility of publisher and fog nodes.
eng. , neous X - :
fog to motivate fog tasks v Eliminates the impact of
etal. | Scopus, Fog . . . .
environment nodes to share publisher information asymmetry
(2018) WoS Nodes L - 2.
asan their idle utility of and specifies
optimization computing fog node compensation to fog
problem. resources. nodes according to their

kinds.
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v'The utility of the task
publisher is maximized
while ensuring the
personal rationality and
motivation compatibility
of fog nodes.
e The contract-based
method should be
generalized in case of
fog node types have
different distributions.
v'A proposal was made to
design the network
topology according to the
An use case, and embed Fog
. Computing nodes in the
exper|n_1ental A proposed topology.

o ... rmon” | Snoresean | Sim: e e fom e
Mayer. | Scholar | Scalabilit or/and an scalable (EmuFog) dg5|gn of Fog Computing
etal. y application emulation Metc.. mfrastrucj[ures and the

! - Latency emulation of real
(2018) | Scopus designin a framework for applications and
controllable fog computing workloads
and repeatable | environments. « This simulator ﬁeeds
manner. more capabilities.
¢ Required to embed
mobility models both for
clients and Fog nodes.
A proposed Sim.:
[49] S&%ﬂ;‘i Scalailityin | £9%2F99. | (N/A) | Improving scalability in
Barik.e Scalabilit | fog computing order to enhance Metc.: fog frameworks.
tal. Scc;pus y for Geo-health the scalability of Probabil_ity » It was applied on limited
(2017) data systems. health GIS of blocking area
systems
v'Low-latency and
bandwidth-intensive
A proposes an applications can transfer
extended cloud data to the cloud without
10T model that Sim.- imp?cting QoS
optimizes ' performance.
[28] g&%ﬁﬁ A;gg i:k:r?té(rﬂ bandwidth while Is/ll\gtf:\ )_ v"Network congestion and
Okafor. Scalabilit environment allowing edge Iatencgl reducing latency issues
et al ’ y L devices to in a highly distributed
Scopus, functions in network .
(2017) WoS fog computing process data load usage and multilayer
intelligently virtualized 10T data-
without relying center environment
on a cloud ¢ Need more studies to
network. validate this model for
0T data stream
processing.

7. Open Issues in Resource Allocation

Despite modern approaches, many resource allocation problems are related to fog computing.
However, the number of devices is expected to continuously increase, may be connected to the
Internet, and create more and more data. Thus, the creation and consumption of data require
scalable resource management. In this section, we highlight many points that can help the
research community address them.
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e Mobility: According to the distribution capacity provided by the fog model, many tasks can
be executed and processed at various locations. Resource allocation becomes hard and complex
in the mobility environment due to many challenges, such as time and distance constraints.
Also, the mobility of smart devices requires efficient resource management and scheduling that
take mobility into consideration.

e Scheduling tasks: The main goal of scheduling tasks is to assign a set of tasks to fog nodes
to justify the QoS requirements optimally and minimize the execution and transmission time of
these tasks depending on the available set of resources.

e Heterogeneous fog applications: The devices in the fog computing environment are
heterogeneous, resource-constrained, and distributed, so the IoT applications need to be
designed with efficient resource allocation approaches to work more easily with fog nodes.

e Management of resources: In any system, the management of resources is an important
factor in avoiding congestion and overload, so efficient administration must be achieved
through the efficient distribution of the available resources, which is the main issue in the fog
computing resource allocation problem.

e Application placement: Placement is important in managing resources in a fog computing
environment because it is classified into three categories. The first category is centralized
placement, which requires information from all devices in a fog environment. The second
category is a decentralized placement in which the brokers have part of the information, and
the third is a hierarchical placement.

e Energy: In a fog computing environment, users must decide whether to offload tasks to near
fog nodes based on energy consumption. Thus, how to save energy consumption and provide
efficient approaches for efficient offloading needs to be addressed.

¢ Delay: In any environment, for the best user experience, we should execute and process tasks
with a reduced service delay for end-user applications, especially those sensitive to delay, and
optimize key performance metrics for users.

6. Conclusion

In order to alleviate the strain on cloud computing resources, fog computing has been
included in a wide range of cloud-enabled systems (such as loT-enabled applications,
healthcare applications, management applications, etc.), which have improved system
performance. The variety, mobility, and dynamic change of the fog computing environment,
however, make it a complex resource pool and major obstacles to creating an effective and
efficient resource allocation approach. The main goal of this study is to succinctly review recent
progress in fog computing-based resource allocation approaches. Overall, the paper
summarizes the present state of the relationship between fog computing and resource allocation.
It creates an understanding for the readers through an overview, classification, and the
opportunity for future research. For this purpose, we started by describing several topics that
have been included and explained, such as fog computing’s definition, architecture, and
functionalities and features. Then highlight the most prominent simulator environments and
popular evaluation metrics for fog computing. Moreover, modern proposed approaches from
2017 to 2023 were presented with their classification according to QoS metrics, and comparison
also showed the main pros, cons, work environment, metrics, research issues, and objectives
for each approach. Finally, several research issues related to fog computing were briefly
explained. Our future work will be to extend and investigate more approaches based on metrics
that may affect efficiency in the fog domain and its applications.
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