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Abstract  

    The Dwarf Mongoose Optimization Algorithm (DMO) is inspired by the behaviour 

of Dwarf Mongoose which can strike the ideal balance throughout research between 

exploration and exploitation. In this article, we combine algorithms of the Dwarf 

Mongoose Optimization Algorithm and the Nelder-Mead Algorithm (DMONM). In 

addition, the statistically evaluated functions is utilized by calculating the average and 

the standard deviation values that are used to validate the suggested algorithm's 

performance. The experimental results are on high-efficiency optimization functions 

with various dimensions. The hybrid algorithm produces good, encouraging, and 

better outcomes than the original algorithms. The results show that the proposed 

algorithm could enhance the effects of DMO when it used to solve the optimization 

issues of the multi-objective reliability system 

 

Keywords: dwarf mongoose optimization algorithm, Nelder-Mead Algorithm. 

 

 ميد وتطبيقها  في  تخصيص الموثوقية  -نيلدر  تحسين النمس القزم مع طريقة هجين خوارزمية
 

 رؤى عزيز فاضل *, زاهر عبد الهادي 

العراق قسم الرياضيات ,كلية التربية للعلوم الصرفة ,جامعة بابل ,   

 
 الخلاصة  

، تحقيق التوازن   Dwarf Mongoose ، المستوحاة من سلوك  (DMO) خوارزمية تحسين النمس القزم      
 Dwarf المثالي خلال البحث بين الاستكشاف والاستغلال. في هذه المقالة ، نقوم بدمج خوارزميات خوارزمية

Mongoose Optimization   خوارزمية المقيمة   .Nelder-Mead (DMONM) مع  الدوال  استخدام  تم 
إحصائياً من خلال حساب المتوسط وقيم الانحراف المعياري للتحقق من أداء الخوارزمية المقترحة. كانت النتائج  
جيدة   نتائج  الهجينة  الخوارزمية  أنتجت  المختلفة.  الأبعاد  ذات  الكفاءة  عالية  التحسين  وظائف  على  التجريبية 

 الأصلية. أظهرت النتائج أن الخوارزمية المقترحة يمكن أن تعزز تأثيراتومشجعة وأفضل من الخوارزميات  
DMO عند استخدامها لحل مشكلات التحسين لنظام الموثوقية متعدد الأهداف.  

 
1. Introduction 

      Recently, many authors have used many meta-heuristic algorithms in various applications 

to handle different optimization problems [1] [2] [3]. The straightforward research technique 

offered by Nelder and Mead (1965) [4]. It is a derivative-free technique to find local search. 

This technique involves to applying four fundamental operators to remeasure the single 
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information on the local behaviour [5], and it broadly uses the Nelder-Mead algorithm (NM) 

for optimizing meta-heuristics. Condensation is a technique for speeding up the search and 

overcoming the algorithm's slow convergence, which is similar to a hybrid Nelder-Mead 

method and cuckoo search algorithm ( HCSNM ). The experimental findings demonstrate the 

effectiveness of the (HCSNM) algorithm and its superior capacity to resolve integer 

programming and mini(max) problems that are more quickly than other algorithms [6]  to utilize 

two methods to enhance the bat algorithm (BA) performance for solving electrical engineering 

optimization issues. The first is based on applying the crossover technique to a conventional 

BA that is similar to the genetic algorithm method. The Nelder-Mead (NM) simplex method 

and the BA are combined in a second approach to produce the NM-BA algorithm. Improvement 

is therefore based on fusing traditional BA with NM. This combination seeks to speed up the 

optimization process using standard BA, and it improves the NM algorithm's exploitation stages 

to avoid trapping in a local extremum [7]. The Nelder-Mead algorithm is employed to solve an 

optimization problem for a structural design. The hybrid marine predators and Nelder-Mead 

algorithm (HMPANM) are used to enhance the local exploitation capabilities of the marine 

predator's algorithm (MPA). The outcomes unequivocally demonstrate the HMPANM's 

capacity for the best component design in the automotive sector, where the hybrid marine 

predator optimization algorithm is applied for structural optimization of the vehicle component. 

The outcomes demonstrate that the hybrid marine predator's optimization algorithm produces 

superior effects versus other techniques [8]. A hybrid algorithm for power system optimization 

is a reactive power dispatch (ORPD) problem that combines the Firefly Algorithm (FA) and 

Nelder Mead (NM) simplex approach. A hybrid algorithm is used to find the generator voltage 

method's ideal settings instead of the original FA and other existing techniques. This algorithm 

has improved convergence characteristics and resilience. It is demonstrated that the hybrid 

approach can deliver more effective solutions [9]. The multi-objective system reliability 

optimization is a significant in the industry which becomes more than ever [10] [11]. The 

purpose of this paper is to develop the Dwarf Mongoose Optimization Algorithm (DMO) [12] 

with the Nelder-Mead algorithm [4] [5] that proposed hybrid Dwarf Mongoose Optimization 

Nelder Mead algorithm (DMONM). The effectiveness of (DMONM) is verified by the 

experimental results of statistical analysis for optimization problems. Reveals (DMONM) is 

superior to DMO, Multi-objective system reliability optimization, due to its importance in the 

industry. Optimization has multiple objectives, such as maximizing reliability and minimizing 

cost. Optimization is presented for multi-objective system reliability optimization and ensuring 

diversity in exploring the search space [11] [13]. In this research, we emphasize on improving 

the numerical results obtained for the DMONM algorithm compared to the original algorithm. 

This paper is organized as follows. In section 2, we provide basic facts for the Dwarf Mongoose 

optimization algorithm and the Nelder-Mead method. In Section 3, we present the proposed 

algorithm. In Section 3, we mention the types of test functions. In Section 4, we show the 

statistical methods results for test functions. In Section 4, we apply the algorithms to improve 

network reliability. 

 

1.1 Preliminaries 

1.1.1. The Dwarf Mongoose Optimization Algorithm 

      The initial design of the Dwarf Mongoose Optimization Algorithm (DMO) can be found in  

[12] . The proposed DMO imitates DMO compensating behaviour. We apply the next formula 

and we start to determine a starting value for the set of solutions: 

 

𝑥𝑖.𝑗  =  𝑙𝑗  +  𝑟𝑎𝑛𝑑 × ( 𝑢𝑗 − 𝑙𝑗  ) .                                                                        (1) 
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      Where the  𝑟𝑎𝑛𝑑 is a random number in [0, 1] . The search domain's boundaries are 𝑢𝑗and 

𝑙𝑗  .The DMO is made up of three groups: the Alpha Group, Scouts, and Babysitters. To catch 

the food, each group employs a distinctive method. These specific groups are modelled in the 

next manner  as follows: 

 

1.1.1.1.  Alpha Group 

     After the population is established, each solution's fitness is calculated. According to Eq. 

(2), each population's fitness probability value is established, and this likelihood is used to 

determine the alpha female (α). 

α =
𝑓𝑖  𝑡𝑖

∑ 𝑓𝑖  𝑡𝑖
𝑛
𝑖=1

    .                                                                                                                … (2) 

 

       The 𝑛 − 𝑏𝑠  is as many as the alpha group of mongooses has members. where 𝑏𝑠 represents 

the number of nannies. Peep is the dominant female vocalisation that keeps the family on track. 

The first sleeping mound, which is located at, is every mongoose sleeps in the initial sleeping 

mound, which is set at ∅. The DMO selects a candidate for a food role using Eq (3). 

𝜒𝑖+1 = 𝜒𝑖 + 𝑝ℎ𝑖  ∗  𝑝𝑒𝑒𝑝 .                                                                                     … (3) 

 

     The value 𝑝ℎ𝑖has a uniform distribution and falls between [-1,1]. Eq. (4) provides the 

sleeping mound that follows each repeat. 

𝑠𝑚𝑖  =
𝑓𝑖𝑡𝑖+1 + 𝑓𝑖𝑡𝑖

max{|𝑓𝑖𝑡𝑖+1. 𝑓𝑖𝑡𝑖|}
 .                                                                                                    … (4) 

 

Eq. (5) provides the average number of the discovered sleeping mounds. 

𝜑 =
∑ 𝑠𝑚𝑖

𝑛
𝑖=1

𝑛
  .                                                                                                                   … (5)                                      

 

1.1.1.2. Scout Group  

     The algorithm is advanced to the scouting phase if the prerequisite for a babysitting 

exchange is satisfied as well as once the condition for a childcare swap is met,  it analyses the 

next food source or sleeping mound. Mongooses are known to avoid old sleeping mounds, thus 

scouts search for the next one to ensure exploration. The manner of moving depends on whether 

he successfully locates a new sleeping mound in our model, which combines foraging and 

reconnaissance. If they are wander far enough, the family will find a new sleeping mound. 

Equation and also serve as representations of the scout mongoose (6). 

 

𝜒𝑖+1  =  {
𝜒𝑖 − 𝑐𝑓 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 [𝜒𝑖 − 𝜇 ⃗⃗⃗  ]. 𝑖𝑓 𝜑𝑖+1  > 𝜑𝑖

𝜒𝑖 + 𝑐𝑓 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 [𝜒𝑖 − 𝜇 ⃗⃗⃗  ]. 𝑜𝑡ℎ𝑒𝑟𝑒𝑤𝑖𝑠𝑒
                                                          … (6) 

where 𝑟𝑎𝑛𝑑 ∈ [0.1], Eq. (7) is used to compute 𝑐𝑓 value while Eq. (8 ) is used to calculate 𝜇 ⃗⃗⃗   
value. 

𝑐𝑓 = (1 −
𝑖𝑡𝑒𝑟

max 𝑖𝑡𝑒𝑟
)(2∗

𝑖𝑡𝑒𝑟
max 𝑖𝑡𝑒𝑟

)   ,                                                                                                 … (7) 

𝜇 ⃗⃗⃗  = ∑
𝜒𝑖 ∗ 𝑠𝑚𝑖

𝜒𝑖

𝑛

𝑖=1

    .                                                                                                                         … (8) 

            

      Babysitters are often lesser group members who look after the children and they are 

frequently rotated, so the alpha female can oversee the daily hunting excursions of the group. 
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Algorithm: Pseudo-code of the DMO 

Step 1 : Input: Set the requirements and solutions of the algorithm. 

Step 2 : Initialize   the algorithmic parameters settings and  solution. 

Step 3 : For iter=1: max_iter 

Step 4 : Determine the Mongoose Fitness Function.. 

Step 5 : Establish a timer (𝐶). 

Step 6 : Using Eq.(2) to determine the alpha value.  

Step 7 : Using Eq.(3) to locate a potential food position. 

Step 8 : Estimate the new fitness 𝜒𝑖+1. 

Step 9 : Calculate the average value for the sleeping mound as it is determined by Eq. (4). 

Step 10 : Eq.(5)can be used to calculate the average mound sleeping.  

Step 11 : Eq. (8) can be utilized to determine the movement vector. 

Step 12 : Based on the Equation, simulate the next location of the scout mongoose (6). 

Step 13 : end for. 

Step 14 : 𝜏 = 𝜏 + 1. 

Step  15 : end while. 

Step16 : Output: Return the best solution (𝜒). 

 

1.1.2. Nelder-Mead method 

      The Nelder-Mead simplex method is frequently employed to identify local minimum 

solutions if the derivative is unknown for well-defined problems. The fundamental building 

block algorithm is the possibility of transformation reflection, expansion, contraction, and 

shrinkage. These are the steps that make up the NM simplex algorithm [4] [5] . 

Step1: Compute trial steps. In all iterations. First, all the vertices Order n + 1 depending on the 

objective function value to satisfy 

𝑓(𝑥1) ≤  𝑓(𝑥2) ≤ · · · ≤  𝑓(𝑥𝑛+1). 
Step2: Reflection Calculate the reflection point 𝑥𝑟  from 

𝑥𝑟  =  𝑥c + λ(𝑥c  −  𝑥𝑛+1) ,                                                                   …(9) 

 

Where 

 

𝑥𝑐 =
1

𝑛
∑ 𝑥𝑖            

𝑛+1
𝑖=1

𝑖≠𝑤𝑜𝑟𝑠𝑡

                                                             …(10) 

 the centroid of every point with exception of  𝑥𝑛+1 , if  𝑓(𝑥1)  ≤ 𝑓(𝑥𝑟)  < 𝑓(𝑥𝑛), accept the 

reflected point 𝑥𝑟 and end the iteration 

Step3: Expansion If   𝑓(𝑥𝑟)  < 𝑓(𝑥1), then it is calculated that the expanded point  𝑥𝑒  is 

𝑥𝑒  
=  𝑥𝑐

+ 𝛽(𝑥𝑟  − 𝑥𝑐 )                                                                                                                            … (11) 

and If 𝑓(𝑥𝑒)  < 𝑓(𝑥𝑟),  then  accept 𝑥𝑒 and end the iteration otherwise 𝑓(𝑥𝑟) < 𝑓(𝑥𝑒) ,     
accept 𝑥𝑟 and end the iteration 

Step 4: Contract. If (𝑥𝑟)  ≥ 𝑓(𝑥𝑛) . A contraction takes place. Two contractions are 

conceivable.                                                                    

a. Outside. 𝑓(𝑥𝑛)  ≤ 𝑓(𝑥𝑟)  < 𝑓(𝑥𝑛+1), contraction by the formulae (12)  

𝑥𝑐𝑜𝑛  =  𝑥𝑐 + 𝜎(𝑥𝑟  −  𝑥𝑐)  . 0 ≤ 𝜎 ≤ 1 ,                                                                             … (12) 

and If 𝑓(𝑥𝑐𝑜𝑛 )  < 𝑓(𝑥𝑟),    accept 𝑥𝑐𝑜𝑛  and end the iteration , otherwise go to calculate a shrink 

step. 

b. Inside. If  𝑓(𝑥𝑟)  ≥ 𝑓(𝑥𝑛+1)   calculate inside contraction 

𝑥𝑐𝑜𝑛𝑡  =  𝑥𝑐 − 𝜎(𝑥𝑐  − 𝑥𝑛+1 )  0 ≤ 𝜎 ≤ 1  ,                                                                …(13) 
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and If 𝑓(𝑥𝑐𝑜𝑛𝑡 )  < 𝑓(𝑥𝑛+1), then  accept 𝑥𝑐𝑜𝑛𝑡  and end the iteration , otherwise go to calculate 

a shrink step. 

Step5: A shrink step calculates the shrink by the formulae 

𝑣𝑖  =  𝑥1  +  𝛿(𝑥𝑖  − 𝑥1). 0 < δ < 1             ,   𝑖 =  2. … . 𝑛 +  1                                    …(14)                               

2. The proposed DMONM algorithm 

        The proposed Dwarf Mongoose Optimization Nelder Mead algorithm (DMONM) follows 

the same steps as the traditional Dwarf Mongoose Optimization Algorithm (DMO). Then it is 

used to improve the best result from the previous step of the DMO algorithm, the obtained 

solution from the Dwarf Mongoose Optimization Algorithm is applied to the Nelder-Mead 

algorithm for the same iteration. 

3. Benchmark Functions 

        To evaluate the effectiveness of the suggested Dwarf Mongoose Optimization-Mead 

algorithm (DMONM) using different test functions. Thirteen benchmark functions have been 

employed for unimodal and multimodal. The purpose of the unimodal test functions {𝑓1 − 𝑓7} 
in Table (1) tests the exploitation capacity of the algorithm because they have one optimum 

limit. Multimodal functions {𝑓8 − 𝑓13} are shown in Table (2). There are many locally optimal 

solutions for multimodal functions. So the optimization algorithms need to have a lot of 

exploring power 30 and 50 dimensions that are used to test these two classes of functions. The 

analysis has been performed on MATLAB 2019, and it describes the parameters settings that 

are employed in the experimentation𝜆 = 2. 𝛽 = 3. 𝛾 = 0.01. 𝛿 = 0.5. The iterations number is 

500 iterations. 

 

Table 1: Unimodal test functions. 

Objective function Dimensions Range 

𝑓1(𝜒) = ∑𝜒𝑖
2

𝑚

𝑖=1

 

 

30,50 [-10,10] 

𝑓2(𝜒) = ∑|𝜒𝑖| + ∏|𝜒𝑖|

𝑚

𝑖=1

𝑚

𝑖=1

 30,50 [-10,10] 

𝑓3(𝜒) = ∑(∑𝜒𝑖

𝑖

𝑗=1

)

2
𝑚

𝑖=1

 30,50 [-100,100] 

 

𝑓4(𝜒) = max { |𝜒𝑖|, 𝐼 ≤ 𝑖 ≤ 𝑚} 
 

30,50 [-12,12] 

𝑓5(𝜒) ∑[

𝑚−1

𝑖=1

100(𝜒𝑖+1 − 𝜒𝑖
2)2 + (𝜒𝑖 − 1)2] 

 

30,50 [-30,30] 

𝑓6(𝜒) = ∑(|𝜒𝑖 + 0.5|)2

𝑚

𝑖=1

 30,50 [-100,100] 

𝑓7(𝜒) = ∑𝑖𝜒𝑖
4

𝑚

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚(0.1) 30,50 [-1,1] 

 

 

 

 

 

 

 



Fadhil and Hassan                                   Iraqi Journal of Science, 2024, Vol. 65, No. 7, pp: 3850-3859 

 

3855 

Table 2: Multimodal test functions 

Objective function Dimensions Range 

𝑓8(𝜒) = ∑−𝜒𝑖sin ( √|𝜒𝑖|)

𝑚

𝑖=1

 30,50 [−100.100] 

𝑓9(𝜒) =  ∑[ 𝜒𝑖
2 − 10 cos(2𝜋𝜒𝑖) + 10]

𝑚

𝑖=1

 30,50 [−5.2] 

 

𝑓10(𝜒) = −20 exp(−0.2√
1

𝑚
 ∑𝜒𝑖

2

𝑚

𝑖=1

 )

− exp ( 
1

𝑚
∑cos(2𝜋𝜒𝑖) + 20 + 𝑒

𝑚

𝑖=1

 

30,50 [−10.10] 

𝑓11(𝜒) =
1

4000
∑𝜒𝑖

2 − ∏cos(
𝜒𝑖

√𝑖
) + 1

𝑚

𝑖=1

𝑚

𝑖=1

 

 

30,50 [−17.17] 

𝑓12(𝜒) =
𝜋

𝑚
{10 sin(𝜋𝑦𝑖) + ∑(

𝑚−1

𝑖=1

𝑦𝑖 − 1)21 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖+1) 

 

+(𝑦𝑚 − 1)2} + ∑𝑢(𝜒𝑖 . 10.100.4)

𝑛

𝑖=1

 

 

𝑢( 𝜒𝑖  . 𝑎. 𝑖. 𝑛) = {

𝑘(𝜒𝑖 − 𝑎)𝑛 . 𝜒𝑖 > −𝑎
0       .      − 𝑎 < 𝜒𝑖 < 𝑎

𝑘(−𝜒𝑖 − 𝑎)𝑛. 𝜒𝑖 < −𝑎
 

 

30,50 [−13.13] 

𝑓13(𝜒) = 0.1{ 𝑠𝑖𝑛2(3𝜋𝜒𝑚 ) + ∑( 𝜒𝑖 − 1)2
𝑚

𝑖−1

[1] 

+𝑠𝑖𝑛2(3𝜋𝜒𝑖 + 1) + ( 𝜒𝑛 − 1)2 

[1 + 𝑠𝑖𝑛2(2𝜋𝜒𝑚)] + ∑𝑢( 𝜒𝑖 . 5.100.4)

𝑚

𝑖=1

 

30,50 [−50.50] 

 

4. Result and discussion 

       The performance of the Dwarf Mongoose Optimization Nelder Mead algorithm 

(DMONM) in several benchmark function classes using statistical methods is measured. The 

average (avg) and standard deviation (std) and performance comparison with algorithm Dwarf 

Mongoose Optimization Algorithm (DMO) from the experimental results are presented in 

Table (3), we find that the Dwarf Mongoose Optimization Nelder Mead algorithm (DMONM) 

is able with its best performance for the test functions in 30 dimensions. Table (4) demonstrates 

that the DMONM algorithm's results are superior to those obtained when DMO is evaluated in 

50 dimensions. With the exception of the function (f8) of performance, the DMO algorithm is 

superior to that of the suggested approach in both dimensions. 
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Table 3: Comparison Statistical results of DMONM and DMO algorithmson test functions with 

dim=50 

function 
DMO DMONM 

avg Std avg Std 

𝑓1 118.33848 21.37447 0.15308 0.15879 

𝑓2 83.98244 13.33750 0.96055 0.73752 

𝑓3 118908.55 12750.62 1445.3617 912.477 

𝑓4 10.79053 0.37106 1.59495 0.28245 

𝑓5 101255595.4 29520605.99 6471.109 5991.942 

𝑓6 11716.42 2069.31149 15.19601 16.64612 

𝑓7 10.77554 2.88337 0.02407 0.00724 

𝑓8 -1461.1541 91.01792 -1487.955 109.278 

𝑓9 529.69589 23.57921 125.0746 73.37372 

𝑓10 7.15218 0.36453 0.34426 0.34302 

𝑓11 1.08658 0.01409 0.02129 0.02141 

𝑓12 1063.95 1166.061 0.01954 0.05176 

𝑓13 210469911.7 66974355.38115 18.33956 21.37227 

 

5. Application algorithms in allocation reliability 

     In order to create a highly reliable system by allocating greater component reliability and 

lower cost, it is crucial to raise the dependability of a multi-objective system. In this research, 

we obtain a system from the shutdown simplified modular Petri net system that is described in 

[14]. Conversion Petri nets in Figure (1)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Simplifies modular Petri net [14] 

 

      Conversion Petri Nets as the network is turned into a graph in this instance places are 

replaced with nodes, and the transitions and their connecting arcs are replaced with a single 

edge [15]. We get the network that is shown in Figure (2) 
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Figure 2: The network system. 

 

      We use the Sum-of-Disjoint Product [16] to calculate the reliability structure system in 

Eq.(15) 

𝑹𝒔 = 𝑟1𝑟2𝑟3 + 𝑟1𝑟3𝑟4𝑟6 + 𝑟1𝑟2𝑟8𝑟10 + 𝑟1𝑟4𝑟5𝑟11 − 𝑟1𝑟2𝑟3𝑟4𝑟6 + 𝑟1𝑟3𝑟4𝑟5𝑟7 
−𝑟1𝑟2𝑟3𝑟8𝑟10 + 𝑟1𝑟4𝑟6𝑟8𝑟10 + 𝑟1𝑟2𝑟8𝑟9𝑟11 − 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟7 − 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟11 
−𝑟1𝑟3𝑟4𝑟5𝑟6𝑟7 − 𝑟1𝑟3𝑟4𝑟5𝑟6𝑟11 − 𝑟1𝑟2𝑟4𝑟6𝑟8𝑟10 − 𝑟1𝑟3𝑟4𝑟5𝑟7𝑟11 − 𝑟1𝑟3𝑟4 
𝑟6𝑟8𝑟10 − 𝑟1𝑟2𝑟3𝑟8𝑟9𝑟11 + 𝑟1𝑟4𝑟5𝑟7𝑟8𝑟10 + 𝑟1𝑟4𝑟6𝑟8𝑟9𝑟11 − 𝑟1𝑟2𝑟8𝑟9𝑟10𝑟11 
+𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6𝑟7 + 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6𝑟11 + 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟7𝑟11 + 𝑟1𝑟2𝑟3𝑟4𝑟6𝑟8𝑟10 − 
𝑟1𝑟2𝑟4𝑟5𝑟7𝑟8𝑟10 + 𝑟1𝑟3𝑟4𝑟5𝑟6𝑟7𝑟11 − 𝑟1𝑟3𝑟4𝑟5𝑟7𝑟8𝑟10 − 𝑟1𝑟2𝑟4𝑟5𝑟8𝑟9𝑟11 − 𝑟1 
𝑟2𝑟4𝑟5𝑟8𝑟10𝑟11 − 𝑟1𝑟2𝑟4𝑟6𝑟8𝑟9𝑟11 − 𝑟1𝑟4𝑟5𝑟6𝑟7𝑟8𝑟10 − 𝑟1𝑟3𝑟4𝑟6𝑟8𝑟9𝑟11 + 𝑟1 
𝑟2𝑟3𝑟8𝑟9𝑟10𝑟11 + 𝑟1𝑟4𝑟5𝑟6𝑟8𝑟9𝑟11 − 𝑟1𝑟4𝑟5𝑟7𝑟8𝑟10𝑟11 − 𝑟1𝑟4𝑟5𝑟6𝑟8𝑟10𝑟11 − 𝑟1 
𝑟4𝑟6𝑟8𝑟9𝑟10𝑟11 − 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6𝑟7𝑟11 + 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟7𝑟8𝑟10 + 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟8𝑟9𝑟11 
+𝑟1𝑟2𝑟4𝑟5𝑟6𝑟7𝑟8𝑟10 + 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟8𝑟10𝑟11 + 𝑟1𝑟2𝑟3𝑟4𝑟6𝑟8𝑟9𝑟11 + 𝑟1𝑟3𝑟4𝑟5𝑟6𝑟7 
𝑟8𝑟10 + 𝑟1𝑟2𝑟4𝑟5𝑟6𝑟8𝑟9𝑟11 + 𝑟1𝑟2𝑟4𝑟5𝑟6𝑟8𝑟10𝑟11 + 𝑟1𝑟3𝑟4𝑟5𝑟6𝑟8𝑟9𝑟10𝑟11 + 𝑟1𝑟2 
𝑟4𝑟5𝑟7𝑟8𝑟10𝑟11 + 𝑟1𝑟3𝑟4𝑟5𝑟6𝑟8𝑟10𝑟11 + 𝑟1𝑟3𝑟4𝑟5𝑟7𝑟8𝑟10𝑟11 + 𝑟1𝑟2𝑟4𝑟6𝑟8𝑟9𝑟10𝑟11 
+𝑟1𝑟2𝑟4𝑟6𝑟7𝑟8𝑟9𝑟10𝑟11 + 𝑟1𝑟3𝑟4𝑟6𝑟8𝑟9𝑟10𝑟11 + 𝑟1𝑟4𝑟5𝑟6𝑟7𝑟8𝑟10𝑟11 + 𝑟1𝑟4𝑟5𝑟6𝑟8 
𝑟9𝑟10𝑟11 − 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6𝑟7𝑟8𝑟10 − 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6𝑟8𝑟9𝑟11 − 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6𝑟8𝑟10𝑟11 − 
𝑟1𝑟2𝑟3𝑟4𝑟5𝑟7𝑟8𝑟10𝑟11 − 𝑟1𝑟2𝑟3𝑟4𝑟5𝑟8𝑟9𝑟10𝑟11 − 𝑟1𝑟2𝑟3𝑟4𝑟6𝑟8𝑟9𝑟10𝑟11 − 𝑟1𝑟2𝑟4𝑟5𝑟6 
𝑟7𝑟8𝑟10𝑟11 − 𝑟1𝑟3𝑟4𝑟5𝑟6𝑟7𝑟8𝑟10𝑟11 − 𝑟1𝑟2𝑟4𝑟5𝑟6𝑟8𝑟9𝑟10𝑟11 − 𝑟1𝑟3𝑟4𝑟5𝑟6𝑟8𝑟9𝑟10𝑟11 

                 +𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6𝑟7𝑟8𝑟10𝑟11 +
𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6𝑟8𝑟9𝑟10𝑟11                                                                  …(15) 

 

5.1. Mathematical model for multi-objective system reliability optimization  

      The following can be used to express the multi-objective problem [11] [13] 

max𝑅𝑠(𝑟𝑖)          for 𝑖 = 1.2. … .11 

min𝐶𝑠(𝑟𝑖)=∑ 𝑎𝑖exp (
𝑏

1−𝑥𝑖

11
𝑖=1 ) 

                              subject to           0.95 ≤ 𝑅𝑠 ≤ 0.9999 

0.6 ≤ 𝑟𝑖 ≤ 0.9999 for 𝑖 = 1.2. … .11 

Where 𝑎 = 0.01. 𝑏 = 0.03𝑓𝑜𝑟 𝑖 = 1.2. … .11 

𝑅𝑠 is represented by Eq.(15)  

 

5.2. Numerical case study  

      Multiple techniques can be used to solve problems involving multi-objective optimization. 

The weighted-sum approach reduces a multi-objective problem to a single-objective problem 

by giving weights to each function. The constraint handling is done via a penalty function [17] 

[14] [18]. 

min 𝑓(𝑟𝑖) = 𝜇1 𝐶𝑠 −𝜇2𝑅𝑠 + 𝛼 (𝑟𝑖) 
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Where      𝜇1 = 𝜇2 = 0.5 and 𝛼 (𝑟𝑖) is the penalty function 

𝛼 (𝑟𝑖) = 𝛼1 max(0.9999 − 𝑅𝑠) + 𝛼2max (0. 𝑅𝑠 − 0.95) 

     Where   𝛼1. 𝛼2  is the penalty factor, we find out the best reliability of the system by using 

DMONM and DMO algorithms. The number of iterations is 500  which is used to describe the 

parameters settings that are employed  𝜆 = 2. 𝛽 = 3. 𝛾 = 0.01. 𝛿 = 0.005, The results values 

of components reliability are  𝑟𝑖 and the cost components are  𝐶𝑖with the best value of reliability 

system is 𝑅𝑠 and the total cost is  𝐶𝑠 in Table (5). 

 

Table 5: Comparison of DMONM and DMO algorithms for results values components 

Components 
DMO DMONM 

Value of 𝑟𝑖 Value of 𝑟𝑖 

𝑟1 0.9915 0.9917 

𝑟2 0.9799 0.9805 

𝑟3 0.9696 0.9724 

𝑟4 0.9795 0.9804 

𝑟5 0.9586 0.9583 

𝑟6 0.9397 0.9379 

𝑟7 0.7696 0.7516 

𝑟8 0.9595 0.9570 

𝑟9 0.8246 0.8336 

𝑟10 0.9484 0.9496 

𝑟11 0.9607 0.9590 

Total 𝑅𝑠 0.9908 0.9911 

Total 𝐶𝑠 0.5773 0.6093 

       

     Through Table(5), we can make the following observations: At values using a DMO 

algorithm are 0.7696 ≤  ri  ≤  0.9915, for all i = 1, 2,…,11 and  the values using the HBANM 

algorithm are  0.7516≤ ri  ≤  0.9917, for all i = 1,2,…,11, we notice an improvement in the 

total value 𝑹𝒔 (0.9911) in DMONM algorithm compared to the total value  𝑹𝒔of the DMO 

algorithm (0.9908) and the suggested algorithm have been improved six components  are 

(𝒓𝟏. 𝒓𝟐. 𝒓𝟑. 𝒓𝟒. 𝒓𝟗. 𝒓𝟏𝟎) compared to the value of the DMO algorithm. 

 

6. Conclusions 

     The Dwarf Mongoose Optimization Algorithm (DMO) and Nelder-Mead algorithm 

(DMONM) and Nelder-Mead algorithm are combined in this study to form a hybrid Dwarf 

Mongoose Optimization Nelder Mead algorithm (DMONM), the suggested algorithm improves 

the best result from the DMO to confirm the robustness and efficiency of the average and 

standard deviation that are used to examine its effectiveness. We also discover that the 

DMONM significantly improves the majority of the functions. The DMONM algorithm was 

used to improve a multi-objective reliability system. In addition, the results show that they are 

better than the DMO algorithm. 
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