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Abstract  

    Quantum computing is described as a process by which a system calculates 

output. Quantum physics usually refers to the smallest discrete unit of any property; 

the basic unit of data in quantum is the qubit; this qubit unit is equivalent to the bit 

unit in classical neural networks. Quantum deep learning combines quantum 

computing with deep learning to reduce training time for neural networks, which has 

proven effective in solving some intractable problems on classical computers. 

Quantum deep learning has proven effective in solving some intractable problems 

on classical computers. A quantum network can benefit from quantum information 

flow because it is a more efficient framework than classical systems. Each quantum 

deep learning consists of a quantum gate. In this review, we provide a 

comprehensive review of recent studies that include different quantum deep learning 

applications, including healthcare, handwriting, and many others. Also, 

methodologies, problems, main datasets, results, strengths, limitations, and 

challenges are included in this review. 

 

Keywords: Quantum, Deep Learning, Quantum Deep Learning, Quantum Circuit, 

Quantum Computing, Quantum Neural Network, Quantum Algorithm.  
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   الخلاصة 
إلى         الكم  فيزياء  تشير  ما  عادةً  المخرجات.  لحساب  النظام  على  عملية  بأنها  الكمومية  الحوسبة  توصف 

الكيوبت هذه  أصغر وحدة منفصلة من أي   الكم هي كيوبت، ووحدة  في  للبيانات  خاصية، والوحدة الأساسية 
تعادل وحدة البت في الشبكات العصبية الكلاسيكية، ويجمع التعلم العميق الكمي بين الحوسبة الكمية والتعلم  
العميق لتقليل وقت التدريب للشبكة العصبية، والتي أثبتت فعاليتها في حل بعض المشكلات المستعصية على  

. لقد أثبت التعلم العميق الكمومي فعاليته في حل بعض المشكلات المستعصية على  التقليدية   حاسوب أجهزة ال
. يمكن لشبكة الكم أن تستفيد من تدفق المعلومات الكمومية لأنها إطار عمل أكثر كفاءة من  التقليدي  الحاسوب
، نقدم مراجعة شاملة للدراسات  ه الدراسة. يتكون كل تعلم عميق كمي من بوابة كمومية. في هذ التقليديةالأنظمة  

الحديثة التي تتضمن تطبيقات مختلفة للتعلم العميق الكمي بما في ذلك الرعاية الصحية والكتابة اليدوية وغيرها  
والقيود   القوة  ونقاط  والنتائج  الرئيسية  البيانات  ومجموعات  والمشكلات  المنهجيات  تضمين  تم  كما  الكثير. 
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1. Introduction 

    The expanding significance of neural networks in the industry will require extraordinary 

computational control as the complexity of these algorithms and database sizes are anticipated 

to increase [1], [2]. Deep neural networks have led to breakthroughs in several domains of 

machine learning, such as computer vision [3], natural language processing [4], reinforcement 

learning [5], speech recognition [6], and many others [7]. Deep learning [8] forms the 

backbone of many modern machine learning techniques and has become one of the most 

active research areas in computer science, spurred on by the increased availability of data and 

computational resources [7]. 

 

   Equally, noticeable progress was found in the quantum computing field, which concentrated 

on fixing classically difficult issues through computationally moderate techniques. Quantum 

computers are a good source to answer this challenge; the latest progress in the physical 

realization of quantum processes and the features in quantum algorithms increase more than 

ever the need to recognize their limits and abilities. Eventual research has been aimed at 

developing poly-time alternatives to classical algorithms to get the core idea of quantum 

texture and overlap [7].  

 

   Quantum computing surely supplies its thoughts to the field of machine learning (ML), and 

then there has been eventual research on using the quantum computing features to recover the 

performance capacity and computational competence of classical ML approaches [9]. 

Quantum neural networks, issues of making quantum circuits that recover the operations of 

deep learning, and some research results into quantum deep learning support the idea that 

completely quantum deep learning will not be carried out effectively [10]. 

In this work, we summarize the different ideas presented in the domain of quantum deep 

learning, which include quantum analogues to classic deep learning networks and quantum-

inspired classic deep learning algorithms. 

This work is structured as follows: a review of deep learning, quantum computing, and 

quantum neural networks is presented in Sections 2, 3, and 4, while Section 5 provides a 

detailed review of quantum deep learning as explained in several publications. A summary of 

QNNs is also shown in Section 5. And Section 6 included quantum deep learning challenges. 

Finally, in Section 7, conclusions and some future directions are provided. 

 

2. Deep Learning 

     Deep learning (DL) is playing an increasingly important role in our lives. It has already 

made a huge impact in areas such as cancer diagnosis, precision medicine, self-driving cars, 

predictive forecasting, and speech recognition. The painstakingly handcrafted feature 

extractors used in traditional learning, classification, and pattern recognition systems are not 

scalable for large datasets. In many cases, depending on the complexity of the problem, DL 

can also overcome the limitations of earlier shallow networks that prevented efficient training 

and the abstraction of hierarchical representations of multi-dimensional training data. Deep 

neural networks (DNN) use multiple (deep) layers of units with highly optimized algorithms 

and architectures. Deep learning algorithms seek to exploit the unknown structure in the input 

distribution in order to discover good representations, like CNN [11] and [12]. 

 

A convolutional neural network (CNN) is one of the most significant networks in the deep 

learning field. The Convolutional Neural Network (CNN) has been making brilliant 

achievements. It has become one of the most representative neural networks in the field of 

deep learning.  Computer vision based on convolutional neural networks has enabled people 

to accomplish what had been considered impossible in the past few centuries, such as face 

recognition, autonomous vehicles, self-service supermarkets, and intelligent medical 
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treatment, to better understand modern convolutional neural networks and make them better 

serve human beings [13]. 

 

3. Principals of Quantum Computing 

    Qubits are the important computational units in quantum computers, which perform a 

superposition state between |0〉 and |1〉[14] [15]. It is possible to represent a single qubit state 

as a complex two-dimensional vector, i.e., as shown in eq. 1 [16] [17], 

⃓𝜓〉 = 𝛼⃓⃓0〉 +  𝛽⃓⃓1〉 , ||𝛼⃓||
2

 + ||𝛽⃓||
2

= 1                                                                        (1) 

Here, ⃓ψ〉 is the state vector representing a quantum system. This system is in a superposition 

of two basis states, represented by ⃓0〉 and ⃓1〉. The coefficients α and β are complex 

numbers that determine the probability amplitudes of the system being in each of the two 

basis states, and ||α||2 and ||β||2 are the probabilities of observing |0〉 and |1〉 from the qubit, 

respectively. It can also be represented geometrically using the polar coordinates θ and φ, as 

shown in eq. 2 [16]. 

⃓𝜓〉 =𝑐𝑜𝑠 𝑐𝑜𝑠 (
𝜃

2
)  ⃓0〉 + 𝑒𝑖∅

𝑠𝑖𝑛 𝑠𝑖𝑛 (
𝜃

2
)  ⃓1〉                                                                                                          (2) 

   

    Here, ⃓ψ〉 is the state vector representing a single-qubit quantum system. This system is in 

a superposition of two basis states, represented by ⃓0〉 and ⃓1〉. The coefficients are 

determined by the angles θ and ϕ. θ is the polar angle, which ranges from 0 to π, and ϕ is the 

azimuthal angle, ranging from 0 to 2π. Both angles are expressed in radians. The term eiϕ is a 

complex exponential representing the phase of the quantum state, where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 

π. A single qubit state is represented by the surface of a three-dimensional unit sphere, 

referred to as the Bloch sphere. A multiqubit system can be performed as the product of n 

single qubits, which is equivalent to a superposition of n basis states from |00...00〉 to 

|11...11〉. In this system, quantum entanglement connects different qubits. In quantum circuits, 

these systems perform quantum computations by means of quantum gates [18]. 

 

   It is well known that a quantum gate transforms a qubit system into another, and as a matter 

of classical computing, it can be combined with several classical operators, such as rotation 

operator gates and CX gates [8]. Rotation operator gates Rx(θ), Ry(θ), Rz(θ) rotates a qubit 

state in the Bloch field around the corresponding axis by θ and CX gate entangles two qubits 

by overturning a qubit state if the other is ⃓1〉. Those quantum gates use quantum overlap and 

entanglement to add utility to classical computing, and it is familiar that quantum algorithms 

can add a rapid computational gain to the current algorithms in specific functions such as 

major factorization [19]. 

 

4. Quantum Deep Learning 

      Quantum neural networks have been developed recently as a subfield of quantum 

computing that explores how quantum computers are used for neural network missions. That 

is, quantum deep learning is an integrative field that consolidates quantum physics and deep 

learning; it uses the power of quantum computing to create quantum categories of deep 

learning algorithms that are used in the associated fields. 

   Some quantum connotations that help in understanding quantum neural networks are below: 

● Linear superposition is like the mathematical principles of the linear combination of vectors 

[20] [21]. 
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● Coherence and decoherence have similarities with linear superposition. A quantum 

computer is consistent when linear superposition is in basis states and if it is not incoherent 

[22]. 

● Operators work on the transformation of states in the wave functions on a Hilbert space 

[23]. 

● Interference works on wave appearance, and it is calculated in capacity [21]. 

● Entanglement is a special quantum state that does not occur in classical computers [21]. 

 

The two main kinds of quantum deep learning are [15] and [19]: 

 

4.1 Variational Quantum Circuits (VQC) 

 

   A variational quantum circuit (VQC) uses rotation operator gates with free parameters to 

perform different numerical tasks such as approximation, optimization, and classification. As 

its parameters are often optimized by a classical computer, the variational quantum algorithm 

(VQA) is a hybrid algorithm of classical and quantum circuits. Numerous numerical problems 

are solved using VQC because its global approximation property allows it to solve many 

different problems [14] [24]. Several applications of VQA in machine learning resulted from 

this flow, and it was used to replace the artificial neural network of the existing model with 

VQC in many cases. VQC approximates functions through parameter learning in a similar 

way to artificial neural networks, but it is distinguished by several properties of quantum 

computing. All quantum gate operations are linear, reversible operations, so texture sheets are 

used for multiple sheet formation instead of activation purposes. These VQCs are called 

“quantum deep learning” [19]. 

 

4.2 Quantum Neural Networks 

 

   In this section, the basic quantum neural network (QNN) will be revealed. QNNs process 

data according to the following method: Initially, input data is encrypted into corresponding 

qubit states of a relevant number of qubits. Afterward, the qubit state is transformed via 

parameterized rotation gates and texture gates for a given number of sheets. Transfigured 

qubit states are then calculated through the application of a Hamiltonian administrator, such 

as Pauli gates. Decryption of these evaluations results in proper output data. Developers like 

Adam Optimizer then update the parameters. Various parts can be produced by a neural 

network assembled as a VQC, which will be investigated as quantum deep learning [19]. 

   Quantum convolutional neural networks (QCNNs) were proposed, utilizing the 

complication layer and linking layer of quantum circuits. As reported by the research results 

in [7] and [15], QCNN circuits are computed in the following manner: The first step in 

applying any QNN pattern is the encoding of input data into qubit states using rotation 

operator gates. The complication layer then filters the input data into an aspect map using 

quasi-local unitary gates. This aspect map is then reduced by the linking layer with controlled 

rotation operators.  Essentially, this process repeats until the fully associated layer is able to 

deal with the qubit state as a classical CNN pattern. Finally, the assessment of the qubit state 

is decrypted into output data with the desired sizes. The circuit parameters are updated by 

descent-based developers after each assessment. Unfortunately, in the current quantum 

computing conditions [25], QCNN is tougher to achieve than the current classical CNN. 

Anyhow, it is anticipated that the QCNN will be capable of carrying out adequate 

computational gains over the classical ones in future quantum computing conditions in which 

larger-size quantum calculations are achievable [15]. 
   There are two various techniques for quantum neural networks for health protection image 
category and execution: the first one uses quantum circuits to help the training and deduction of 
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classical neural networks by modifying the network to be adjustable to current quantum hardware; 
the second builds on the recent work on quantum rectangular neural networks, where quantum 
parameterized circuits are trained to enforce orthogonality of weight forms. Orthogonality is an 
essential stuff of quantum procedures, which are expressed by unitary forms, and it has been 
revealed that it can raise the performance of deep neural nets and help to avoid vanishing or 
exploding gradients, such as the dying ReLU, which is a kind of vanishing gradient that occurs when 
the neurons in the ReLU become inactive and only output zero for any input. Dying ReLU is known to 
be among the biggest obstacles in the training of deep feedforward ReLU neural networks [26]. 

 

5. Techniques and Methods of Quantum Deep Learning 

   The quantum deep learning network has been most popularly modeled through many 

applications like healthcare, handwriting classification, and other applications: 

 

5.1 Healthcare 

   Healthcare is one of the most important areas in which image processing procedures can be 

usefully applied. Processing images is an important step in improving an operation's accuracy 

and accuracy in diagnosis. COVID-19 detection is one of those fields. 

 

   L. Parisi et al. [27] proposed Leaky ReLU (RLE) as a starting point for the proposed 

Quantum ReLU (QReLU) and Modified Quantum ReLU (m-QReLU) activation functions, 

based on the two quantum principles of entanglement and superposition. However, the results 

indicate an overall higher classification accuracy, indicating its potential to replace the gold 

standard activation functions (AF) in CNNs for image classification tasks such as medical 

diagnosis of COVID-19 and Parkinson’s Disease (PD) without facing the issue of vanishing 

gradients [27]. 

 

   Detecting a disease early is crucial to medical diagnosis and clinical practice, as it lessens 

stress on the healthcare system and achieves high degrees of accuracy, although neural 

networks and classical computers have limitations. The work in [28] used quantum algorithms 

for linear algebra and quantum neural networks. Quantum deep learning techniques have been 

proposed as a way to enhance the performance of machine learning applications. Using 

quantum circuits for training classical neural networks and developing and training quantum 

orthogonal neural networks for medical image classification, they developed two different 

quantum neural network techniques. Their techniques were tested on chest X-rays and retinal 

color fundus images. Although QNN provides similar accuracy to classical NN, quantum 

accuracy drops for more challenging tasks. 

 

   For improving accuracy when processing difficult tasks, the researchers in [29] developed a 

prototype system for classifying COVID-19-related pneumonia signals in computed 

tomography (CT) images by comparing them with non-COVID pneumonia signals. This 

simulation work determines the efficacy of deep learning algorithms for image classification 

problems while also evaluating quantum computations, thus establishing the performance 

quality necessary to improve prediction rates when dealing with complex clinical image data 

exhibiting high biases. On specific classification tasks, the proposed model performed better 

than conventional deep learning models. They evaluated quantum algorithms for complex 

problems and found them to be very efficient in classifying large, biased images. The 

quantum model runs faster than classical neural networks. The simulation shows QNN to be 

superior to DNN, CNN, and 2D CNN. 

 

   Houssein et al. [30] used a hybrid quantum-classical convolutional neural network 

(HQCNN) to detect COVID-19 patients with CXR images using random quantum circuits 
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(RQCs). In the first dataset, this study used 6952 CXR images [30], including 1161 COVID-

19 images, 1575 normal images, and 5216 pneumonia images. Compared to other available 

models, the proposed HQCNN model achieves higher performance and accuracy. The model 

is tested on a binary and multiclass dataset, with confirmed COVID-19 cases in the first 

dataset. But this model has a more complex architecture.  Moreover, on the second dataset, 

the researchers [31] obtained a higher degree of sensitivity and accuracy. Furthermore, it 

reached an accuracy and sensitivity of 88.6% and 88.7%, respectively, on the third multiclass 

dataset. There are 5445 images [31] in the second dataset, including 1350 COVID-19, 1350 

normal, 1345 viral pneumonia images, and 1400 bacterial pneumonia images. In addition, the 

proposed model shows greater ability to predict positive COVID-19 cases when compared to 

the second HQCNN model. But the method worked in [30] and [31], which were complex; 

the disease was diagnosed in these two cases only and was not tested to diagnose new cases of 

the disease. 

 

   The researchers in [32] proposed “Quantum ReLUs” (QReLU) and modified QReLUs (m-

QReLUs) that are derived by mathematically exploiting the quantum principles of 

entanglement and superposition. As part of classification tasks that involved detecting 

COVID-19 and PD, the proposed AFs were tested in conjunction with a CNN using seven 

image datasets. CNN was compared with nine classical AFs, including variations based on the 

ReLU model, for out-of-test classification accuracy and reliability. Based on five of the seven 

datasets evaluated, the results indicate higher accuracy and reliability for the CNN with 

QReLU or M-QReLU and avoid the “dying ReLU” problem with quantum AFs [32]. 

 

The mutated SARS-CoV-2 RNA sequences have led to the emergence of new epidemic 

strains of COVID-19, like Delta and Omicron, that cause high mortality while spreading 

rapidly. Yu-Xin Jin et al. [33] proposed a hybrid quantum-classical model that achieved 

blurred convolution like classical depth-wise convolution while also successfully 

implementing quantum progressive training with quantum circuits. These features 

simultaneously guarantee that their model is the quantum counterpart to the well-known style-

based GAN. According to the results, the percentages of the randomly generated spike protein 

variation structure are always over 96% for Delta and 94% for Omicron. In the HQNN model, 

by using the quantum algorithm, they have contributed to predicting mutant strains 

effectively, and the training loss curve is more stable and converges better than conventional 

methods. The generated images generated by ProGAN cannot be controlled, and the random 

parameter inputs have slight changes. 

 

   The current hardware used to train neural networks’ size, control, and utility are still greatly 

limited. Physical limitations of conventional computers are causing performance 

improvements to be slowed in the coming years, and therefore, these concerns have become 

increasingly pressing. The work in [34] introduced a quantum-classical hybrid neural network 

architecture where each neuron is a variational quantum circuit. A simulation of a quantum 

computer and a state-of-the-art quantum computer are used to evaluate the performance of 

this hybrid neural network. Compared to a variational quantum circuit set up in isolation, the 

hybrid neural network achieves roughly 10% higher classification accuracy and 20% better 

cost minimization. Each quantum hardware model can only perform well when the qubit and 

gate counts are small enough. However, VQC is cheaper and more robust, so adding more 

parameters does not guarantee better results. In tests on the iris, bars, and stripes datasets, 

HQNN and quantum hardware performed poorly. 

 

   Emmanuel Ovalle et al. [35] used a hybrid transfer-learning paradigm in which a quantum 

network drove and enhanced a classical network trained for stenosis detection. In an 
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intermediate step between classical and quantum networks, the classical features are 

transformed into a hypersphere of a fixed radius using a hyperbolic tangent function. 

Following normalization of these features, these probabilities are computed in the quantum 

network using the SoftMax function. Further, rather than a single quantum circuit, multiple 

quantum circuits are used to divide the training data within the quantum network to improve 

training time without compromising stenosis detection performance. A small dataset of 250 

images was used to evaluate the proposed method. Hybrid classical-quantum networks 

outperform classical networks significantly; this method has very complex operations. 

 

   To overcome the complexity in the above works, Viraj Kulkami [36] created a hybrid neural 

network to detect pneumonia from chest radiographs using a classical neural network. It 

combined a variational quantum circuit with a layer of a classical convolutional neural 

network. On a chest radiograph image dataset, they train both networks and benchmark their 

results. Multiple rounds of network training are used to minimize the effects of different 

sources of randomness. According to the study, hybrid networks outperform classical 

networks on various performance measures, and these improvements are statistically 

significant. As a result of their work, they show that quantum computing has the potential to 

improve the performance of neural networks in real-world applications relevant to society and 

industry. However, the work was expensive in terms of time and depended on a number of 

factors. Table 1 summarizes the previous work that has been done in the healthcare sector. 

 

Table 1: Summary of quantum deep learning in healthcare 

 Authors, Year Problem Dataset Method Strength Weakness 

[27] 

L. Parisi, D. 

Neagu, R. Ma, 

and F. 

Campean 

(2020) [27] 

- Limited 

NN in 

healthcare 

- Dying 

ReLU 

problem 

- Covid-

19 dataset 

- MNIST 

Quantum 

ReLU & m-

QReLU 

- Higher 

classification 

accuracy, without 

facing the issue of 

vanishing 

gradients 

-Takes a long time. 

In the results were 

different for the 

other than Covid-

19 data 

[28] 
N. Mathur et al 

(2021) [28] 

- 

Limitation 

of NN for 

medical 

image 

classificati

on 

- 

MedMNI

ST 

Two methods 

QNN 

(Quantum 

Circuits and 

Quantum 

orthogonal 

NN) 

- Used two image 

models, retinal 

color image and 

chest x-ray 

- QNN Provide 

similar accuracy to 

NN. 

- For more difficult 

tasks, Q accuracies 

drop 

[29] 

K. Sengupta 

and P. R. 

Srivastava 

(2021) [29] 

- 

Limitation 

of NN for 

medical 

image 

classificati

on 

 

CT image 

Quantum 

neural 

network 

- It better, and 

faster than CNN 

-evaluated Q 

algorithms for 

complex 

problems 

- Found it to be 

very efficient in 

classifying large 

images. 

- Need a 

development area 

on edge-quantum 

computing 

[30] 

E. H. Houssein, 

Z. 

Abohashima, 

M. Elhoseny, 

and W. M. 

Mohamed 

(2021) [30] 

- Limited 

NN for 

image 

classificati

on 

- Binary & 

multiclass 

dataset 

- Two 

CXR 

covid-19 

image, 

HQCNN 

used RQCs 

 

- Enhance 

performance, 

model is 

evaluated on 

binary & multi-

class dataset with 

confirmed 

COVID-19 cases 

-HQCNN is more 

complexity 

[31] 
E. H. Houssein, 

Z. 

- Limited 

NN for 

- 

Collectio

HQCNN 

using random 

-Tested on high 

dimensional 

-This method 

similar to ref [28], 
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Abohashima, 

M. Elhoseny, 

and W. M. 

Mohamed 

(2022) [31] 

image 

classificati

on 

- High 

dimension

al images 

n 5445 X-

RAY 

image 

 

QC images & 

achieved higher 

performance 

but tested on 

different dataset 

[32] 

L. Parisi, D. 

Neagu, R. Ma, 

and F. 

Campean 

(2022) [32] 

- Limited 

NN in 

medical 

application

s 

-Dying 

ReLU 

problem 

- Covid-

19 dataset 

- MNIST 

QReLU & 

M-QReLU 

- Avoid the 'dying 

ReLU' problem 

with quantum 

AFs 

- Method is very 

difficult 

[33] 
Y.-X. Jin et al 

(2022) [33] 

- Limited 

NN for 

image 

classificati

on - 

Detected 

new strains 

of 

COVID-19 

- SARS-

Cov-2 

RNAs 

 

Deep 

Quantum, 

Hybrid 

quantum-

classical 

model with 

QC 

-Training loss 

curve is more 

stable and 

converges better 

with multiple loss 

function 

- Effectively 

predict the mutant 

strains are strong 

-ProGAN is not 

have ability to 

control the specific 

features of the 

generated images 

-Random 

parameter inputted 

has slight 

modification 

[34] 

D. Arthur and 

P. Date (2022) 

[34] 

- Their 

size, 

control and 

utility are 

still greatly 

limited 

- Iris 

Bars 

stripes 

HQNN 

architecture 

where each 

neuron is 

VQC 

- In simulated 

hardware, HQNN 

achieve 10% 

higher 

classification, 

20% better 

minimization of 

cost than 

individual VQC 

- Quantum 

hardware, only 

performs well 

when qubit & 

gate count is 

sufficiently 

- Network more 

expensive than 

VQC 

- Increase number 

of parameters do 

not guarantee 

better results 

- When used 

quantum hardware 

& HQNN both 

performed poorly 

on iris, bars, and 

stripes datasets 

[35] 

E. Ovalle-

Magallanes, J. 

G. Avina-

Cervantes, I. 

Cruz-Aceves, 

and J. Ruiz-

Pinales (2022) 

[35] 

- Pre-

trained 

classical 

network 

- Limited 

CNN in 

image 

classificati

on 

- 250 

images 

Hybrid 

classical-

quantum 

networks 

 

- It improved the 

training time 

without 

compromising the 

stenosis detection 

performance, 

HQNN 

outperform 

classical networks 

significantly 

- Very complex 

operations 

[36] 
Viraj Kulkarni 

(2022) [36] 

-The 

limitation 

is still in 

NN, and 

complexity 

- 5856 

chest 

radiograp

hs 

VQC 

integrated 

into classical 

NN to 

detecting 

pneumonia 

- Improve NN 

performance for 

real-world, non-

trivial problems 

- Expensive in 

terms of time 

- Depended on 

many 

considerations 

 

5.2 Handwriting Classification 

     A long time ago, the intractable challenges were the memory requirements and the time 

efficiency tolerance. The work in [37] introduces a quantum deep convolutional neural 

network (QDCNN) model based on the quantum parameterized circuit. A comparison of the 

proposed model with the classical deep convolutional neural network (DCNN) indicates an 
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exponential speedup compared with its classical counterpart based on variational quantum 

algorithms. Furthermore, the MNIST and GTSRB datasets are simulated numerically, and the 

quantitative experimental results are used to verify the validity and feasibility of the model. 

However, there is a lack of information about network complexity. 

 

   Based on quantum and classical computing, the researcher in [38] proposed an image 

classification model that uses a hybrid approach. By replacing classical filters with variational 

quantum filters, the method leverages the potential of convolutional networks. The aim of this 

work is to compare the system's performance on different servers with other classification 

methods. The quantum feasibility of the algorithm is modeled and tested on MNIST and 

Amazon Braket Notebook instances. In this study, various strategies were tested to approach 

hybrid programming problems that were longer than usual. Despite the increase in operations, 

the results obtained are satisfying given the experiments performed, especially considering the 

low number of images used for training to reduce time and costs. 

 

   Ali Mohsen et al. [39] used quantum machine learning techniques where images are 

encoded in quantum states and inferences are made by a quantum neural network. Quantum 

machine learning techniques are particularly useful for classical image classification. 

Unfortunately, input images have been limited to extremely small sizes, no more than 4*4. 

Using larger input images has proven problematic due to the need for more qubits than are 

physically feasible in the existing encoding schemes. Their proposal is to use quantum 

systems to classify larger, more realistic images. Rather than requiring more qubits than prior 

work, their approach involves embedding images in quantum states. The framework is able to 

distinguish images up to 16*16 for the MNIST dataset on a laptop computer and is accurate 

enough to compete with classical neural networks with the same number of learnable 

parameters, and we also proposed a technique for reducing the number of qubits needed to 

represent images, which may lead to less computing power but better performance in the end, 

but the challenges remain in high-dimensional data. 

 

   In the NISQ (Noisy Intermediate-Scale Quantum) era, quantum machine learning is one of 

the most compelling applications of quantum computing. The work in [40], which introduced 

quantum CNN, has been used to reduce computing complexity by using logarithms. Image 

recognition tasks can be handled with this model, which is robust to noise and independent of 

input sizes. With O((log2M)6) basic gates and O(m2+e) variational parameters, this model 

can perform image recognition tasks with high precision even when the input size changes. It 

is therefore well suited for near-term quantum devices. The machine learning model can 

produce operands that correspond accurately to a specific classical convolutional kernel when 

compared to previous work. This creates a direct path to converting CNN to QCNN and opens 

the possibility of utilizing quantum power to process large amounts of information as the era 

of big data continues. 

 

   Historically, classical neural networks were limited in efficiency, cost, and performance due 

to limitations in runtime and efficiency. The work in [41] used quantum dilated convolutional 

neural networks (QDCNNs), which first combated between dilated concepts and VQCs, 

which could reduce computational costs. Comparing the QDCNN models to existing quantum 

convolutional neural networks (QCNNs), they generally perform better in terms of both 

accuracy and computation efficiency. However, classical CNN achieves higher accuracy than 

QDCNN, and QDC with a higher dilation rate performs better than QDCNN [41]. 

 

The training phase takes a long time and consumes a lot of resources in classical NN. 

Therefore, according to Y. Jing et al. [42], developing QCNN models that can efficiently 



Yousif and Al-Khateeb                              Iraqi Journal of Science, 2024, Vol. 65, No. 8, pp: 4588-4605 

 

4597 

process massive data sets is a possible solution using quantum computing. The QRAM 

algorithm allows us to design new QCNN models. A more resource- and depth-efficient 

model is presented for large input data and multiple output channels using a QRAM algorithm 

to extract features as efficiently as possible; for that, it took a long runtime [42]. 

 

Scientists tend to focus on processing input data through randomized quantum circuits; for 

example, in J. Orduz et al. [43], the proposed model acts as quantum convolutions and 

produces new representations that can be applied to a convolutional network. Quantum 

convolutions can speed up convergence and enhance stability in learning higher-dimensional 

problems as well as compute performance like classic convolutional neural networks, and 

they reduce runtime. 

 

   The work in [44] proposed quantum neural networks, which handle high-dimensional 

spatial data. On the popular MNIST image dataset, the influence of encoding type, circuit 

depth, bias term, and readout is examined. The results of experimental work show a wide 

range of interesting findings regarding different QNNs' learning behaviors. To the best of 

their knowledge, the present work is the first to address various aspects of QNN for image 

data. Performance can be improved by creating a separate qubit. As a result, the fewer the 

training sessions, the more challenging the classification. Circuit depth and bias helped 

improve performance as well. It can be considered optimal for a circuit to have 8 qubits and 

an 8-qubit depth when depth and width are set appropriately. Yet the circuit is extremely 

complex. Table 2 summarizes the previous works that were done in the handwritten 

classification. 

 

Table 2: Summary of quantum deep learning in handwriting classification 

 
Authors, 

Year 
Problem Dataset Method Strength Weakness 

[37] 

Q. Science 

(2020) [37] 

 

- Me

mory 

requirement

s and the 

time 

efficiency 

tolerance 

MNIST 

QDCNN 

based on Q 

parameterized 

circuit for 

image 

recognition 

- Provides 

exponential 

acceleration 

comparing with 

classical NN 

- Results verify 

feasibility, and 

validity 

-The network is 

complexity 

analysis 

- Lack of 

information 

about network 

complexity 

[38] 

P. Atchade-

Adelomou 

and G. 

Alonso-

Linaje 

(2021) 

[38] 

- NN 

limited in 

efficiency, 

cost 

- Long time 

MNIST 

Hybrid 

approach. By 

replacing 

classical filters 

with 

variational 

quantum 

filters 

- Reduce time and 

costs 

-The increase in 

operations 

[39] 
Ali Mohsen 

(2021) [39] 

Input 

images 

limited to 

small sizes, 

no more 

than 4*4 

MNIST 

Framework to 

classify layer 

realistic image 

using Q 

systems 

- Reduce number of 

required qubits. 

- Could imagine that 

invoking 3 or more 

qubit gate to layer 

circuits would 

improve learning 

outcomes 

- Compress 

black & white 

images only. 

- Did not a 

comprehensive 

survey of space 

of all possibly 

unitary operation 

[40] 

S. Wei, Y. 

Chen, Z. 

Zhou, and 

G. Long 

(2022) [40] 

- Noisy 

Intermediat

e-Scale 

Quantum 

MNIST 

Quantum 

convolutional 

neural 

networks 

- Suited for near-

term quantum 

devices 

- Process large 

amounts of 

- Takes long 

time 

- Use dataset 

low dimensions 

and QCNN hard 
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information as the 

era of big data 

continues 

representation 

[41] 
Y. Chen 

(2022) [41] 

- Classical 

neural 

networks 

limited in 

efficiency, 

cost 

MNIST 

HQ algorithm 

called 

QDCNN 

- Reducing 

computational cost, 

better accuracy & 

computation 

efficiency, combine 

dilated with 

variational QCs. 

- Classical CNN 

achieve high 

accuracy 

compared to 

QDCNN 

[42] 
Ya Jing et-al 

(2022) [42] 

- Training 

takes a long 

time, lot of 

resources in 

NN 

MNIST 

Used two 

types of QC 

Ansatz to 

simulate 

convolutional 

operations on 

RGB image 

- Improves 

predicative 

performance in 

multiclass 

classification tasks 

- Used quantum 

for small 

dimensions 

dataset 

[43] 
Javier Orduz 

(2022) [43] 

- Pr

ocessing 

input data 

through 

RQC 

MNIST 

Randomized 

QC act as Q 

convolutional 

producing 

- Performance is 

comparable to CNN 

in reconstruction 

ability & accelerate 

convergence 

-Stability in learning 

higher-dimensional 

- Results is 

similar in 

classical NN 

- Long time 

[44] 

Tuyen 

Nguyen 

et-al (2022) 

[44] 

- Hi

gh 

dimensional 

spatial data 

MNIST 

Hybrid 

Quantum & 

classification 

system 

- Various interesting 

finding different of 

QNN obtained 

through 

experimental results 

- Difficult 

architecture for 

small dataset 

5.3 Other Applications 

   Because deep quantum circuits for noisy intermediate-scale quantum (NISQ) are intractable 

and difficult to apply, and traditional quantum computing platforms are hard to simulate 

classical neural network models or problems, Samuel Yen-chi Chen [45] proposed the design 

of quantum neural networks for NISQ devices. It becomes necessary to devise a feasible 

algorithm. For deep reinforcement learning, researchers investigated variational quantum 

circuits. This research reshapes classical deep reinforcement learning algorithms into 

variational quantum circuit representations. They use these circuit representations as 

parameters for deep reinforcement learning. In a near-term NISQ machine, the VQC will be 

deployed. 

 

   In an existing CNN model, when the learning scale grows large, the learning speed and 

resource usage become problematic. Furthermore, quantum computers are limited in the 

number of usable qubits. To deal with these limitations, the researchers in [46] used the 

concept of quantum together with CNN (QCNN). As a technique for processing large 

amounts of data at once, quantum random access memory (QRAM) uses superposition and 

entanglement to store large amounts of data. The model is more efficient on the resource side, 

the computational capacity side, and the depth side. The QRAM method is used to extract 

features and is more efficient on the resource side. But it is time-consuming and difficult to 

apply. 

 

   In contrast to quantum neural networks, which require repeated computations to achieve 

their desired level of accuracy, Bayesian neural networks consider sampling from posterior 

distributions rather than using point estimation. For this problem, the work in [47] proposes a 

quantum Bayesian neural network (QBNN). In empirical experiments, they discovered that 

for a small number of qubits, their model approximated the true posterior well, and they did 

not require repeated computations, meaning that they could fully realize quantum speedups by 
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replacing the classical inner product of two vectors with quantum estimates. Increasing the 

number of qubits will provide better accuracy in the inner product estimate. 

 

   Currently, QNNs are difficult to train because quantum resources are limited, so the 

researchers in [48] developed an unsupervised method of learning quantum classical 

convolutional networks by combining multiple quanvolutional filters in a hierarchy, followed 

by a pooling layer. Quantum circuit arrangement was optimized using K-means clustering. It 

was tested on a bearing fault detection dataset, which demonstrated its effectiveness. 

Nonetheless, it appears to be difficult to stack enough layers to generate useful higher-level 

representations. 

 

   This work [49] combines quantum and classical processing blocks in order to perform 

image classification and segmentation in a systematic manner using both methods of quantum 

computing. Surface crack dataset segmentation illustrates its efficacy and utility. Our in-house 

Cognitive Model Management framework orchestrates the functionalities of the software 

engineering task, so it can be used across multiple domains. Weakness: the image dataset was 

very limited. 

 

   In [50], proposed parameterized quantum circuits with three layers (convolution, pooling, 

and unsampling) can be distinguished by their generative one-qubit and two-qubit gates. It 

performed well on many platforms, including NSIQ devices. While Hue  et al. [51] propose a 

model that only uses two-qubit interactions for all interactions in a convolutional neural 

network, a variety of QCNN models were tested using MNIST datasets, differentiating them 

according to the structures of parameterized quantum circuits, quantum data encoding 

schemes, and classical data preprocessing schemes. Even with a limited number of free 

parameters, QCNN was able to achieve excellent classification accuracy. With the QCNN 

algorithm presented in this work, it is possible to develop NISQ devices with fully 

parameterized quantum circuits and shallow layers. 

 

   Digital image processing requires edge detection as the amount of data required to be 

processed grows rapidly, pushing even the most powerful supercomputers to their limits. 

Comparing the number of qubits in quantum computing to the number of classical bits, the 

number of qubits will consume exponentially less memory. The researchers in [52] used an 

artificial quantum neuron concept in this work for quantum edge detection. Methods like 

these can be practically implemented on quantum computers, including the current noisy 

intermediate-scale quantum computers. The objective of this study is to compare six variants 

of the method to reduce the number of circuits and the time needed to detect quantum edges. 

Because our method can be scaled, edges can be detected in images that were much larger 

than previously possible.  

  

   Because of the limitations of a standard neural network, image classifiers for remote sensing 

are a challenge for classical neural networks. As an Earth observation (EO) use case, the 

researchers in [53] applied the quantum concept with CNN to land-use/land-cover 

classification and tested it using the EuroSAT dataset as a benchmark. By demonstrating that 

the QCNN performs better than its classical counterpart, the multiclass classification results 

demonstrate the effectiveness of the presented approach. Additionally, the best classification 

scores are achieved by circuits that exploit quantum entanglement. Using quantum systems as 

a lens to study EO, this study highlights the possibilities of applying quantum computing to a 

real-world case study and lays the theoretical and experimental groundwork for further 

investigations. There is, however, a lack of quantum processing in more complex quantum 

circuits. 
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     A major goal of economic analysis is the precise forecasting of macroeconomic conditions, 

since it facilitates a timely assessment of future economic conditions and can be used for 

monetary, fiscal, and economic policy purposes. The macroeconomic situation has been 

extensively studied and forecasting models developed. Nevertheless, despite the limitations of 

existing models, David Alaminos [54] proposes new forecasting models that are capable of 

accurately estimating future scenarios worldwide. Quantum computing with deep learning 

techniques was compared to producing a high-accuracy model by means of deep neural 

decision trees, which demonstrated excellent prediction results in large-scale processing with 

mini-batch-based learning and can be integrated with any neural network model. The model 

offers tools that help achieve macroeconomic and monetary stability globally, as well as 

methods for predicting GDP growth at the global level, and can have a major impact on the 

adequacy of macroeconomic policies. Table 3 summarizes the previous work that has been 

done in the other applications. 

 

Table 3: Summary of quantum deep learning in other applications 

Ref 
Authors, 

Year 
Problem Dataset Method Strength Weakness 

[45] 

Samuel yen-

chi Chen 

(2020) [45] 

Unfeasible 

machine 

learning for 

noisy 

intermediate 

scale quantum 

(NISQ) 

devices 

Real-

world 

dataset 

Variational 

QC for 

reinforceme

nt learning 

- Reduce number of 

parameters 

- it is fast compared 

to classical NN 

- Applicable in 

different scenarios 

- QC based DRL is 

robust against noise 

in current machines 

- Less memory 

consumption 

- Intractability 

of deep 

quantum 

circuits 

[46] 

Seunghyeok 

oh 

And et-al 

(2021) [46] 

It is a 

relatively 

burdened 

model in terms 

of learning 

speed and 

resource usage 

Massive 

data 

Design 

QCNN a 

potential 

solution 

using 

quantum 

computer to 

handle 

problem 

- More resource and 

depth efficient 

model for larger-

sized input data 

- Number of output 

channel suing 

QRAM and 

efficiently extracting 

features 

- Difficult 

method and 

takes long time. 

[47] 

N. Berner, V. 

Fortuin, and 

J. Landman 

(2021) [47] 

QML requires 

repeated 

computations 

to achieve a 

desired level of 

accuracy for its 

point estimates 

UCI 

dataset 

Quantum 

algorithm 

for Bayesian 

NN 

inference 

- Found small 

number of Qubits 

- Reducing 

asymptotic of 

inference & 

prediction in BNN 

using QA 

- Need speed up 

the inference 

even further 

[48] 

T. Dou, K. 

Wang, Z. 

Zhou, S. Yan, 

and W. Cui 

(2021) [48] 

the lack of 

quantum 

resource, it is 

costly to train 

QNNs 

Dataset 

has 299 

samples 

Unsupervise

d method 

for QCNN 

to hierarchy 

Q feature   

extraction 

and used K-

means 

It achieves 

competitive results 

on bearing fault 

detection dataset 

It seems that is 

not easy to 

stack as many 

layers as 

needed to get 

useful higher-

level 

representation 

[49] 

S. Pramanik 

et al (2021) 

[49] 

NN limited to 

solve different 

problems, but 

face those of 

applied nature, 

together with 

Surface 

Crack 

dataset 

Hybrid 

quantum 

and classical 

processing 

block 

- Can be of great use 

across domains 

- Few images 

are used 
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classical 

computers. 

[50] 

Y. Chen, W. 

Hu, and X. 

Li, (2021) 

[50] 

Unfeasible 

classical NN 

architecture on 

noisy 

intermediate-

scale quantum 

devices 

Real-

world 

dataset 

Quantum 

architecture 

It performed well on 

many platforms, 

including NSIQ 

devices 

Training time 

may be 

required 

increase 

[51] 

T. Hur, L. 

Kim, and D. 

K. Park 

(2022) [51] 

Several 

quantum-

analogue of 

convolutional 

neural network 

unfeasible 

MNIST QCNN 

QCNN was able to 

achieve excellent 

classification 

accuracy 

Cost functions 

[52] 

A. Geng, A. 

Moghiseh, C. 

Redenbach, 

and K. 

Schladitz 

(2022) [52] 

 

 

Digital image 

processing 

requires edge 

detection as 

the amount of 

data required 

to be processed 

grows rapidly 

USC-

SIPI 

image 

database 

QNN 

- The number of 

qubits will consume 

exponentially less 

memory. 

- Reduce the number 

of circuits and the 

time needed to detect 

quantum edges 

- Limited 

Computer 

devices 

[53] 

A. 

Sebastianelli, 

D. A. 

Zaidenberg, 

D. Spiller, B. 

Le Saux, and 

S. Ullo 

(2022) [53] 

Image 

classifiers in 

the context of 

remote 

sensing. 

EuroSAT 

 

 

Quantum 

layer within 

standard NN 

- HQCNN has 

proven to be 

effective in terms of 

multiclass 

identification & 

computing efficiency 

- QC shows achieve 

best classification 

score 

- More complex 

quantum 

circuits 

- Few 

proportion of 

quantum 

processing 

[54] 

D. Alaminos, 

M. B. Salas, 

and M. A. 

Fernández-

Gámez 

(2022) [54] 

Precise 

macroeconomi

c forecasting 

has limitations, 

and the 

accuracy of the 

models is still 

poor 

1980-

2018 

sample 

of 70 

countries 

Quantum 

computing 

and deep 

learning 

- Achieve a high 

accuracy 

- Provided excellent 

predication to large 

scale processing 

- Help to achieve 

macroeconomic & 

monetary stability at 

global level 

- Required long 

runtime 

 

6. Quantum Deep Learning Challenges 

There are several challenges that generally impact any QDL algorithm, and those are: 

1. Gradient Vanishing: As in classical neural network knowledge, the vanishing gradient is a 

crucial issue in quantum deep learning. In deep neural network computation, the issue of 

gradient disappearance has been regarded as a constant hassle. In the same way that classical 

neural networks train their parameters through a gradient descent approach, quantum neural 

networks have the same problem. The problem is remedied in classical neural network models 

by using a suitable activation function, but quantum neural networks do not use an activation 

function, so ultimately a specific solution is needed. Former studies called this phenomenon 

“vanishing quantum gradients” or “barren plateaus,” as well as proving that as the number of 

qubits increases, the probability of barren plateaus occurring will also increase exponentially. 

This may be averted by putting the top initial parameters in small-scale quantum neural 

networks; in designing quantum neural networks, dealing with this hassle is unavoidable. It's 

an open problem for which there is no clear solution at the moment [55]. 

2. Near-Term Device Compatibility: NISQ, which stands for Noisy Intermediate Scale 

Quantum, has already become a familiar term in the quantum field because fewer qubits and 
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various computational errors are involved. It is predicted that many algorithms developed for 

quantum computation will not work at all in this NISQ context and will not be implemented 

for several decades. As an example, even without the blunder's correction procedures, a 

practical implementation of Shor's method would require tens of qubits, while modern 

quantum devices only have a few tens of qubits with non-zero computational errors. Because 

QNN is surprisingly based entirely on VQA and QQ, it is tolerant of environmental 

constraints, including small circuit depths and qubit requirements. Though that allows you to 

grow the record processing functionality of the quantum neural community, it's far more 

important to recall near-time period tool compatibility. For instance, the use of many multi-

qubit controlling gates for quantum entanglement is theoretically thought to boost the 

performance of QNN, but it includes a big error fee and a complex error correction system. 

Consequently, it's essential to design a set of rules regarding those tradeoffs in quantum 

neural network research [55]. 

3. The Quantum Advantage: The term "quantum supremacy" can also result in the illusion 

that quantum methods are continually better than classical methods, appearing to perform the 

same function. However, due to quantum computing's inherent barriers, its benefits can only 

be discovered through well-thought-out algorithms under certain circumstances [19]. In 

particular, only a few variational quantum-based algorithms have proven their quantum 

advantage in a confined scenario. Because of the generic approximation assets of QNN, it's 

widely recognized that quantum deep learning can carry out the maximum of the 

computations accomplished in classical deep learning [56]. Nonetheless, if one technique is 

certainly primarily based on this truth without the attention of quantum benefit, the result may 

be significantly less efficient than the existing classical set of rules. Therefore, when 

designing QNN-based deep mastering rules, it is vital to articulate their advantages over 

corresponding classical models in order to justify their inclusion. 

 

7. Conclusions and Future works 

    Deep learning and quantum computing are two of the most popular fields of research today. 

In this study, we presented a comprehensive and easy-to-read overview of quantum deep 

learning. This paper reviews a variety of quantum neural networks (QNNs), their variants, 

quantum convolutional networks (QCNNs), and recent developments in quantum-inspired 

deep learning algorithms. There is tremendous potential for collaborative research at the 

intersection of the two fields by applying concepts from one to solve problems in the other. 

For example, demonstrating deep networks' ability to entangle and therefore their use in 

applications such as healthcare, handwriting classification, and quantum many-body physics. 

   In the future, it will be exciting to extend these studies to more realistic prediction tasks 

using efficient methods and potentially speed up the inference even further through the use of 

quantum deep learning techniques. 
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