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Abstract 

     Several illustrative studies on the mathematical modeling and analysis of the 

Coronavirus have been carried out in a short period of time. There is not enough work 

that accounts for the vaccination campaign's two stages. In this work, a mathematical 

model is created to show the impact of the recent two-stage vaccination treatment on 

the Coronavirus. In the proposed model, five compartments are constructed, namely 

the susceptible individuals 𝑆(𝑡), the first dose of vaccination 𝑉1(𝑡) , the second dose 

of vaccination 𝑉2(𝑡), infected 𝐼(𝑡) and recovered population 𝑅(𝑡). The uniqueness, 

boundedness and existence of the solutions of this model have been discussed. All 

potential model equilibrium points are determined. The local as well as global stability 

of the system in terms of the basic reproduction number is investigated. Numerical 

simulation is also carried out to investigate the influence of parameters affecting the 

dynamics of the model and to support the gathered analytical findings of the model. 
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 الخلاصة  
. لا يوجد    مضت      هناك العديد من النماذج الرياضية لدراسة انتشار وباء فيروس كورونا في الفترة التي       
  لمناقشة  تأثير التطعيم  نموذج رياضي  إمرحلتين من التطعيم. في هذا العمل ، تم إنشاء   فسر وجود   اكاف عمل 

من خمسة مكونات تدعى الافراد المعرضين      تم بناء النموذج المقترح.  للتحكم بانتشار الفيروس   على مرحلتين  
  المتعافين واخيرا  , الافراد المصابينالافراد الملقحين بالجرعة الثانية الاولى, الافراد الملقحين بالجرعة  ،للإصابة 

اقترحنا الاستقرار المحلي  .   للنموذج  توازن المحتملةال جميع نقاط    ايجادتم    . تمت مناقشة وحدانية ووجود الحل .
لدراسة تأثير المعلمات على    عدديةالمحاكاة  التم إجراء  وأخيرا ,   والكلي للنظام بواسطة رقم الاستنتاج الاساسي. 
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1. Introduction  

     There is a great interest in mathematical epidemiological models due to the important tools 

for understanding and studying the spread of epidemics such as HIV, HBV, Ebola, H1N1 and 

malaria. It is also employed to control the spread of outbreaks in the population is a major 

challenge. On the other hand, the world continues are to fight existing infectious diseases, while 

the changing world conditions lead to the emergence of different types of viruses. The newest 

of these viruses, and the most effective in recent two years, is the new type of coronavirus which 

is called COVID-19  a contagious disease caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in 

December 2019 [1].  The disease has spread worldwide, and leading to an ongoing pandemic. 

Symptoms of COVID-19 are variable but often include fever, cough, 

headache, fatigue, breathing difficulties, and loss of smell and taste. Symptoms may begin one 

to fourteen days after exposure to the virus. At least, a third of people who are infected do not 

develop noticeable symptoms. For those people who develop symptoms noticeable enough to 

be classed as patients, most (81%) develop mild to moderate symptoms (up to mild pneumonia), 

while 14% of them develop severe symptoms (dyspnea, hypoxia, or more than 50% lung 

involvement on imaging), and 5% suffer critical symptoms (respiratory failure, shock) [2].  

Older people are at a higher risk of developing severe symptoms. Some people continue to 

experience a range of effects (long COVID) which is a condition characterized by long-

term consequences persisting or appearing after the typical convalescence period of COVID-

19. It is also known as post-COVID-19 syndrome, a post-COVID-19 condition for months after 

recovery, and damage to organs have been observed. Multi-studies yearly are underway to 

further investigate the long-term effects of the disease. The World Health Organization 

instructed all citizens in the world to take precautions and measures, it repeatedly stressed to 

take the vaccine in order to reduce infection with the virus. This is because vaccines save 

millions of lives each year [3]. The idea of mathematical modeling has risen in importance 

during the past few years. Nowadays, mathematics is very closely linked to daily life, and this 

connection gives significance to the embodiment of this abstract science [4] , [5] . Numerous 

academic investigations into the mathematical model of the COVID-19 pandemic have been 

completed in a short time. Among these studies, Mohsen et al. [6] studied a mathematical model 

for the dynamics of the COVID-19 pandemic involving infective immigrants. Mohsen et al. [7] 

studied the global stability of the COVID-19 model involving the quarantine strategy and media 

coverage effects. Zu, J. et al. [8] examined the COVID-19 transmission patterns in mainland 

China and the effectiveness of various control measures. Tang et al. [9] studied the effectiveness 

of quarantine and isolation to determine the trend of the COVID-19 epidemic in the final phase 

of the current outbreak in china. Ahmed et al. [10] studied the analysis coronavirus model using 

a numerical and logistic model. Hattaf et al. [11] studied modeling the dynamics of COVID-19 

with carrier effect and environmental contamination. Yavuz et al. [12] studied the vaccination 

and mathematical modeling of COVID-19. In addition, a number of modeling studies have been 

conducted in relation to COVID-19 and other significant infectious diseases, see [13 - 25]. 

 

     In this work, a mathematical model involves two stages of vaccination and the dynamics of 

the COVID-19 pandemic are also presented and analyzed. This work is organized as follows; 

section 2 illustrates the mathematical modeling of the novel coronavirus and two stages of the 

vaccination. Section 3 discusses the boundedness of the solution and the existence of 

equilibrium points of the model among other fundamental characteristics. In section 4, the local 

stability analysis is investigated utilizing Gersgorin's theorem. In section 5, the global stability 

of the proposed model at all equilibrium points is analyzed by using the Lyapunov function. 

Finally, section 6 uses numerical simulation to assess the effects of altering all system 

parameters. 

 

https://en.wikipedia.org/wiki/Contagious_disease
https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome_coronavirus_2
https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome_coronavirus_2
https://en.wikipedia.org/wiki/Wuhan
https://en.wikipedia.org/wiki/China
https://en.wikipedia.org/wiki/COVID-19_pandemic
https://en.wikipedia.org/wiki/Symptoms_of_COVID%E2%80%9119
https://en.wikipedia.org/wiki/Breathing_difficulties
https://en.wikipedia.org/wiki/Anosmia
https://en.wikipedia.org/wiki/Ageusia
https://en.wikipedia.org/wiki/Incubation_period
https://en.wikipedia.org/wiki/Asymptomatic
https://en.wikipedia.org/wiki/Asymptomatic
https://en.wikipedia.org/wiki/Pneumonia
https://en.wikipedia.org/wiki/Dyspnea
https://en.wikipedia.org/wiki/Hypoxia_(medical)
https://en.wikipedia.org/wiki/Respiratory_failure
https://en.wikipedia.org/wiki/Shock_(circulatory)
https://en.wikipedia.org/wiki/Older_people
https://en.wikipedia.org/wiki/Long_COVID
https://en.wikipedia.org/wiki/Sequela
https://en.wikipedia.org/wiki/Convalescence
https://en.wikipedia.org/wiki/COVID-19
https://en.wikipedia.org/wiki/COVID-19
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2. Mathematical Model 

     In this part, we formulate a mathematical model of the COVID-19 pandemic that describes 

the dynamics of two stages of vaccination, namely infection of individuals and recovery of 

those infected by the virus. The rest of the parameters are shown in the following table. 

 

Table 1: Parameters description utilized in the system (1) 

Parameters Interpretation 

𝑆(𝑡) Susceptible population 

𝑉𝑖(𝑡), 𝑖 = 1,2. Individuals vaccinated of the susceptible population 

𝐼(𝑡) infected population 

𝑅(𝑡) Recovered population 

𝛬 Birth rate. 

𝑛 Fear rate of the vaccine. 

𝛼 , 𝛾 The vaccination rates. 

𝛽1 The contact rate between the susceptible and infected population. 

𝜇 Natural death rate. 

𝛽2 
The contact rate between the vaccinated individuals of the first dose with 

infected population. 

𝛽3 

The contact rate between the vaccinated individuals of the second dose with 

infected population. 

𝛽3 < 𝛽2 < 𝛽1. 

𝜇1 Death rate due to disease. 

𝜃 Recovery rate from the disease. 

 

     Therefore, the dynamics of the above proposed model can be represented by the following 

set of the first order non-linear differential equations. The block diagram of this model system 

can be illustrated in Figure 1. 

 

Figure 1: the block diagram of system (1). 
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𝑑𝑆

𝑑𝑡
= 𝛬 −

𝛼𝑆

1+𝑛𝑉1
− 𝛽1𝑆𝐼 − 𝜇𝑆                               

𝑑𝑉1

𝑑𝑡
=

𝛼𝑆

1+𝑛𝑉1
− 𝛾𝑉1 − 𝛽2𝑉1𝐼 − 𝜇𝑉1                      

𝑑𝑉2

𝑑𝑡
= 𝛾𝑉1 − 𝛽3𝑉2𝐼 − 𝜇𝑉2                                     

𝑑𝐼

𝑑𝑡
= 𝛽1𝑆𝐼 + 𝛽2𝑉1𝐼 + 𝛽3𝑉2𝐼 − (𝜇 + 𝜇1)𝐼 − 𝜃𝐼

𝑑𝑅

𝑑𝑡
= 𝜃𝐼 − 𝜇𝑅                                                          

                                                                                 

                                                                                                                                               (1) 

 with the initial conditions, 

 𝑆(0) > 0  , 𝑉1(0) ≥  0 , 𝑉2(0) ≥  0  , 𝐼(0) ≥  0   , 𝑅(0) ≥  0 .  
Where (𝑆(𝑡), 𝑉1(𝑡), 𝑉2(𝑡), 𝐼(𝑡), 𝑅(𝑡)) ∈ 𝑅+

5 . Suppose that the functions  

𝑆(𝑡), 𝑉1(𝑡), 𝑉2(𝑡), 𝐼(𝑡), 𝑅(𝑡) and their derivatives are continuous for all 𝑡 ≥ 0. Therefore, these 

functions are Lipschitzain on 𝑅+
5  , and the solution of the system (1) exists and unique. In the 

next theorem, the bounds of the solution of the system (1) in 𝑅+
5  have been established. 

 

Theorem (1):  All solutions of system (1) that are initial in 𝑅+
5  are uniformly bounded. 

Proof:  

 Let (𝑆(𝑡), 𝑉1(𝑡), 𝑉2(𝑡), 𝐼(𝑡), 𝑅(𝑡)) be solutions of the system (1) with non(-ve) initial 

conditions (𝑆(0), 𝑉1(0), 𝑉2(0), 𝐼(0), 𝑅(0)), and let  

          𝐻(𝑡) = 𝑆(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)  , then  

         
𝑑𝐻

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+
𝑑𝑉1

𝑑𝑡
+
𝑑𝑉2

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
. 

Therefore, we can easily get:  
𝑑𝐻

𝑑𝑡
≤ Λ − 𝜇𝐻       

By using Gronwall's lemma [26] , we obtain the following  

 𝐻(𝑡) ≤
Λ

𝜇
+ (𝐻0 −

Λ

𝜇
) 𝑒−𝜇𝑡. 

Where    𝐻0 = (𝑆(0), 𝑉1(0), 𝑉2(0), 𝐼(0), 𝑅(0)). 

Therefore, (𝑡) ≤
Λ

𝜇
 ,  as 𝑡 → ∞. 

 

3. Existence of the equilibrium points and basic reproduction number 

     We note that the variable 𝑅, which represents the recovery rate, does not appear in the first 

four equations of the system (1), thus one can solve the following system instead of the system 

(1), and then substitute the solution value of 𝐼 in the fifth equation of the system (1) to solving 

it separately as a linear differential equation with respect to the variable 𝑅, we got the solution 

of the fifth equation at   𝑡 → ∞ , can be written as  

           𝑅(𝑡) =
𝜃𝐼

𝜇
 ,                                                                                                                     (2)   

where 𝐼 represents the solution values of the system (3)  that is given below. 

Accordingly, the following system will be study instead of the system (1). 
𝑑𝑆

𝑑𝑡
= Λ −

𝛼𝑆

1+𝑛𝑉1
− 𝛽1𝑆𝐼 − 𝜇𝑆                                

         
𝑑𝑉1

𝑑𝑡
=

𝛼𝑆

1+𝑛𝑉1
− 𝛾𝑉1 − 𝛽2𝑉1𝐼 − 𝜇𝑉1                                

𝑑𝑉2

𝑑𝑡
= 𝛾𝑉1 − 𝛽3𝑉2𝐼 − 𝜇𝑉2                                     

𝑑𝐼

𝑑𝑡
= 𝛽1𝑆𝐼 + 𝛽2𝑉1𝐼 + 𝛽3𝑉2𝐼 − (𝜇 + 𝜇1)𝐼 − 𝜃𝐼

                                                        (3) 

System (3) has six equilibrium points which are as follows:  

•   The first equilibrium point (FEP) which is denoted by  𝐸0 = (𝑆,̅ 0,0,0) ,       𝑤ℎ𝑒𝑛 𝛼 = 0 ,  
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where  

𝑆̅ = Λ 𝜇⁄    .                                                                                                                    (4) 

• The second equilibrium point (SEP) which is denoted by 𝐸1 = (𝑆̿, �̿�1, 0,0) 𝑤ℎ𝑒𝑛 𝛾 = 0, 

where  

    𝑆̿ =
Λ(1+𝑛�̿�1)

𝛼+𝜇(1+𝑛�̿�1)
   ,                                                                                                                  (5) 

while �̿�1 represents a non-negative root of the following polynomial.  

𝑊1𝑉1
2 +𝑊2𝑉1 +𝑊3 = 0 ,                                                                                            (6)  

Where 

 

𝑉1 =
−𝑊2+√𝑊2

2−4𝑊1𝑊3

2𝑊1
,

𝑊1 = 𝑛 𝜇2 > 0,            

𝑊2 =  𝜇2 + 𝛼 𝜇,           
𝑊3 = −𝛼Λ < 0.           

   

• The third equilibrium point (TEP) which is denoted by 𝐸2 = (�̂�, 0,0, 𝐼)    𝑤ℎ𝑒𝑛 𝛼 = 0, 

Where 

 �̂� =
Λ

𝛽1𝐼+𝜇
  ,                                                                                                                   (7) 

𝐼 =
𝛽1Λ−𝑢1

𝑢2
  ,                                                                                                                  (8) 

with   𝑢1 = 𝜇(𝜇 + 𝜇1 + 𝜃) 𝑎𝑛𝑑  𝑢2 = 𝛽1(𝜇 + 𝜇1 + 𝜃)  exists under the following condition: 

𝑢1 < 𝛽1Λ  .                                                                                                                   (9) 

• The fourth equilibrium point (FOEP) which is denoted by 𝐸3 = (�̆�, �̆�1, �̆�2, 0) , 
where 

�̆� =
Λ(1+𝑛𝑉1)

𝛼+𝜇(1+𝑛𝑉1)
  ,                                                                                                         (10) 

�̆�2 =
𝛾𝑉1

𝜇
  ,                                                                                                                   (11) 

while �̆�1 represents a non-negative root of the following polynomial 

𝑄1𝑉1
2 + 𝑄2𝑉1 + 𝑄3 = 0  .                                                                                           (12)      

Where   

𝑉1 =
−𝑄2+√𝑄2

2−4𝑄1𝑄3

2𝑄1
,         

   𝑄1 = 𝑛𝜇(𝛾 + 𝜇) > 0,           

𝑄2 = 𝛾𝛼 + 𝜇(𝛾 + 𝛼 + 𝜇),
𝑄3 = −𝛼Λ < 0.                  

   

  

• The fifth equilibrium point (FIEP) which is denoted by 𝐸4 = (�̃̃�, �̃̃�1, 0, 𝐼)  𝑤ℎ𝑒𝑟𝑒 𝛾 = 0 

and  

 �̃̃� =
−𝛽2�̃̃�1+𝜇+𝜇1+𝜃

𝛽1
 ,                                                                                               (13) 

while, the point  (�̃̃�1, 𝐼)  represents a unique intersection point of two isoclines in the interior 

of the first quadrant of the 𝑉1𝐼 − 𝑝𝑙𝑎𝑛𝑒  : 
 𝑓(𝑉1, 𝐼) = 𝑟1𝑉1

2 + 𝑟2𝑉1
2𝐼 + 𝑟3𝑉1 + 𝑟4𝑉1𝐼 + 𝑟5 = 0 ,                                                (14a) 

 𝑔(𝑉1, 𝐼) = 𝑘1𝑉1
2 + 𝑘2𝑉1

2𝐼 + 𝑘3𝑉1 + 𝑘4𝑉1𝐼 + 𝑘5𝐼 + 𝑘6 = 0 ,                                  (14b) 

where 
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𝑟1 = −𝛽1𝑛𝜇 ,     𝑟2 = −𝛽1𝛽2𝑛 ,     𝑟3 = −(𝛽1𝜇 + 𝛽2𝛼) ,   𝑟4 = −𝛽1𝛽2 , 𝑟5 = 𝛼(𝜇 + 𝜇1 + 𝜃) 

𝑘1 = 𝜇𝑛𝛽2 ,  𝑘2 = 𝑛𝛽1𝛽2     ,   𝑘3 = Λ𝑛𝛽1 + 𝛽2(𝛼 + 𝜇) − 𝜇𝑛(𝜇 + 𝜇1 + 𝜃) ,

 𝑘4 = 𝛽1[𝛽2 − 𝑛(𝜇 + 𝜇1 + 𝜃)] , 𝑘5 = −𝛽1(𝜇 + 𝜇1 + 𝜃) , 𝑘6 = Λ𝛽1 − [(𝛼 + 𝜇)(𝜇 + 𝜇1 + 𝜃)].

  

Clearly, as 𝐼 = 0 the two isoclines become: 

 𝑓(𝑉1, 0) = 𝑟1𝑉1
2 + 𝑟3𝑉1 + 𝑟5 = 0 ,                                                                           (15a) 

 𝑔(𝑉1, 0) = 𝑘1𝑉1
2 + 𝑘3𝑉1+𝑘6 = 0 .                                                                          (15b) 

     According to the polynomial equations (15a) and (15b), each one has a unique positive root 

designated by 𝑉1 and 𝐼 if and only if the following sufficient condition is met: 

 Λ𝛽1 < (𝛼 + 𝜇)(𝜇 + 𝜇1 + 𝜃)                                                                                     (16) 

Keeping the above in mind, the fifth equilibrium point 𝐸4 = (�̃̃�, �̃̃�1, 0, 𝐼) exists uniquely if the 

condition (16) and the following sufficient conditions are met: 
𝜕𝐼

𝜕𝑉1
= −(

𝜕𝑓(𝑉1,𝐼)

𝜕𝑉1
) / (

𝜕𝑓(𝑉1,𝐼)

𝜕𝐼
) > 0                                                                                         (17a) 

𝜕𝐼

𝜕𝑉1
= −(

𝜕𝑔(𝑉1,𝐼)

𝜕𝑉1
) / (

𝜕𝑔(𝑉1,𝐼)

𝜕𝐼
) < 0                                                                                   (17b) 

𝛽2�̃̃�1 < 𝜇 + 𝜇1 + 𝜃                                                                                                               (17c) 

• The sixth equilibrium point  (SIEP) can be obtained for the system (3) which is denoted 

by                               𝐸5 = (𝑆
∗, 𝑉1

∗, 𝑉2
∗, 𝐼∗) , 

where  

 𝑆∗ =
−𝑉2

∗(𝛽2𝛽3𝐼
∗+𝜇𝛽2+𝛾𝛽3)+𝛾(𝜇+𝜇1+𝜃)

𝛾𝛽1
  ,                                                                       (18) 

 𝑉1
∗ =

𝑉2
∗(𝛽3𝐼

∗+𝜇)

𝛾
 ,                                                                                                         (19) 

while, the point  (𝑉2
∗, 𝐼∗)  signifies a unique intersection point of two isoclines in the interior of 

the first quadrant of the 𝑉2𝐼 − 𝑝𝑙𝑎𝑛𝑒  : 

 
𝑓(𝑉2, 𝐼) = ℎ1𝑉2

2𝐼3 + ℎ2𝑉2
2 + ℎ3𝑉2

2𝐼2 + ℎ4𝑉2
2𝐼 +              

             ℎ5𝑉2𝐼 + ℎ6𝑉2𝐼
2 + ℎ7𝑉2 +    ℎ8𝐼 + ℎ9 = 0

,                                      (20a) 

 
𝑔(𝑉2, 𝐼) = 𝐿1𝑉2

3𝐼2 + 𝐿2𝑉2
2𝐼2 + 𝐿3𝑉2

2𝐼 + 𝐿4𝑉2𝐼
2 +

       𝐿5𝑉2𝐼 + 𝐿6𝑉2
2 + 𝐿7𝑉2 + 𝐿8 = 0

  ,                                              (20b) 

where  

 ℎ1 = 𝑛𝛽1𝛽2𝛽3
2 , ℎ2 = 𝑛𝜇

2(𝜇𝛽2 + 𝛾𝛽3)  , ℎ3 = 𝑛𝛽3[𝜇𝛽2(2𝛽1 + 𝛽3) + 𝛾𝛽1𝛽3], 
 ℎ4 = 𝑛𝜇[𝜇𝛽2(3𝛽3 + 𝛽1) + 𝛾(𝛽3

2 + 𝛽1𝛽2)], 
  ℎ5 = 𝛾[Λ𝑛𝛽1𝛽3 + 𝛼𝛽2𝛽3 + 𝜇𝛽1𝛽2 + 𝛾𝛽1𝛽3 + 𝜇𝛽2𝛽3 − 𝑛𝜇(𝛽1 + 𝛽3)(𝜇 + 𝜇1 + 𝜃)], 
ℎ6 = 𝛾𝛽1𝛽3[𝛽2 − 𝑛(𝜇 + 𝜇1 + 𝜃)], 
 ℎ7 = 𝛾[𝜇(Λ𝑛𝛽1 + 𝛼𝛽2 + 𝜇𝛽2 + 𝛾𝛽3) + 𝛾𝛼𝛽3 − 𝑛𝜇

2(𝜇 + 𝜇1 + 𝜃)], 
ℎ8 = −𝛾2𝛽1(𝜇 + 𝜇1 + 𝜃)  , ℎ9 = 𝛾

2[Λ𝛽1 − (𝛼 + 𝜇)(𝜇 + 𝜇1 + 𝜃)], 
𝐿1 = −𝑛𝛽1𝛽2𝛽3

2   ,    𝐿2 = −𝛽1𝛽3[𝜇(𝛽2 + 𝑛𝛽2 + 𝑛𝛽3) + 𝑛𝛾𝛽3], 
         𝐿3 = −𝑛𝜇𝛽1[𝛽3(2𝛾 + 𝜇 + 1) + 𝜇𝛽2] ,     𝐿4 = −𝛾𝛽1𝛽2𝛽3, 

 𝐿5 = −𝛾[𝛽3(𝛼𝛽2 + 𝛾𝛽1) + 𝜇𝛽1(𝛽2 + 𝛽3)]  ,   𝐿6 = −𝑛𝜇2𝛽1(𝛾 + 𝜇), 
 𝐿7 = −𝛾[𝜇(𝛼𝛽2 + 𝛾𝛽1 + 𝜇𝛽1) + 𝛾𝛼𝛽3] ,   𝐿8 = 𝛾(𝜇 + 𝜇1 + 𝜃). 
Clearly, as 𝐼 = 0 the two isoclines become: 

 𝑓(𝑉2, 0) = ℎ2𝑉2
2 + ℎ7𝑉2 + ℎ9 = 0                                                                           (21a) 

 𝑔(𝑉2, 0) = 𝐿6𝑉2
2 + 𝐿7𝑉2 + 𝐿8 = 0                                                                          (21b) 

     According to the polynomial equations (21a) and (21b), each one has a unique positive root 

designated by 𝑉2 and 𝐼, respectively, if and only if condition (16) is met. 

Keeping the above in mind, the sixth equilibrium point 𝐸5 = (𝑆
∗, 𝑉1

∗, 𝑉2
∗, 𝐼∗)  exists uniquely if 

the condition (16) and the following sufficient conditions are met: 
𝜕𝐼

𝜕𝑉2
= −(

𝜕𝑓(𝑉2,𝐼)

𝜕𝑉2
) / (

𝜕𝑓(𝑉2,𝐼)

𝜕𝐼
) > 0                                                                                         (22a) 

𝜕𝐼

𝜕𝑉2
= −(

𝜕𝑔(𝑉2,𝐼)

𝜕𝑉2
) / (

𝜕𝑔(𝑉2,𝐼)

𝜕𝐼
) < 0                                                                                   (22b) 
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𝑉2(𝛽2𝛽3𝐼 + 𝜇𝛽2 + 𝛾𝛽3) < 𝛾(𝜇 + 𝜇1 + 𝜃).                                                                          (22c) 

  

     It is well known that the basic reproduction number which is denoted by ℛ0  is an expected 

number of secondary cases produced by a typical infective individual in a completely 

susceptible population. Indeed, if ℛ0 < 1, then the average of an infected individual produces 

less than one new infected individual over the course of its infectious period, and the infection 

cannot grow. Conversely, if ℛ0 > 1, then each infected individual produces more than one new 

infection, and the disease can invade the population. 

It is easy to verify that the basic reproduction number of the system (3) is given by  

 ℛ0 = 𝑀𝑎𝑥. {ℛ01, ℛ02, ℛ03},                                                                                    (23a) 

 where  

 

ℛ01 =
𝛽1�̅�

𝜇+𝜇1+𝜃
         

ℛ02 =
𝛽1�̿�+𝛽2�̿�1

𝜇+𝜇1+𝜃
        

ℛ03 =
𝛽1�̆�+𝛽2𝑉1+𝛽3𝑉2

𝜇+𝜇1+𝜃 }
 
 

 
 

                                                                                              (23b) 

 

4. Local stability analysis  

     In this section, the local stability of the system (3) is studied by using the linearization 

method. The Jacobian matrix of the system (3) at (𝑆, 𝑉1, 𝑉2, 𝐼) is  𝐽 = (𝑎𝑖𝑗)4×4    ; 𝑖, 𝑗 = 1,2,3,4, 

where 

 

𝑎11 = −
𝛼

1+𝑛𝑉1
− 𝛽1𝐼 − 𝜇   , 𝑎12 =

𝑛𝛼𝑆

(1+𝑛𝑉1)2
 , 𝑎14 = −𝛽1𝑆 , 𝑎21 =

𝛼

1+𝑛𝑉1
 ,              

𝑎22 = −
𝑛𝛼𝑆

(1+𝑛𝑉1)2
− 𝛾 − 𝛽2𝐼 − 𝜇    , 𝑎24 = −𝛽2𝑉1 , 𝑎32 = 𝛾     , 𝑎33 = −𝛽3𝐼 − 𝜇,

𝑎34 = −𝛽3𝑉2 , 𝑎41 = 𝛽1𝐼 , 𝑎42 = 𝛽2𝐼 ,   𝑎43 = 𝛽3𝐼, 𝑎13 = 𝑎23 = 𝑎31 = 0,      

   𝑎44 = 𝛽1𝑆 + 𝛽2𝑉1 + 𝛽3𝑉2 − (𝜇 + 𝜇1) − 𝜃                                                                 
    

                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

 

Theorem 2: The  FEP is locally asymptotically  stable  (L.A.S.) if the following sufficient 

condition is satisfied: 

 ℛ01 < 1                                                                                                                      (24) 

Proof: The Jacobian matrix at FEP is 

 𝐽(𝐸0) =

[
 
 
 
−𝜇 0 0 −𝛽1𝑆̅

0 −𝛾 − 𝜇 0 0
0 𝛾 −𝜇 0

0 0     0     𝛽1𝑆̅ − (𝜇 + 𝜇1 + 𝜃)]
 
 
 

                                            (25)                             

The characteristic equation of 𝐽(𝐸0) is given by 

 (𝛽1𝑆̅ − (𝜇 + 𝜇1 + 𝜃) − 𝜆)(−𝜇 − 𝜆)(−𝛾 − 𝜇 − 𝜆)(−𝜇 − 𝜆) = 0 .                         (26a) 

Consequently, the equation (26a) has four roots that represent the eigenvalues of 𝐽(𝐸0): 

 

𝜆1 = 𝛽1𝑆̅ − (𝜇 + 𝜇1 + 𝜃)

𝜆2 = −𝜇                              

𝜆3 = −(𝛾 + 𝜇)

𝜆4 = −𝜇            
                  

}
 

 
                                                                                      (26b) 

 

     Therefore, all the eigenvalues will be negative and hence the FEP is L.A.S. if and only if 

 ℛ01 < 1  or equivalently 𝜆1 < 0. However, it is an unstable saddle point if and only if  

ℛ01 > 1 or equivalently 𝜆1 > 0. Hence, the proof is finished. 
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Theorem 3: The SEP is L.A.S. if the following sufficient condition is satisfied: 

 ℛ02 < 1 .                                                                                                                    (27) 

Proof: The Jacobian matrix at SEP is 

 𝐽(𝐸1) =

[
 
 
 
 
 −

𝛼

1+𝑛�̿�1
− 𝜇

𝑛𝛼�̿�

(1+𝑛�̿�1)
2 0 −𝛽1𝑆̿

𝛼

1+𝑛�̿�1

−𝑛𝛼�̿�

(1+𝑛�̿�1)
2 − 𝜇 0 −𝛽2�̿�1

0 0 −𝜇 0

0 0     0      𝛽1𝑆̿ + 𝛽2�̿�1 − (𝜇 + 𝜇1 + 𝜃)]
 
 
 
 
 

                                                                                                    

                                                                                                                                                (28) 

The equation of 𝐽(𝐸1) is  

 [𝜆2 + 𝐴1𝜆 + 𝐴2][−𝜇 − 𝜆][𝛽1𝑆̿ + 𝛽2�̿�1 − (𝜇 + 𝜇1 + 𝜃) − 𝜆] = 0 .                        (29a) 

Here  

 𝐴1 =
𝛼

1+𝑛�̿�1
+

𝑛𝛼�̿�

(1+𝑛�̿�1)
2 + 2𝜇. 

 𝐴2 = 𝜇 (
𝑛𝛼�̿�

(1+𝑛�̿�1)
2 +

𝛼

1+𝑛�̿�1
+ 𝜇). 

Consequently, the equation (29a) has four roots that represent the eigenvalues of 𝐽(𝐸1): 

 

𝜆1,2 = −
𝐴1

2
∓
1

2
√𝐴1

2 − 4𝐴2           

𝜆3 = −𝜇                                            

𝜆4 = 𝛽1𝑆̿ + 𝛽2�̿�1 − (𝜇 + 𝜇1 + 𝜃)

}                                                                          (29b) 

Therefore, all the eigenvalues will be negative and hence the SEP is L.A.S. if and only if 

 ℛ02 < 1  or equivalently 𝜆4 < 0. However, it is an unstable saddle point if and only if  

 ℛ02 > 1 or equivalently 𝜆4 > 0. Hence, the proof is finished. 

 

Theorem 4: The TEP is L.A.S. if the following sufficient conditions are satisfied: 

 𝛽1�̂� < 𝛽1𝐼 + 2𝜇 + 𝜇1 + 𝜃  ,                                                                                     (30a) 

 𝜇𝛽1�̂� < (𝛽1𝐼 + 𝜇)(𝜇 + 𝜇1 + 𝜃)  .                                                                            (30b) 

Proof: The Jacobian matrix at TEP is 

 𝐽(𝐸2) =

[
 
 
 
 
−𝛽1𝐼 − 𝜇 0 0 −𝛽1�̂�

0 −𝛾 − 𝛽2𝐼 − 𝜇 0 0

0 𝛾 −𝛽3𝐼 − 𝜇 0

𝛽1𝐼 𝛽2𝐼     𝛽3𝐼      𝛽1�̂� − (𝜇 + 𝜇1 + 𝜃)]
 
 
 
 

                                                                                                                   

                                                                                                                                                (31) 

The equation of 𝐽(𝐸2) is  

 [𝜆2 + 𝐵1𝜆 + 𝐵2][−𝛾 − 𝛽2𝐼 − 𝜇 − 𝜆][−𝛽3𝐼 − 𝜇 − 𝜆] = 0 .                                    (32a) 

Here  

 𝐵1 = 𝛽1𝐼 + 2𝜇 + 𝜇1 + 𝜃 − 𝛽1�̂� 

 𝐵2 = (𝛽1𝐼 + 𝜇)(𝜇 + 𝜇1 + 𝜃) − 𝜇𝛽1�̂� 

Consequently, the equation (32a) has four roots that represent the eigenvalues of 𝐽(𝐸2): 

 

𝜆1,4 = −
𝐵1

2
∓
1

2
√𝐵1

2 − 4𝐵2

𝜆2 = −𝛾 − 𝛽2𝐼 − 𝜇             

𝜆3 = −𝛽3𝐼 − 𝜇                    

 }                                                                                   (32b) 

So, all the above eigenvalues will be negative and hence the TEP is L.A.S. if the conditions 

(30a) - (30b) hold. 
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Theorem 5: The FOEP is L.A.S. if the following sufficient condition is satisfied: 

 ℛ03 < 1                                                                                                                      (33) 

Proof: The Jacobian matrix at FOEP is 

 𝐽(𝐸3) =

                 

[
 
 
 
 
 −

𝛼

1+𝑛𝑉1
− 𝜇

𝑛𝛼�̆�

(1+𝑛𝑉1)2
0 −𝛽1�̆�

𝛼

1+𝑛𝑉1

−𝑛𝛼�̆�

(1+𝑛𝑉1)2
− 𝛾 − 𝜇 0 −𝛽2�̆�1

0 𝛾 −𝜇 −𝛽3�̆�2
0 0     0      𝛽1�̆� + 𝛽2�̆�1 + 𝛽3�̆�2 − (𝜇 + 𝜇1 + 𝜃)]

 
 
 
 
 

  

                                                                                                                                                (34) 

The equation of 𝐽(𝐸3) is  

 [𝜆2 + 𝐶1𝜆 + 𝐶2][−𝜇 − 𝜆][ 𝛽1�̆� + 𝛽2�̆�1 + 𝛽3�̆�2 − (𝜇 + 𝜇1 + 𝜃) − 𝜆] = 0.             (35a) 

Here  

 𝐶1 =
𝛼

1+𝑛𝑉1
(1 +

𝑛�̆�

1+𝑛𝑉1
) + 𝛾 + 2𝜇. 

 𝐶2 =
𝛼

1+𝑛𝑉1
(
𝑛𝜇�̆�

1+𝑛𝑉1
+ 𝛾 + 𝜇) + 𝜇(𝛾 + 𝜇). 

Consequently, the equation (35a) has four roots that represent the eigenvalues of 𝐽(𝐸3): 

 

𝜆1,2 = −
𝐶1

2
∓
1

2
√𝐶1

2 − 4𝐶2                          

𝜆3 = −𝜇                                                           

𝜆4 = 𝛽1�̆� + 𝛽2�̆�1 + 𝛽3�̆�2 − (𝜇 + 𝜇1 + 𝜃)

}                                                             (35b) 

Therefore, all the eigenvalues will be negative and hence the FOEP is L.A.S. if and only if 

 ℛ03 < 1  or equivalently 𝜆4 < 0. However, it is an unstable saddle point if and only if  

 ℛ03 > 1 or equivalently 𝜆4 > 0. Hence, the proof is finished. 

 

Theorem 6: The FIEP is L.A.S. if the following sufficient conditions are satisfied:  

𝛽1�̃̃� + 𝛽2�̃̃�1 < 𝜇 + 𝜇1 + 𝜃                                                                                                    (36a) 

 
𝑛𝛼2�̃̃�

(1+𝑛�̃̃�1)
3 < (

𝛼

1+𝑛�̃̃�1
+ 𝛽1𝐼 + 𝜇)(

𝑛𝛼�̃̃�

(1+𝑛�̃̃�1)
2 + 𝛽2𝐼 + 𝜇)                                               (36b) 

 
𝑛𝛽1𝛼�̃̃�

(1+𝑛�̃̃�1)
2 < (

𝑛𝛼�̃̃�

(1+𝑛�̃̃�1)
2 + 𝛽2𝐼 + 𝜇)𝛽2                                                                         (36c) 

 𝛽2�̃̃�1 (𝛽1�̃̃� + 𝛽2�̃̃�1) +
𝛽1𝛼�̃̃�

1+𝑛�̃̃�1
< 𝛽2�̃̃�1(𝜇 + 𝜇1 + 𝜃) .                                                  (36d) 

Proof: The Jacobian matrix at FIEP is 

 𝐽(𝐸4) = (𝑑𝑖𝑗)4×4   ;  𝑖, 𝑗 = 1,2,3,4 

here  

 

𝑑11 = −
𝛼

1+𝑛�̃̃�1
− 𝛽1𝐼 − 𝜇  , 𝑑12 =

𝑛𝛼�̃̃�

(1+𝑛�̃̃�1)
2     , 𝑑14 = −𝛽1�̃̃� ,                                

𝑑21 =
𝛼

1+𝑛�̃̃�1
   , 𝑑22 =

−𝑛𝛼�̃̃�

(1+𝑛�̃̃�1)
2 − 𝛽2𝐼 − 𝜇 , 𝑑24 = −𝛽2�̃̃�1  ,                              

  
  𝑑33 = −𝛽3𝐼 − 𝜇  , 𝑑41 = 𝛽1𝐼 , 𝑑42 = 𝛽2𝐼 , 𝑑43 = 𝛽3𝐼  ,                                         

   𝑑44 = 𝛽1�̃̃� + 𝛽2�̃̃�1 − (𝜇 + 𝜇1 + 𝜃), 𝑑13 = 𝑑23 = 𝑑31 = 𝑑32 = 𝑑34 = 0 .            
                                                                                            

       (37) 

The equation of 𝐽(𝐸4) is  

 [−𝛽3𝐼 − 𝜇 − 𝜆][𝜆
3 + 𝐷1𝜆

2 + 𝐷2𝜆 + 𝐷3] = 0 ,                                                         (38) 

where  
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𝐷1 = −(𝑑11 + 𝑑22 + 𝑑44),                                                                                                         

𝐷2 = (𝑑11𝑑22 − 𝑑12𝑑21) + (𝑑11𝑑44 − 𝑑14𝑑41) + (𝑑22𝑑44 − 𝑑24𝑑42),                          

𝐷3 = 𝑑44(𝑑12𝑑21 − 𝑑11𝑑22) − 𝑑12𝑑24𝑑41 − 𝑑14𝑑21𝑑42 + 𝑑14𝑑22𝑑41 +  𝑑11𝑑24𝑑42.

 

While  

 ∆= 𝐷1𝐷2 − 𝐷3 , that is  
∆= (𝑑11 + 𝑑22)(𝑑12𝑑21 − 𝑑11𝑑22) + (𝑑11 + 𝑑44)(𝑑14𝑑41 − 𝑑11𝑑44) −                  

                      𝑑22𝑑44(2𝑑11 + 𝑑22 + 𝑑44) + 𝑑24(𝑑12𝑑41 + 𝑑22𝑑42) + 𝑑42(𝑑44𝑑24 + 𝑑14𝑑21) 
 

So, either  

 [−𝛽3𝐼 − 𝜇 − 𝜆] = 0 ,                                                                                               (39a) 

or  

 [𝜆3 + 𝐷1𝜆
2 +𝐷2𝜆 + 𝐷3] = 0,                                                                                  (39b) 

from equation (39a), we obtain that 𝜆3 = −𝛽3𝐼 − 𝜇 < 0 which is always a negative eigenvalue. 

On the other hand, it is easy to verify that 𝐷1 > 0 𝑎𝑛𝑑 𝐷3 > 0  under the condition (36a) -  

(36b) . 

While Δ > 0  under the conditions (36c) -  (36d). Then all the eigenvalues 𝜆1 , 𝜆2𝑎𝑛𝑑 𝜆4 of 

Eq.(39b) have negative real parts. So, FIEP is L.A.S. if the conditions (36a-36d) are holds. 

 

Theorem 7: The SIEP of the system (3) is L.A.S. in the subregion Ω ∈ 𝑅+
4  which satisfies the 

condition:                                                                                                       

 2(𝛽1𝑆
∗ + 𝛽2𝑉1

∗ + 𝛽3𝑉2
∗) < 𝜇 + 𝜇1 + 𝜃 .                                                                   (40) 

Proof: The Jacobian matrix at SIEP  is 

 𝐽(𝐸5) = (𝑟𝑖𝑗)4×4   ;  𝑖, 𝑗 = 1,2,3,4 

here  

 

𝑟11 = −
𝛼

1+𝑛𝑉1
∗ − 𝛽1𝐼

∗ − 𝜇  , 𝑟12 =
𝑛𝛼𝑆∗

(1+𝑛𝑉1
∗)2
    , 𝑟14 = −𝛽1𝑆

∗,                     

𝑟21 =
𝛼

1+𝑛𝑉1
∗    , 𝑟22 =

−𝑛𝛼𝑆∗

(1+𝑛𝑉1
∗)2
− 𝛾 − 𝛽2𝐼

∗ − 𝜇 , 𝑟24 = −𝛽2𝑉1
∗,               

  

𝑟32 = 𝛾  ,   𝑟33 = −𝛽3𝐼
∗ − 𝜇  ,    𝑟34 = −𝛽3𝑉2

∗   ,        𝑟41 = 𝛽1𝐼
∗,                

  𝑟42 = 𝛽2𝐼
∗  , 𝑟43 = 𝛽3𝐼

∗ ,   𝑟44 = 𝛽1𝑆
∗ + 𝛽2𝑉1

∗ + 𝛽3𝑉2
∗ − (𝜇 + 𝜇1 + 𝜃),

𝑟13 = 𝑟31 = 𝑟23 = 0  .                                                                                          

  

                                                                                                                                          

……..……(41) 

By using the Gersgorin theorem [27] , if the following condition is satisfied,  

 |𝑟𝑖𝑖| > ∑ |𝑟𝑖𝑗|
4
𝑖=1
𝑖≠𝑗

.                                                                                                                                   

Therefore, all the eigenvalues of the Jacobian matrix at (𝐸5) exist in the sub region Ω , where  

 Ω =∪ {𝑈∗ ∈ 𝐶: |𝑈∗ − 𝑟𝑖𝑗| < ∑ |𝑟𝑖𝑗|
4
𝑖=1
𝑖≠𝑗

} 

     Therefore, all the eigenvalues of 𝐽(𝐸5) exist in the disc centered at 𝑟𝑖𝑖. Thus, if the diagonal 

elements are negative and condition (40) holds, then all the eigenvalues will exist in the left 

half plane and the SIEP is L.A.S. 

 

5. Global stability analysis  

     In this part, the global stability of all equilibrium points of the system (3) has been presented 

as shown in the following theorems. 

 

Theorem 8: Assume that the FEP is L.A.S. in 𝑅+
4 . Then it is globally asymptotically stable 

(G.A.S.) provided that the following conditions hold: 

 ℛ01 < 1,                                                                                                                   (42a) 
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 𝑆̅ < 𝑆.                                                                                                                       (42b) 

Proof:  We define the function  

 𝑈1(𝑆, 𝑉1, 𝑉2, 𝐼) =
(𝑆−�̅�)2

2
+ 𝑉1 + 𝑉2 + 𝐼. 

Clearly, 𝑈1is a positive definite function and  𝑈1: 𝑅+
4 ⟶ 𝑅 is a continuously differentiable 

function such that 

 𝑈1(𝑆̅, 0,0,0) = 0 and 𝑈1(𝑆, 𝑉1, 𝑉2, 𝐼) > 0 , ∀(𝑆, 𝑉1, 𝑉2, 𝐼) ≠ (𝑆̅, 0,0,0). 
Further,  

 

𝑑𝑈1

𝑑𝑡
= (𝑆 − 𝑆̅)[Λ − 𝛽1𝑆𝐼 − 𝜇𝑆] − 𝛾𝑉1 − 𝛽2𝑉1𝐼 − 𝜇𝑉1 + 𝛾𝑉1 − 𝛽3𝑉2𝐼 − 𝜇𝑉2         

                                                                          +𝛽1𝑆𝐼 + 𝛽2𝑉1𝐼 + 𝛽3𝑉2𝐼 − (𝜇 + 𝜇1 + 𝜃)𝐼
 

 

𝑑𝑈1

𝑑𝑡
= (𝑆 − 𝑆̅)[−𝛽1𝑆𝐼 − 𝜇(𝑆 − 𝑆̅)] − 𝛽2𝑉1𝐼 − 𝜇𝑉1 − 𝛽3𝑉2𝐼 − 𝜇𝑉2       

                                                                                             + [
𝛽1𝑆+𝛽2𝑉1+𝛽3𝑉2

𝜇+𝜇1+𝜃
− 1] 𝐼

 

 
𝑑𝑈1

𝑑𝑡
= −𝛽1𝑆𝐼(𝑆 − 𝑆̅) − 𝜇(𝑆 − 𝑆̅)

2 − 𝛽2𝑉1𝐼 − 𝜇𝑉1 − 𝛽3𝑉2𝐼 − 𝜇𝑉2 + [ℛ01 − 1]𝐼 

Consequently, by using the conditions (42a – 42b), we get that: 

 
𝑑𝑈1

𝑑𝑡
≤ −𝛽1𝑆𝐼(𝑆 − 𝑆̅) − 𝜇[(𝑆 − 𝑆̅)

2 + 𝑉1 + 𝑉2] − 𝛽2𝑉1𝐼 − 𝛽3𝑉2𝐼 − 𝐼 

Obviously, 
𝑑𝑈1

𝑑𝑡
≤ 0 , hence 𝑈1 is a Lyapunov function. Thus, FEP is a G.A.S. 

 

Theorem 9: Assume that the SEP is L.A.S. Then it is a G.A.S. in the subregion  of  𝑅+
4  that 

satisfies the following conditions: 

 ℛ02 < 1,                                                                                                                   (43a) 

𝑆̅̅ < 𝑆  ,                                                                                                                                 (43b) 

 �̿�1 < 𝑉1 ,                                                                                                                    (43c) 

 𝑞12
2 < 4𝑞11𝑞22 .                                                                                                        (43d) 

Where the symbols 𝑞𝑖𝑗  , 𝑖, 𝑗 = 1,2 are given in the proof 

Proof: We define the function 

 𝑈2(𝑆, 𝑉1, 𝑉2, 𝐼) =
(𝑆−�̅̅�)

2

2
+
(𝑉1−�̿�1)

2

2
+ 𝑉2 + 𝐼. 

Clearly, 𝑈2 is the positive definite function and  𝑈2: 𝑅+
4 ⟶ 𝑅 is a continuously differentiable 

function such that 

 𝑈2(𝑆̅
̅, �̿�1, 0,0) = 0 and 𝑈2(𝑆, 𝑉1, 𝑉2, 𝐼) > 0 , ∀(𝑆, 𝑉1, 𝑉2, 𝐼) ≠  (𝑆̅

̅, �̿�1, 0,0). 
Additionally, get that taking the derivative in terms of time and simplifying the resulting terms 

 

 

𝑑𝑈2

𝑑𝑡
= (𝑆 − 𝑆̅̅) [Λ −

𝛼𝑆

1+𝑛𝑉1
− 𝛽1𝑆𝐼 − 𝜇𝑆] + (𝑉1 − �̅̅�1) [

𝛼𝑆

1+𝑛𝑉1
− 𝛽2𝑉1𝐼 − 𝜇𝑉1]

− 𝛽3𝑉2𝐼 − 𝜇𝑉2 + 𝛽1𝑆𝐼 + 𝛽2𝑉1𝐼 + 𝛽3𝑉2𝐼 − (𝜇 + 𝜇1 + 𝜃)𝐼.
 

 
𝑑𝑈2

𝑑𝑡
= −[𝑞11(𝑆 − 𝑆̅

̅)
2
− 𝑞12(𝑆 − 𝑆̅

̅)(𝑉1 − �̿�1) + 𝑞22(𝑉1 − �̿�1)
2
] − 𝛽1𝑆𝐼(𝑆 − 𝑆̅

̅)                    

                                 −𝛽2𝑉1𝐼(𝑉1 − �̿�1) − 𝛽3𝑉2𝐼 − 𝜇𝑉2 + [
𝛽1𝑆+𝛽2𝑉1+𝛽3𝑉2

𝜇+𝜇1+𝜃
− 1] 𝐼.

 

 
𝑑𝑈2

𝑑𝑡
= −[𝑞11(𝑆 − 𝑆̅

̅)
2
− 𝑞12(𝑆 − 𝑆̅

̅)(𝑉1 − �̿�1) + 𝑞22(𝑉1 − �̿�1)
2
] − 𝛽1𝑆𝐼(𝑆 − 𝑆̅

̅)                    

                                                     −𝛽2𝑉1𝐼(𝑉1 − �̿�1) − 𝛽3𝑉2𝐼 − 𝜇𝑉2 + [ℛ02 − 1]𝐼.
 

Consequently, by using the conditions (43a – 43d), we get that: 

 

𝑑𝑈2

𝑑𝑡
≤ −[√𝑞11(𝑆 − 𝑆̅

̅) − √𝑞22(𝑉1 − �̿�1)]
2
− 𝜇𝑉2        

                            −𝛽1𝑆𝐼(𝑆 − 𝑆̅
̅) − 𝛽2𝑉1𝐼(𝑉1 − �̿�1) − 𝛽3𝑉2𝐼 − 𝐼.
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Where , 

 𝑞11 =
𝛼+𝜇(1+𝑛𝑉1)

(1+𝑛𝑉1)
  , 𝑞12 =

𝛼(𝑛�̅̅�+𝑛�̿�1+1)

(1+𝑛𝑉1)(1+𝑛�̿�1)
  , 𝑞22 =

𝑛𝛼�̅̅�+𝜇(1+𝑛𝑉1)(1+𝑛�̿�1)

(1+𝑛𝑉1)(1+𝑛�̿�1)
 

Obviously, 
𝑑𝑈2

𝑑𝑡
≤ 0 , hence 𝑈2 is the Lyapunov function. Thus, SEP is a G.A.S. 

 

Theorem 10: Assume that, the TEP is L.A.S. Then it is a G.A.S. in the subregion of  𝑅+
4  that 

satisfies the following conditions: 

 𝑚𝑎𝑥{1, �̂�} < 𝑆 ,                                                                                                        (44a) 

 𝐼 < 𝐼 .                                                                                                                       (44b) 

Proof: We define the function 

 𝑈3(𝑆, 𝑉1, 𝑉2, 𝐼) =
(𝑆−�̂�)2

2
+ 𝑉1 + 𝑉2 + (𝐼 − 𝐼 − 𝐼𝑙𝑛

𝐼

𝐼
). 

Clearly, 𝑈3 is the positive definite function and 𝑈3: 𝑅+
4 ⟶ 𝑅 is a continuously differentiable 

function such   that  𝑈3(�̂�, 0,0, 𝐼) = 0 and 𝑈3(𝑆, 𝑉1, 𝑉2, 𝐼) > 0 , ∀(𝑆, 𝑉1, 𝑉2, 𝐼) ≠  (�̂�, 0,0, 𝐼). 

Further,  

 

𝑑𝑈3

𝑑𝑡
= (𝑆 − �̂�)[Λ − 𝛽1𝑆𝐼 − 𝜇𝑆] − 𝛾𝑉1 − 𝛽2𝑉1𝐼 − 𝜇𝑉1 + 𝛾𝑉1 − 𝛽3𝑉2𝐼 − 𝜇𝑉2 

                                                      +(𝐼 − 𝐼)[ 𝛽1𝑆 + 𝛽2𝑉1 + 𝛽3𝑉2 − (𝜇 + 𝜇1 + 𝜃)].
 

From conditions (44a) and (44b), we get: 

 
𝑑𝑈3

𝑑𝑡
≤ −(𝛽1𝐼 + 𝜇)(𝑆 − �̂�)

2
− (𝛽2𝐼 + 𝜇)𝑉1 − (𝛽3𝐼 + 𝜇)𝑉2. 

Consequently, due to conditions (44a) - (44b) 
𝑑𝑈3

𝑑𝑡
≤ 0 , we have  𝑈3 is the Lyapunov function. 

Thus, the TEP is a G.A.S. 

 

Theorem 11: Assume that the FOEP is L.A.S. Then it is a G.A.S. in the subregion of  𝑅+
4  that 

satisfies the following conditions: 

 ℛ03 < 1,                                                                                                                   (45a) 

 �̆� < 𝑆 ,                                                                                                                      (45b) 

 �̆�1 < 𝑉1 ,                                                                                                                    (45c) 

 �̆�2 < 𝑉2 ,                                                                                                                   (45d) 

 𝑘12
2 < 2𝑘11𝑘22 ,                                                                                                        (45e) 

 𝑘23
2 < 2𝑘22𝑘33.                                                                                                         (45f) 

Where the symbols 𝑘𝑖𝑗  , 𝑖, 𝑗 = 1,2,3 are given in the proof 

Proof: We define the function 

 𝑈4(𝑆, 𝑉1, 𝑉2, 𝐼) =
(𝑆−�̆�)2

2
+
(𝑉1−�̆�1)

2

2
+
(𝑉2−𝑉2)

2

2
+ 𝐼. 

Clearly, 𝑈4 is the positive definite function and  𝑈4: 𝑅+
4 ⟶ 𝑅 is a continuously differentiable 

function such that  𝑈4(�̆�, �̆�1, �̆�2, 0) = 0 and 𝑈4(𝑆, 𝑉1, 𝑉2, 𝐼) > 0 , ∀(𝑆, 𝑉1, 𝑉2, 𝐼) ≠ (�̆�, �̆�1, �̆�2, 0). 

Additionally, we have  

 

𝑑𝑈4

𝑑𝑡
= (𝑆 − �̆�) [Λ −

𝛼𝑆

1+𝑛𝑉1
− 𝛽1𝑆𝐼 − 𝜇𝑆] + (𝑉1 − �̆�1) [

𝛼𝑆

1+𝑛𝑉1
− 𝛾𝑉1 − 𝛽2𝑉1𝐼 − 𝜇𝑉1]

    +(𝑉2 − �̆�2)[𝛾𝑉1 − 𝛽3𝑉2𝐼 −  𝜇𝑉2] + 𝛽1𝑆𝐼 + 𝛽2𝑉1𝐼 + 𝛽3𝑉2𝐼 − (𝜇 + 𝜇1 + 𝜃)𝐼.
 

 

 

𝑑𝑈4

𝑑𝑡
= −[𝑘11(𝑆 − �̆�)

2
− 𝑘12(𝑆 − �̆�)(𝑉1 − �̆�1) +

𝑘22

2
(𝑉1 − �̆�1)

2
]                         

      − [
𝑘22

2
(𝑉1 − �̆�1)

2
− 𝑘23(𝑉1 − �̆�1)(𝑉2 − �̆�2) + 𝑘33(𝑉2 − �̆�2)

2
]                

            −𝛽1𝑆𝐼(𝑆 − �̆�) − 𝛽2𝑉1𝐼(𝑉1 − �̆�1) − 𝛽3𝑉2𝐼(𝑉2 − �̆�2) + [
𝛽1𝑆+𝛽2𝑉1+𝛽3𝑉2

𝜇+𝜇1+𝜃
− 1] 𝐼.
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𝑑𝑈4

𝑑𝑡
= −[𝑘11(𝑆 − �̆�)

2
− 𝑘12(𝑆 − �̆�)(𝑉1 − �̆�1) +

𝑘22

2
(𝑉1 − �̆�1)

2
]                

      − [
𝑘22

2
(𝑉1 − �̆�1)

2
− 𝑘23(𝑉1 − �̆�1)(𝑉2 − �̆�2) + 𝑘33(𝑉2 − �̆�2)

2
] 

            −𝛽1𝑆𝐼(𝑆 − �̆�) − 𝛽2𝑉1𝐼(𝑉1 − �̆�1) − 𝛽3𝑉2𝐼(𝑉2 − �̆�2) + [ℛ03 − 1]𝐼.
                                                                                       

 

Consequently, by using the conditions (45a – 45f), we get that: 

 

𝑑𝑈4

𝑑𝑡
≤ − [√𝑘11(𝑆 − �̆�) − √

𝑘22

2
(𝑉1 − �̆�1)]

2

− [√
𝑘22

2
(𝑉1 − �̆�1) − √𝑘33(𝑉2 − �̆�2)]

2

−𝛽1𝑆𝐼(𝑆 − �̆�) − 𝛽2𝑉1𝐼(𝑉1 − �̆�1) − 𝛽3𝑉2𝐼(𝑉2 − �̆�2) − 𝐼
                                                                                       

   .                     

 

Where,  𝑘11 =
𝛼+𝜇(1+𝑛𝑉1)

(1+𝑛𝑉1)
  , 𝑘12 =

𝛼(𝑛�̆�+𝑛𝑉1+1)

(1+𝑛𝑉1)(1+𝑛𝑉1)
 , 𝑘22 =

𝑛𝛼�̆�+(𝜇+𝛾)(1+𝑛𝑉1)(1+𝑛𝑉1)

(1+𝑛𝑉1)(1+𝑛𝑉1)
 . 

   𝑘23 = 𝛾   , 𝑘33 = 𝜇.  

Obviously, 
𝑑𝑈4

𝑑𝑡
≤ 0 , hence 𝑈4 is the Lyapunov function with respect to 𝐸3. Thus, the FOEP is 

a G.A.S. 

 

Theorem 12: Assume that the FIEP is L.A.S. Then it is a G.A.S. in the subregion  of  𝑅+
4  that 

satisfies the following conditions: 

 𝑚𝑎𝑥 {1, �̃̃�} < 𝑆 ,                                                                                                       (46a) 

 𝐼 < 𝐼,                                                                                                                        (46b) 

 𝑚𝑎𝑥 {1, �̃̃�1} < 𝑉1,                                                                                                     (46c) 

 𝑅12
2 < 4𝑅11𝑅22,                                                                                                        (46d) 

Where  the symbols 𝑅𝑖𝑗  , 𝑖, 𝑗 = 1,2 are given in the proof. 

Proof: We define the function 

 𝑈5(𝑆, 𝑉1, 𝑉2, 𝐼) =
(𝑆−�̃̃�)

2

2
+
(𝑉1−�̃̃�1)

2

2
+ 𝑉2 + (𝐼 − 𝐼 − 𝐼𝑙𝑛

𝐼

𝐼
). 

Clearly, 𝑈5 is a positive definite function and 𝑈5: 𝑅+
4 ⟶𝑅 is a continuously differentiable 

function such that 

 𝑈5 (�̃̃�, �̃̃�1, 0, 𝐼) = 0 and 𝑈5(𝑆, 𝑉1, 𝑉2, 𝐼) > 0 , ∀(𝑆, 𝑉1, 𝑉2, 𝐼) ≠  (�̃̃�, �̃̃�1, 0, 𝐼). 

Additionally, we have  

 

𝑑𝑈5

𝑑𝑡
= (𝑆 − �̃̃�) [Λ −

𝛼𝑆

1+𝑛𝑉1
− 𝛽1𝑆𝐼 − 𝜇𝑆] + (𝑉1 − �̃̃�1) [

𝛼𝑆

1+𝑛𝑉1
− 𝛽2𝑉1𝐼 −  𝜇𝑉1]

−𝛽3𝑉2𝐼 − 𝜇𝑉2 + (𝐼 − 𝐼)[𝛽1𝑆 + 𝛽2𝑉1 + 𝛽3𝑉2 − (𝜇 + 𝜇1 + 𝜃)]  .        
 

  

      

  

𝑑𝑈5

𝑑𝑡
= −[𝑅11 (𝑆 − �̃̃�)

2

− 𝑅12 (𝑆 − �̃̃�) (𝑉1 − �̃̃�1) + 𝑅22 (𝑉1 − �̃̃�1)
2

]                    

                   − 𝛽1 (𝑆 − �̃̃�) (𝐼 − 𝐼)[𝑆 − 1] − 𝛽2 (𝑉1 − �̃̃�1) (𝐼 − 𝐼)[𝑉1 − 1] − 𝜇𝑉2 − 𝛽3𝑉2𝐼  .  
 

 

Consequently, by using the conditions (46a - 46d), we get that: 

 

𝑑𝑈5

𝑑𝑡
≤ − [√𝑅11 (𝑆 − �̃̃�) − √𝑅22 (𝑉1 − �̃̃�1)]

2

− 𝛽1 (𝑆 − �̃̃�) (𝐼 − 𝐼)[𝑆 − 1]

−𝛽2 (𝑉1 − �̃̃�1) (𝐼 − 𝐼)[𝑉1 − 1] − (𝜇 + 𝛽3𝐼)𝑉2.                         
 

Where,  
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 𝑅11 =
𝛼+(𝜇+𝛽1𝐼)(1+𝑛𝑉1)

(1+𝑛𝑉1)
  , 𝑅12 =

𝛼(𝑛�̃̃�+𝑛�̃̃�1+1)

(1+𝑛𝑉1)(1+𝑛�̃̃�1)
 , 𝑅22 =

𝑛𝛼�̃̃�+(𝜇+𝛽2𝐼)(1+𝑛𝑉1)(1+𝑛�̃̃�1)

(1+𝑛𝑉1)(1+𝑛�̃̃�1)
. 

Consequently, due to the conditions above  
𝑑𝑈5

𝑑𝑡
≤ 0 , then  𝑈5 is Lyapunov function with respect 

to 𝐸4  in the region that satisfies the given condition Thus, the FIEP  is a G.A.S. 

Theorem 13: Assume that the SIEP  is L.A.S. Then it is a G.A.S. in the subregion of  𝑅+
4  that 

satisfies the following conditions: 

 𝛽1𝑆 + 𝛽2𝑉1 + 𝛽3𝑉2 < 𝜇 + 𝜇1 + 𝜃,                                                                           (47a) 

 𝑊12
2 <

4

6
𝑊11𝑊22,                                                                                                      (47b) 

 𝑊23
2 <

4

6
𝑊22𝑊33,                                                                                                      (47c) 

 𝑊14
2 <

4

6
𝑊11𝑊44,                                                                                                      (47d) 

 𝑊24
2 <

4

9
𝑊22𝑊44,                                                                                                      (47e) 

 𝑊34
2 <

4

6
𝑊33𝑊44 .                                                                                                                  (47f) 

Where  the symbols 𝑊𝑖𝑗 , 𝑖, 𝑗 = 1,2,3,4 are given in the proof. 

Proof: We define the function 

 𝑈6(𝑆, 𝑉1, 𝑉2, 𝐼) =
(𝑆−𝑆∗)2

2
+
(𝑉1−𝑉1

∗)2

2
+
(𝑉2−𝑉2

∗)2

2
+
(𝐼−𝐼∗)2

2
. 

Clearly, 𝑈6 is the positive definite function and 𝑈6: 𝑅+
4 ⟶ 𝑅 is a continuously differentiable 

function such that 

 𝑈6(𝑆
∗, 𝑉1

∗, 𝑉2
∗, 𝐼∗) = 0 and 𝑈6(𝑆, 𝑉1, 𝑉2, 𝐼) > 0 , ∀(𝑆, 𝑉1, 𝑉2, 𝐼) ≠  (𝑆

∗, 𝑉1
∗, 𝑉2

∗, 𝐼∗). 
Additionally, we have

 
𝑑𝑈6

𝑑𝑡
= (𝑆 − 𝑆∗) [Λ −

𝛼𝑆

1+𝑛𝑉1
− 𝛽1𝑆𝐼 − 𝜇𝑆] + (𝑉1 − 𝑉1

∗) [
𝛼𝑆

1+𝑛𝑉1
− 𝛾𝑉1 − 𝛽2𝑉1𝐼 −  𝜇𝑉1]   

       +(𝑉2 − 𝑉2
∗)[𝛾𝑉1 − 𝛽3𝑉2𝐼 −  𝜇𝑉2] + (𝐼 − 𝐼

∗)[𝛽1𝑆𝐼 + 𝛽2𝑉1𝐼 + 𝛽3𝑉2𝐼 − (𝜇 + 𝜇1 + 𝜃)𝐼] .
 

  

 

𝑑𝑈6

𝑑𝑡
= −[

𝑊11

2
(𝑆 − 𝑆∗)2 −𝑊12(𝑆 − 𝑆

∗)(𝑉1 − 𝑉1
∗) +

𝑊22

3
(𝑉1 − 𝑉1

∗)2]    

       − [
𝑊11

2
(𝑆 − 𝑆∗)2 −𝑊14(𝑆 − 𝑆

∗)(𝐼 − 𝐼∗) +
𝑊44

3
(𝐼 − 𝐼∗)2]

                

− [
𝑊22

3
(𝑉1 − 𝑉1

∗)2 −𝑊23(𝑉1 − 𝑉1
∗)(𝑉2 − 𝑉2

∗) +
𝑊33

2
(𝑉2 − 𝑉2

∗)2] 

− [
𝑊22

3
(𝑉1 − 𝑉1

∗)2 +𝑊24(𝑉1 − 𝑉1
∗)(𝐼 − 𝐼∗) +

𝑊44

3
(𝐼 − 𝐼∗)2] 

− [
𝑊33

2
(𝑉2 − 𝑉2

∗)2 +𝑊34(𝑉2 − 𝑉2
∗)(𝐼 − 𝐼∗) +

𝑊44

3
(𝐼 − 𝐼∗)2] .    

      

 

Consequently, by using the conditions (47a - 47f), we get that: 

 

𝑑𝑈6

𝑑𝑡
≤ − [√

𝑊11

2
(𝑆 − 𝑆∗) − √

𝑊22

3
(𝑉1 − 𝑉1

∗)]

2

− [√
𝑊11

2
(𝑆 − 𝑆∗) + √

𝑊44

3
(𝐼 − 𝐼∗)]

2

  

            

             

− [√
𝑊22

3
(𝑉1 − 𝑉1

∗) − √
𝑊33

2
(𝑉2 − 𝑉2

∗)]

2

− [√
𝑊22

3
(𝑉1 − 𝑉1

∗) + √
𝑊44

3
(𝐼 − 𝐼∗)]

2

−[√
𝑊33

2
(𝑉2 − 𝑉2

∗) + √
𝑊44

3
(𝐼 − 𝐼∗)]

2

  .                                                                       

 

Where, 

 𝑊11 =
𝛼+(𝜇+𝛽1𝐼

∗)(1+𝑛𝑉1)

(1+𝑛𝑉1)
  ,𝑊12 =

𝛼(𝑛𝑆∗+𝑛𝑉1
∗+1)

(1+𝑛𝑉1)(1+𝑛𝑉1
∗)
  

 𝑊22 =
𝑛𝛼�̃�+(𝛽2𝐼

∗+𝜇+𝛾)(1+𝑛𝑉1)(1+𝑛𝑉1
∗)

(1+𝑛𝑉1)(1+𝑛𝑉1
∗)

  ,𝑊14 = 𝛽1(𝑆 − 𝐼
∗)   ,𝑊23 = 𝛾 

 𝑊44 = 𝜇 + 𝜇1 + 𝜃 − (𝛽1𝑆 + 𝛽2𝑉1 + 𝛽3𝑉2) 
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 𝑊33 = 𝛽3𝐼
∗ + 𝜇  ,𝑊24 = 𝛽2(𝑉1 − 𝐼

∗)    ,𝑊34 = 𝛽3(𝑉2 − 𝐼
∗)  

Consequently, due to the conditions above  
𝑑𝑈6

𝑑𝑡
≤ 0 , then 𝑈6 is the Lyapunov function with 

respect to 𝐸5  in the region that satisfies the given condition. Thus, the SIEP is a G.A.S. 

 

6. Numerical simulation 

     In this part, In order to verify our findings and comprehend how changing parameter values 

affect the system dynamics, numerical simulations are run. The following hypothetical 

parameter values are used, and the system is numerically solved. We begin with the various 

initial conditions. The obtained trajectories are drawn using Matlab 2014a. 

 

 
Λ = 5000 , 𝛽1 = 0.0003 , 𝛽2 = 0.00002 , 𝛽3 = 0.000002 , 𝛼 = 0.5 ,

𝑛 = 0.00005 ,   𝜃 = 0.003 , 𝛾 = 0.4 ,  𝜇1 = 0.3 , 𝜇 = 0.01.
                                  

(48) 

 
Figure 2: Time series of the trajectories of the system (3) for the sets of  data as given in Eq.(48) 

which approaches to 𝐸5 = (0.0959 , 0.0641 , 0.6186 , 1.5725) and ℛ0 = 3.298. 

 

      Obviously, the phase plot that is given by Figure 2 shows the SIEP of the system (3) that is 

given by 𝐸5 = (0.0959 , 0.0641 , 0.6186 , 1.5725)  is a G.A.S. and this confirms our obtained 

analytical results.  

 

     Now, in order to discuss the effect of the parameter values of the system (3) on the dynamical 

behavior of the system, the system is numerically solved for the data that are given in Eq.(48) 

with varying one or more parameters each time. It is observed that for the rest of the data as 

given in Eq.(48) with changing the parameters 𝛼 = 0 , 𝛽1 = 0.0000003 𝑎𝑛𝑑 𝛽3 = 0.0002 , the 

solution of the system (3) approaches asymptotically to 𝐸0 = (3.161 , 0 , 0 , 0) as shown in 

Figure 3. 
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Figure 3: Time series of the trajectories of the system (3) for the rest of the data as given in 

Eq.(48) with changing the parameters  𝛼 = 0 , 𝛽1 = 0.0000003 𝑎𝑛𝑑 𝛽3 = 0.0002 , which 

approaches  to 𝐸0 = (3.161 , 0 , 0 , 0) and ℛ01 = 0.03. 

 

By changing the parameters 𝛾 = 0 , 𝛽1 = 0.0000003 , 𝛽2 = 0.000002 𝑎𝑛𝑑 𝛽3 = 0.02 with 

keeping the rest of parameter values as in Eq.(48), , then the trajectories of the system (3) 

approaches asymptotically to 𝐸1 = (0.8930 , 2.2677 , 0 , 0) as shown in Figure 4. 

 

 
Figure 4: Time series of the trajectories of the system (3) for the rest of the data as given in 

Eq.(48) with changing the parameters  𝛾 = 0 , 𝛽1 = 0.0000003 , 𝛽2 = 0.000002 𝑎𝑛𝑑 𝛽3 =
0.02 , which approaches to 𝐸1 = (0.8930 , 2.2677 , 0 , 0) and ℛ02 = 0.153. 

 

For Eq.(48) with changing the parameter 𝛼 = 0, then the trajectories of the system (3) approach 

asymptotically to 𝐸2 = (0.1043 , 0 , 0 , 1.5942) as shown in Figure 5. 
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Figure 5: Time series of the trajectories of the system(3) for the rest of the data as given in 

Eq.(48) with changing the parameters  𝛼 = 0 , which approaches to 𝐸2 =
(0.1043 , 0 , 0 , 1.5942) and ℛ0 = 1.68. 

 

By changing the parameters  𝛽1 = 0.0000003 , 𝑎𝑛𝑑 𝛽3 = 0.0000002 and keeping the rest of 

parameters values as in Eq.(48), , then the trajectories of the system (3) approach asymptotically 

to 𝐸3 = ( 0.1542  ,0.1182 , 2.8885 , 0) as shown in Figure 6. 

 
Figure 6: Time series of the trajectories of the system (3) for the rest of the data as given in 

Eq.(48) with changing the parameters   𝛽1 = 0.0000003 , 𝑎𝑛𝑑 𝛽3 = 0.0000002 , which 

approaches to 𝐸3 = ( 0.1542  ,0.1182 , 2.8885 , 0) and ℛ03 = 0.95463 

 

For Eq.(48) with changing the parameter 𝛾 = 0, then the trajectories of the system (3) approach 

asymptotically to 𝐸4 = (0.0953 , 0.1360 , 0 , 1.5901) as shown in Figure 7. 
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Figure 7: Time series of the trajectories of the system (3) for the rest of the data as given in 

Eq.(48) with changing the parameters  𝛾 = 0, which approaches to 𝐸4 = (0.0953 , 0.1360 , 0 ,
1.5901). 
 

      Now, we discuss the effect of the vaccination rate 𝛼 , for Eq.(48) with different values of 

vaccination  rate 𝛼 given by the values of the parameters 𝛼 = 0.5 × 10−6, the trajectories of 

system (3) approach to TEP  as shown in Figure 8. 

 
Figure 8: Time series of the trajectories of the system (3) for the rest of the data as given in 

Eq.(48) with changing the parameters  𝛼 = 0.5 × 10−6, which approaches to (TEP). 

 

      On the other hand, however, for Eq.(48) with different values of vaccination  rate 𝛼 given 

by the values of the parameters  𝛼 = 50 , the trajectories of system (3) approach to SIEP  as 

shown in Figure 9. 
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Figure- 9 Time series of the trajectories of the system (3) for the rest of the data as given in 

Eq.(48) with changing the parameters  𝛼 = 50, which approaches to (SIEP). 

 

Now, we discuss the effect of the vaccination rate𝛾, for Eq.(48) with different values of 

vaccination  rate 𝛾 given by the values of the parameters 𝛾 = 0.4 × 10−6 , the trajectories of 

the system (3) approach to FIEP  as shown in Figure 10. 

 
Figure 10: Time series of the trajectories of the system (3) for the rest of the data as given in 

Eq.(48) with changing the parameters  𝛾 = 0.4 × 10−6, which approaches to (FIEP). 

 

On the other hand, however, for Eq.(48) with different values of vaccination  rate 𝛾 given by 

the values of the  parameters 𝛾 = 50 , the trajectories of the system (3) approach  to SIEP as 

shown in Figure 11. 
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Figure 11: Time series of the trajectories of the system (3) for the rest of the data as given in 

Eq.(48) with changing the parameters  𝛾 = 50, which approaches to (SIEP). 

 

Now, we discuss the effect of the fear rate of the vaccine  , for Eq.(48) with different values of 

fear  rate 𝑛 given by the values of the parameters  𝑛 = 0.5 × 10−6 , the trajectories of the system 

(3) approach  SIEP  as shown in Figure 12. 

 
Figure 12: Time series of the trajectories of the system (3) for the rest of the data as given in 

Eq.(48) with changing the parameter  𝑛 = 50, which approaches to (SIEP). 

 

On the other hand, however, for Eq.(48) with different values of fear  rate 𝑛 given by the 

parameter value  𝑛 = 50 , the trajectories of the system (3) approach as shown in Figure 13. 
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Figure 13:  Time series of the trajectories of the system (3) for the rest of the data as given in 

Eq.(48) with changing the parameter  𝑛 = 50. 

 

7. Conclusion and discussion 

     In this section, we have looked at the impact of the COVID-19 disease on the two stages of 

the vaccination process which are explored mathematically and analytically. Understanding the 

impacts of vaccination on the populace is the study's goal. The system's boundedness has been 

studied. All potential system equilibrium points and their existence conditions are established. 

All feasible equilibrium points are studied for local and global stability. Both analytical and 

numerical methods are used to study the qualitative dynamical behavior as a result of changing 

the parameter values. Finally, system (3) is numerically solved for the hypothetical data set that 

is biologically plausible as given in Eq. (48). The results are explained in some common 

graphics. The results are summed up as follows: 

 

1- Hypothetical parameters values are given by Eq.(48), and the system (3) has a globally 

asymptotically stable equilibrium point  𝐸5 = (𝑆∗, 𝑉1
∗, 𝑉2

∗, 𝐼∗). 
2- For the existence condition the vaccination rate = 0 , it decreases the contacts rate between 

the susceptible with infected population 𝛽1  below the specific value and increases the contacts 

rate between the vaccinated individuals of the second dose with infected population 𝛽3 more 

than the particular value destabilizes the vaccination equilibrium point and the asymptotic 

trajectory to the FEP of the system (3).  

3- For the existence condition the vaccination rate 𝛾 = 0 , decreases both the contacts rate 

between the susceptible with infected population 𝛽1 , the contacts rate between the vaccinated 

individuals of the first dose with infected population 𝛽2 below the specific value and increasing 

the contacts rate between the vaccinated individuals of the second dose with infected population 

𝛽3 more than the specified value leads the endemic and vaccine to become destabilizing from 

the second dosage equilibrium point, and the trajectories of the system (3) approach 

asymptotically to the equilibrium point SEP . 

4- Decreasing the contacts rate between the susceptible with infected population 𝛽1 below the 

specific value and decreasing the contacts rate between the vaccinated individuals of the second 

dose with infected population 𝛽3 lowering the particular value results in the endemic 
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equilibrium point becoming unstable, and the trajectories of system (3) approach to the 

equilibrium point (FOEP)  . 

5- It is observed that the proportion of caution and the vaccine and commitment to prevention 

factor only isn't enough to reduce the epidemic. But can reduce the epidemic dangers by 

applying all of it together. 
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