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Abstract

Many researchers discussed distributive modules and their properties. In this work,
the distributive property will be studied over semimodules. Some of the results
obtained in homomaorphisms of distributive modules are generalized. Some conditions
were needed like concept subtractive, i-regular, k-regular, and k-cyclic, to get good
results. The relationship between the distributive semimodule over the local semiring
and the hollow semimodule was obtained, and the relationship between the
distributive semimodule and the homomorphisms distributed over the intersection
process or the inverse image distributed over the addition.

Keywords: Distributive semimodule, homomorphisms, subtractive, local semiring,
k-cyclic.
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1. Introduction

An R-semimodule U is distributive if TN(Z+F)=(TnZ)+(TnF) for
any T,Z,and F € L(U). This definition was given by Saffar Ardabili in [1] , without more
investigation into this property. In this work, this concept will be studied in detail.

In the modules, researchers have been interested since the seventies in the distributive
feature like W. Stephenson and Victor Camillo in [2] and [3], respectively. Where it was
defined, finding some equivalents for it, and find Some properties of distributive modules,
and researching its applications. In [4] P. Vamos found the relationship between distributive
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and cyclic modules. Then the conditions under which it is distributive modules are a direct
sum of cyclic submodules by V. Erdogdu in [5]. The researcher A. A. Tuganbaev studied a
concept named "distributive extensions "over rings not necessarily commutative [6]. Naser
Zamani found the relationship between distributive modules and primal submodules in [7],
while Engin Biiyiikasik in [8] gave and studied a generalization of distributive property by
defining weakly distributive module. The relationship between the distributive module and
the Armendariz module was gotten by Yigiang [9]. In this work, some of these concepts and
results will be converted to semimodules. The preliminaries are in section two for the
convenience of the reader. In Section three, we study the homomorphisms of distributive
semimodules and the relationship between the distributive, local semiring, and artinian
semimodule.

2. Preliminaries.
Definition 2. 1. [10]

An R -semimodule U is called uniserial if for any two subsemimodules H and L of U, either
HC<CLorLCH.

Definition 2.2. [11]

An R- subsemimodule E of R - semimodule U is superfluous if any K € L(U), K + E =
U imply K = U. The R - semimodule U is said to be hollow if every proper E € L(U) is
superfluous.

Definition 2.3. [11]
An R —subsemimodule E of R - semimodule U is subtractive if forall m,n € U,
m, m+n € Eimpliesn € E.

Definition 2.4. [12]
Let R be semiring if it has only one maximal ideal then called local.

Definition 2.5. [13]
Let A and U be R — semimodules the map u: A — U is a homorphism . Then
1- pisi — regular, if u( A) = Im (4).
2- wis k — regular, if p( e) = u(é) impliese + h = é + h for some h, h € ker(w).
3- wis regular if is i-regular, and k-regular.

Definition 2.6. [14]

A semimodule U over semiring R is artinian if any non-empty set M < L(U) has minimal
with respect to inclusion. It’s mean there are subsemimodule 0 # T € M, such that if P € T
where P € M implies either P =T orP =0

Lemma 2.7. [14]
If U is artinian R — semimodule and A€ L (U) then U/A is an artinian.

Lemma 2.8. [13]

Let U, A be R —semimodules and ue Hom (U, A) then
1) u(U) is subtractive if and only if p is i- regular.
i) p is @ monomorphism, then p is k- regular.
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Lemma 2.9. [14]
Let U, AbeR - semimodules and pe Hom(U,A). If pu is k-
regular and U is subtractive, then p~* u (M) = ker(w) + M, forall M € L(U).

3- Main Results
Lemma 3.1
Let U and A be R — semimodules and pe Hom (U,A)and M € L(A),
then pu (p™1(M)) = M np(U).
Proof.
Lety € M nu(U),theny = p(a) € M forsomea € Usoa € p~t € M, hence p(a) =
y € u(pt(m)) then M N p(U0) c p(pt(M)) and it’s clear p(u"t(M)) € M n pU),
now
we get p (pt(M)) = M n p(U).

Lemma 3.2
Let U and A be R — semimodules. If w, and pe Hom (U, A ) where w is i — regular,

then (w + W™ (w (1)) = pHw(@)).

Proof

@+ 0 W) = (e € U:(0+W(e) € 0(U)}
={e €eU:w(e) +ule) € w(U)}
={e € U:u(e) € w(U)} because w(U) is subtractive by Lemma 2.8
= 1 Hw()).

Proposition 3.3
Let pbe k — regular a homomorphism from a subtractive R — semimodule U to R
semimodule A.
i) If Aisdistributive, then p (W + N) = p (W) + u 1(N), forany W,N € L(A).
ii) If U is distributive, then u(T N S) = uw(T) N u(S), forany T,S € L(U).
Proof
i) Since p W) +ut(N) = pt(W) + u1(N) + Kerp, and by Lemma 2.9, we get
W) 4+ (V) = ptp(pt W) At () = pt (ppt W) +puptt (V)
by Lemma3.1,weget p t(W)+pu W) =p W nu) +NnpU))
= W+ M) np@] ='W+ N n p (@) =p "W +N)NU =
p (W + N).

i) Since w(T) N u(S) = [W(T) N uS)] N pU) = pp~ " (u (T) N u(s))
=p[pt@@np))]= pulp ) n pwtu(S)], by Lemma (2.9) we get
w(T) Np(S) = pkerp+T) N (kerp+5)]
=pukerp+(TNS)) =pkerp) +wW(TNS) =0+u(TNS)=pu(TNS) .

If pis a k — regular homomorphism from R — semimodule U to R —semimodule A4,

ker p + T and ker p + S are subtractive in U, then T, S € L(U) satisfy the property in (ii).

Proposition 3.4
Let U be R - semimodule, A is a distributive R — semimodule. If y,w € Hom (U, A)
are i —regular. Then,
) U= o tpU)+ p o).
i) c=cn 0 (u0)+ Cn p(w(C)), forany C € L(U).
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roof
B since (u+ w)(U) € w(U) + w (U) , then

M+ D)+ W] E (+ )W) + 0 ()], solU=(u+ o)t (p@)+
o) =W+ )W)+ (n+ )t o).

By Lemma (3.2)

weget U= w lpU)+ ptwU).

il) Let pi and wi be homomorphisms such that i: C — U inclusion map.
Now, apply (i) we get
€= (0™ (Wi(0) + ()~ (wi(0))
since (ui)"Y(E) = E Nnu(E) forallE € L(U) and p € Hom (U, A),
thenC=C N o™ (p(C)) + € n pHw(0)).

Corollary 3.5
If U is a distributive R - semimodule, w € End (U)isi—regular, then B =

(Bnw(B)+ (B nw™(B)).
Proof. By using Proposition 3.4 with p=i the identity on U.

Proposition 3.6
Let U be subtractive and distributive R -semimodule and B be R -semimodule and w, g €

Hom (U, B), such that w + g is k- regular. Then,
)0 =g(kerw) Nnw(ker g).
i) C=(C+ w(g™ () n(C+ g(w2(C)), forany and C € L(B).
proof.
i) Since (w+ g)(kerw nkerg) = 0, then by Proposition 3.3 we get that
(w+ g)(kerw) N(w+ g)(kerg) =0,530
[w (kerw) + g (kerw)] N[w (kerg ) + g (kerg)] =0
then g(kerw) N w (kerg) = 0.

ii) If IT is the natural epimorphism of B onto B/C 3 Tw,llg € Hom (U,B/C).
Now apply (i) , we get C = IIg (kerlw ) N Mw (kerllg )
= Mg (0™1(C)) N Nw (g~1(C)), since kerMw = w~1(C), andkerll g = g~1(C)

=(C+g(0™(O) N(C+w (g™ ().

Corollary 3.7
Let U be subtractive and distributive R-semimodule and w € End (U) with w + i is k-

regular where i is the identity onU. IfB €L (U), then B=(B+w 1(B))N

(B +w (B)).
Proof.
By using Proposition (3.6) we get that B = (B + w(i™*(B)) N (B + i(w ™! (B))).

Since i"*(B) =B,and i(w ' (B))=w ' (B), then B=(B+w X(B))Nn(B+
W (B)).
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Proposition 3.8
Let U be subtractive and distributive R -semimodule, B € L (U) and w € End (U) is k —
regular.

i) If wisi—regularthen B = (B N a)‘l(B)) +w (B N w 1(B)).

ii) If w+ i is k — regular where thati is identity then B = (B + w(B)) N w™* (w(B) +

B).

Proof).

i) By Corollary 3.5, we get B = (B nw™(B)) + (B N w(B))
=(Bnw@)+Bnwl)nw®B)])=(Bnw(B))+ B nwl)nwlB))
=(Bnw(B))+ (w(w™(B)) N w(B) ), and by Proposition 3.3, we get B= B n
w 1(B)+w(w1(B)nB).

i) By Corollary 3.7, we get B = (B + w(B)) n (B + w~1(B)), then
B =(B+w(B))Nn(B+w*(0+B)).Now, by using Proposition 3.3, we have
B=(B+w(B))N(B+w0)+w(B)
= (B + w(B)) N [(B + ker w) + 0™ 1(B)]
=(B+w(B)) N (0 *w(B) + 0w 1(B))
= (B + w(B)) N w *(w(B) + B).

Corollary 3.9
Let U be subtractive and distributive R -semimodule, B € L(U), suppose that
w € End (U) and w is regular, then
Do l(B)Nnw(B) €B < w(B)+ w(B).
i) BN w?(B) € w(B) € B + w?(B).
Proof. (i)

Let B € L(U) and w € End(U), since B N w™*(B) < B, hence w(B N w™*(B)) € w(B),
then, by Proposition(3.8) we get B=(Bnw™(B))+w (B N w '(B)), so B<(Bn
w *(B)) + w(B) hence B € w (B) + w(B).

Also w™1(B) N w(B) S B when w is k- regular, since o 1(B) < w (B + w(B))
and w(B) € B+ w(B) then @ '(B)Nw(B) € w (B + w(B))N B+ w(B). Now by
Proposition (3.8) we get w™1(B) N w(B) S B.

(i)

By (i) weget w '(B)Nnw(B) €SB < 0w 1(B)+ w(B)
w(w 1(B) Nw(B)) € w(B) € w(w *(B) + w(B))
w(w™1(B)) Nnw?(B) € w(B) € w(w (B))+ w?(B)
Bnw?(B) € w(B) €BnNw(B)+ w?B)

Bnw?(B) € w(B) €BNnw(B)+ w?B) € B+ w?B)
B nw?(B) € w(B) € B + w?(B).

If U is a subtractive and distributive semimodule and p € End (U) is regular then by
Proposition (3.8) any subsemimodule B € L(U), can be writteninform B =T n u~1(T) and
if u, w + i are k- regular then by Proposition (3.8) can be written in form B = W + p(W) for
some T,W € L(U). These representations are unique as we shall see in the following
corollary.
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Corollary 3.10
Suppose that W, T are subsemimodules of a distributive and subtractive semimodule U

and u € End (U).

i)Ifuandu+iare k-regularand W + u(W) =T + w(T) then W =T.

ii) If wis regularand W np *(W) =T n p~(T) then W =T.
Proof.
1) By Proposition 3.8, we get

W=W+uW)np(W+uW)=(T+ w(T)nu(T+wuT)=T.
i) Follows similarly.

Corollary 3.11

Let U be a distributive semimoduleand N € L (U) and d. € End (U).
i) If d, d. + i is k- regular and d™(N) € Y™,'d.'(N) for some m > 1,then d.(N) € N.
ii) If d.is regularand Nt d"Y(N) € d.”™(N) for some m > 1,then d.(N) S N.
Proof.

i) if m=1 is trivial, we assume that the case is true when m, by induction, we prove that is
true when m+1, suppose that

d™(N) © 3™, dY(N) and define N, = 3%, d}(N) .

Then
d(Np—1) = d&(N) + d2(N) + --- + d™(N).

Np_y + d(Np—q) =N + d(N) + de(N) + -+ d™(N) = Np,.
Now

AmHL(N) C Z di(N) = N,,.

=0
d(Nim) = Nip + &™H(N) S Ny + Ni
then d.(N,;,) € N,
So, N,, = N,, + d.(N,,,) .Then N,;, = N,,,_; .By Corollary3.10(i)

n—1
thend"*(N) S N,, S N,,_, = Z d.!(N)
i=0
n—-1

d.*(N) z d."'(N) by hyopesis then d. (N) € N.

i=0

ii) Also we can use induction on m.
Define N, = N, d."*(N) and suppose that N%,d."*(N) € d."™ 1(N)
now
d I (Np—y) =d" X (N Nd2(N) N ... nd"™(N)
Np1Nd YNy )=NNndTN)Nnd2(N)Nn..nd™(N)= N,
then N, = Np_q N A" (Npp_yq) ook
Since N,, = N7, d"4(N) € d. ™ 1(N),
N, =N, NN, € d"™"(N) NN,
N, SN N[dIN)Nd2(N)N..Nnd"™(N)nd ™ 1(N)]
N,, €N nd"*(N,)
implies that N,, € N nd. 1(N,,) ... **
using Corollary (3.10). on * and ** we get N,,, = N,
so N™y'd."*(N) = N_; = N,, € d""(N). By induction, then d. (N) € N.
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Proposition 3.12

If U and B are semimodules and d.,g € Hom (U, B), suchthatd,and g arei —

regular. If U is hollow and B a distributive then either d.(U) < g(U) or g(U) < d.(U).

Proof.

By Proposition (3.4) we get U = g~ 1d.(U) + d"1g(U) also, by hypothesis we have U is
hollow, hence g=*d.(U) = U or d."*g(U) = U.

If ¢g~'d.(U) = U implies that g( g~*d.(U)) = g(U), since g g 1d(U) € d.(U)
therefore g(U) € d.(U). Similarly when d."1g(U) = U we get d.(U) < g(U).

In order to get some results, a condition weaker than subtractive semimodule is needed,
that is, only some kind of subsemimodules to be subtractive. In the following such condition
will be introduced. A semimodule is k- cyclic if any cyclic subsemimodule of it is subtractive.
For example the N-semimodule N is k-cyclic which is not subtractive.

Corollary 3.13
If R is a local semiring and B is a k-cyclic distributive R - semimodule, then B is
uniserial semimodule.
Proof.

Since R is local then every proper subsemimodule of the R - semimodule is superfluous,
putting U = R in Proposition (3.12) then d.(R) < g(R) or g(R) < d.(R) for anyd, g €
Hom (R, B).

Now let I,W anytwo subsemimodules of B andI € W, this mean3 x € [ and x ¢
W and define d. and g such that d.(r) = rx,Vr e RandVy € W, g(r) =ry,vr €R.

By Lemma (2.9) we get d. and g are i — regular and by Proposition (3.12) we get
Ry c Rx,Vy € W implies that W < Rx hence W < I.

Corollary 3.14
Let R be local semiring and R is a k-cyclic semimodule over R, then R is a distributive
semimodule if and only if the R-semimodule R is uniserial.
Proof.
For the first direction is verified by Corollary 3.13. The other direction its clear any
uniserial is distributive semimodule.

Theorem 3.15
Let U and B be semimodules and d., g € Hom (U, B ) when U is a subtractive and artinian
, B is distributive, and d. + g is k-regular. If kerd. € ker g,then g (U) € d. (U).
Proof.
Letkerd S kerg and g (U) €d. (U),Q={N €L U):g(N)<d (N)}
define M =Y N,s.t N € Q,

gD =g M= D g)c > dN) =d M)
then M the largest subsemimodule of U in Q, and M proper in U because of
gW)<cdW),Now0 =g (kerg) € d. (kerg ),then kerg € Q,Q # 2.

By hypothesis U is artinian then U/, is artinian, so U/, has a minimal subsemimodule
say C/,, impliesthat ¢/, # 0and C/,, issimple . Since M € C c U, then g(M) <
dM)<cd(C), and Mc g (gM)cgdM)) cg(d(C) , implies that M <
g Hd(@) and McC , then McC n g *(d(C)) €C and[C n g~} (d (O))]/M <
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C/M Since C/M is simple, then [C N g~*(d. (C))]/M =0,
hence € n g~*(d. (C)) = M. By Proposition (3.6) we get C = (C n g~'d (C)) +(C n
d"1g (C). Now,

d(C)=d(C n g7 td () +d(C n d g (C))

cd M+ (d(O)Nnddg(0) =d M) +[d(O)n(g(C)n dAD)]

=d M) +[d(O)N dA)Nng ()] =dM)+[d(C)Nng(C)]

=d M) +[d(O)Nn gC)ngAD] =d M) +ggt[d(C)ng(C)]
=dM)+glg'd(O)Nng g (O] =dM)+g[g"d(C) N (C +kerg)]

=dM) +glgtd(C)NnC] =dM)+g (M) =d(M)

thend. (C) €d. (M) sod.(C) =d. (M)

implies that d=d. (€) = d."'d. (M) hence C + kerd. = M + kerd.

and C=M [Since kerd. € M < C ] this s a contradiction our assumption is false,

hence g (U) € d. (U). In addition if U and B be semimodules and d.,,g € Hom (U, B) when U is
artinian, B is distributive, and d. + g is k — regular if kerd. = ker g then g (U) = d. (U).

Corollary 3.16
Let U be artinian distributive and subtractive semimoduleand H € L(U), f:H - U
monomorphism then f (H) = H
Proof.
Since U artinian then H is artinian, and if i: H — U is the inclusion map, then f + i is
a monomorphism .
By Lemma (2.9) we get f + i is k — regular and by monomorphism keri = 0, also
ker f = 0.
By Theorem 3.15, we get f (H) =i(H) = H
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