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Abstract

Several illustrative studies on the mathematical modeling and analysis of the
Coronavirus have been carried out in a short period of time. There is not enough work
that accounts for the vaccination campaign's two stages. In this work, a mathematical
model is created to show the impact of the recent two-stage vaccination treatment on
the Coronavirus. In the proposed model, five compartments are constructed, namely
the susceptible individuals S(t), the first dose of vaccination V; (t) , the second dose
of vaccination V,(t), infected I1(t) and recovered population R(t). The uniqueness,
boundedness and existence of the solutions of this model have been discussed. All
potential model equilibrium points are determined. The local as well as global stability
of the system in terms of the basic reproduction number is investigated. Numerical
simulation is also carried out to investigate the influence of parameters affecting the
dynamics of the model and to support the gathered analytical findings of the model.
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1. Introduction

There is a great interest in mathematical epidemiological models due to the important tools
for understanding and studying the spread of epidemics such as HIV, HBV, Ebola, HIN1 and
malaria. It is also employed to control the spread of outbreaks in the population is a major
challenge. On the other hand, the world continues are to fight existing infectious diseases, while
the changing world conditions lead to the emergence of different types of viruses. The newest
of these viruses, and the most effective in recent two years, is the new type of coronavirus which
is called COVID-19 acontagious disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in
December 2019 [1]. The disease has spread worldwide, and leading to an ongoing pandemic.
Symptoms  of COVID-19are variable but often include  fever, cough,
headache, fatigue, breathing difficulties, and loss of smell and taste. Symptoms may begin one
to fourteen days after exposure to the virus. At least, a third of people who are infected do not
develop noticeable symptoms. For those people who develop symptoms noticeable enough to
be classed as patients, most (81%) develop mild to moderate symptoms (up to mild pneumonia),
while 14% of them develop severe symptoms (dyspnea, hypoxia, or more than 50% lung
involvement on imaging), and 5% suffer critical symptoms (respiratory failure, shock) [2].
Older people are at a higher risk of developing severe symptoms. Some people continue to
experience a range of effects (long COVID) whichis a condition characterized by long-
term consequences persisting or appearing after the typical convalescence period of COVID-
19. Itis also known as post-COVID-19 syndrome, a post-COVID-19 condition for months after
recovery, and damage to organs have been observed. Multi-studies yearly are underway to
further investigate the long-term effects of the disease. The World Health Organization
instructed all citizens in the world to take precautions and measures, it repeatedly stressed to
take the vaccine in order to reduce infection with the virus. This is because vaccines save
millions of lives each year [3]. The idea of mathematical modeling has risen in importance
during the past few years. Nowadays, mathematics is very closely linked to daily life, and this
connection gives significance to the embodiment of this abstract science [4] , [5] . Numerous
academic investigations into the mathematical model of the COVID-19 pandemic have been
completed in a short time. Among these studies, Mohsen et al. [6] studied a mathematical model
for the dynamics of the COVID-19 pandemic involving infective immigrants. Mohsen et al. [7]
studied the global stability of the COVID-19 model involving the quarantine strategy and media
coverage effects. Zu, J. et al. [8] examined the COVID-19 transmission patterns in mainland
China and the effectiveness of various control measures. Tang et al. [9] studied the effectiveness
of quarantine and isolation to determine the trend of the COVID-19 epidemic in the final phase
of the current outbreak in china. Ahmed et al. [10] studied the analysis coronavirus model using
a numerical and logistic model. Hattaf et al. [11] studied modeling the dynamics of COVID-19
with carrier effect and environmental contamination. Yavuz et al. [12] studied the vaccination
and mathematical modeling of COVID-19. In addition, a number of modeling studies have been
conducted in relation to COVID-19 and other significant infectious diseases, see [13 - 25].

In this work, a mathematical model involves two stages of vaccination and the dynamics of
the COVID-19 pandemic are also presented and analyzed. This work is organized as follows;
section 2 illustrates the mathematical modeling of the novel coronavirus and two stages of the
vaccination. Section 3 discusses the boundedness of the solution and the existence of
equilibrium points of the model among other fundamental characteristics. In section 4, the local
stability analysis is investigated utilizing Gersgorin's theorem. In section 5, the global stability
of the proposed model at all equilibrium points is analyzed by using the Lyapunov function.
Finally, section 6 uses numerical simulation to assess the effects of altering all system
parameters.
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2. Mathematical Model
In this part, we formulate a mathematical model of the COVID-19 pandemic that describes

the dynamics of two stages of vaccination, namely infection of individuals and recovery of
those infected by the virus. The rest of the parameters are shown in the following table.

Table 1: Parameters description utilized in the system (1)
Interpretation

Parameters
S(t) Susceptible population
Vi(t),i =1,2. Individuals vaccinated of the susceptible population
1(t) infected population
R(t) Recovered population
A Birth rate.
n Fear rate of the vaccine.
a,y The vaccination rates.

B The contact rate between the susceptible and infected population.
Natural death rate.

u
The contact rate between the vaccinated individuals of the first dose with

B infected population.

The contact rate between the vaccinated individuals of the second dose with
Bs infected population.

B3 < B2 < 1.

Uy Death rate due to disease.
0 Recovery rate from the disease.

Therefore, the dynamics of the above proposed model can be represented by the following
set of the first order non-linear differential equations. The block diagram of this model system

can be illustrated in Figure 1.
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Figure 1: the block diagram of system (1).
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das aS

at _1+nV1_5151_MS

dV1 _ aS _ _ _

At 1+nv, YVi — BVil — vy
av,

ar YVi — B3Val — uV,
dl
T p1SI + BoVil + B3Vl — (u+p )l — 01

dR
E—HI—‘LLR

1)
with the initial conditions,
S(0)>0, V;(0)=> 0, V,(0)=>0,I1(0)=> 0 ,R(0)= 0.
Where (S(@), V1 (1), Vo (t),I(t), R(t)) € R3. Suppose that the functions
S(t), V. (t),V,(t),1(t), R(t) and their derivatives are continuous for all t = 0. Therefore, these
functions are Lipschitzain on R , and the solution of the system (1) exists and unique. In the
next theorem, the bounds of the solution of the system (1) in R} have been established.

Theorem (1): All solutions of system (1) that are initial in R3 are uniformly bounded.
Proof:

Let (S(t), V1 (t), V,(t),I(t), R(t)) be solutions of the system (1) with non(-ve) initial
conditions (S(0), V;(0),V,(0),1(0),R(0)), and let

H(t) =S(t) + V. (t) + V,(t) + I(t) + R(t) , then
dH _dS  dv;  dV,  dl  dR

dt  dt dt = dt = dt dt
Therefore, we can easily get:

S <A—puH
By using Gronwall's lemma [26] , we obtain the following
A _ D) p-ut
H(b) Su+(H0 #)e .
Where  H, = (5(0),V;(0), V5(0),1(0), R(0)).
Therefore, (t) < % , ast — oo,

3. Existence of the equilibrium points and basic reproduction number

We note that the variable R, which represents the recovery rate, does not appear in the first
four equations of the system (1), thus one can solve the following system instead of the system
(1), and then substitute the solution value of I in the fifth equation of the system (1) to solving
it separately as a linear differential equation with respect to the variable R, we got the solution
of the fifth equation at t — oo, can be written as

HOEES @

where I represents the solution values of the system (3) that is given below.
Accordingly, the following system will be study instead of the system (1).

das as

dat _1+nvl_ﬁ151_ﬂs

avy _ asS _ _ _

at . 14nn, yVi — B.Vil — uvy 3
v, (3)

o YVi = BsVol — ul;
da
S = BiSI+ BVl + Vol — (u+ )l — 01

System (3) has six equilibrium points which are as follows:

e The first equilibrium point (FEP) which is denoted by E, = (5,0,0,0), whena =0,
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where
e The second equilibrium point (SEP) which is denoted by E; = (S,7,,0,0) wheny = 0,

where
= A(1+n7)

~ atu(1+ni) (5)
while V; represents a non-negative root of the following polynomial.
WVE+ WV + W3 =0, (6)
Where
2
v, = -Wo+ /WZ —4W1W3,
2wy
W,=nu?®>0,
W, = p*+ap,
Wy = —ah < 0.

e The third equilibrium point (TEP) which is denoted by E, = ($,0,0,I) whena =0,

Where
A

S= Bil+p ' (7)
f=hn (8)
2
with  u; = u(u + p, +60) and u, = B (u + uy + 6) exists under the following condition:
u, < 1A . L )
e The fourth equilibrium point (FOEP) which is denoted by E; = (S, 7, 7,,0),
where
& A(1+n171)
§= a+;i(1+nV1) ! (10)
v, = VTVl , (11)
while ¥, represents a non-negative root of the following polynomial
Q1V12 +QV1+Q:=0 . (12)
Where
v, = —Q2+ /Q%—wlog‘
20
Q1 =nuly +w >0,
Q=ya+uly +a+p),
e The fifth equilibrium point (FIEP) which is denoted by E, = (S:, 171, 0, f) wherey =0
and
§ = hahtuti+o (13)

B1 ’
while, the point (171,7) represents a unique intersection point of two isoclines in the interior
of the first quadrant of the V;I — plane :
fWL,D =nV2+nVA+rV,+nVil+rs=0, (14a)
g(Vl, I) = k1V12 + k2V12] + k3V1 + k4V1] + ks[ + k6 =0 y (14b)
where
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rn=—Pinp, 1,==Pfn, 13=—Bip+Pra), n=—F1f>, s =a(u+u +6)
ki =unB,, ky =npf, , k3 =Anp; + Br(a+p) —un(u+p, +6),
ko= BB —n(u+pu +0)] ks = —P1(u+py +60) kg =AB — [(a+w)(u+py +6)]
Clearly, as I = 0 the two isoclines become:
fW,0) =rVi+nrV,+1r5s=0, (15a)
gV, 0) =k, VE+ k3Vi+ke =0. (15b)
According to the polynomial equations (15a) and (15b), each one has a unique positive root
designated by V; and I if and only if the following sufficient condition is met:
ABy < (@ +m)(u+p +6) o (16)
Keeping the above in mind, the fifth equilibrium point E, = (5 Vl,o,i) exists uniquely if the
condition (16) and the following sufficient conditions are met:

or _  (of(vy,D) af (v,
v, ( oV, )/( a1 )>0 (172)
6_V1~_ ( vy )/( al )< 0 (17b)
By <u+u +6 (17¢c)
. e sixth equilibrium poin can be obtained for the system (3) which is denote
Th th equilib point (SIEP) be obtained for the system (3) which is denoted
by Es = (8%, V1, V3, 1),
where
S — =V5 (B2B3I" +uBo+y B3)+y (u+u,+6) (18)
i i YB1 '
Vl* — VZ (ﬁ31 +M) 1 (19)

Y
while, the point (V,1*) signifies a unique intersection point of two isoclines in the interior of

the first quadrant of the V,I — plane
f, D) = hlVZZI3 + h2V22 + hBVzZI2 + h4V221 +
h5V21 + h6V212 + h7V2 + hSI + hg = 0
gV, 1) = LlV23I2 + LZVZZIZ + L3V221 + L4V212 + (20b)
LsVol + LgVE+ LV, +Lg =0 ’

, (20a)

where
hy = nB1B2B5 . hy = nu? (U, +vBs) ,hs = nB3[uB>(2B1 + Bs) + v B1Bsl,
hy = nuluB, (385 + B1) +v(B5 + B1B2)],
hs = y[Anp,Bs + aBofs + uB1By + vB1Bs + ub2fs — nu(By + B3) (1 + py + 0)],
he = yB1Bs[B> — n(u + uy + 0)],
hy = yv[u(AnBy + afy + pfs +vB3) +vapfs —np?(u + g + 60)],
hg = —=y?Bi(u+py +6) , ho = y?[ABy — (@ + ) (u + py + 6)],
Ly = =nPiBaB3 , Ly = —P1Bs[u(By +np; + nps) + nypsl,
Ly = —nupi[BsQy + u+ 1) +ups]l, La=—vB1B2Bs,
Ls = —y[Bs(aB, +vB1) + upi (B2 + B3)] , Lg = —nu?Bi(y + ),
Ly = —ylu(aBy +vB1 + upy) +vapsl, Lg=y(u+u +6).
Clearly, as I = 0 the two isoclines become:
f(V3,0) = hVZ+ h,Vy + hg =0 (21a)
gVy,0) =LV + LV, +Lg =0 (21b)
According to the polynomial equations (21a) and (21b), each one has a unique positive root
designated by V, and I, respectively, if and only if condition (16) is met.
Keeping the above in mind, the sixth equilibrium point E5 = (S*, V", V5, ") exists uniquely if
the condition (16) and the following sufficient conditions are met:

2o () @
- () () <o G
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Vo(BoBsl + ufy +vBs) <y(u+pq +6). (22c)

It is well known that the basic reproduction number which is denoted by R, is an expected
number of secondary cases produced by a typical infective individual in a completely
susceptible population. Indeed, if R, < 1, then the average of an infected individual produces
less than one new infected individual over the course of its infectious period, and the infection
cannot grow. Conversely, if R, > 1, then each infected individual produces more than one new
infection, and the disease can invade the population.

It is easy to verify that the basic reproduction number of the system (3) is given by

Ry = Max.{Ry1,Ro2, Roz} (23a)
where i
Ro1 = P 5‘115“9_

iy (23b)
Ry =

4. Local stability analysis
In this section, the local stability of the system (3) is studied by using the linearization

method. The Jacobian matrix of the system (3) at (S, Vy,V,, 1) is J = (aij)4.><4. i, = 1,2,3,4,
where

nasS a

a1 = — — —_— = S, a —_—
11 1+nv; Pl = a1y = (1+nvy)2 ’ a4 = =1 21 = T,
_ nas _ _ _
Az = T )2 —y — B — yap4 = —P2V1, azp =y ,az3 = =31 —p,
A3q = —P3V5,a41 = B1l, agy = Bol, ay3 = P3l,a13 = az3 = az; =0,

Agq = P1S+ Vi + B3Vo — (u+py) — 6

Theorem 2: The FEP is locally asymptotically stable (L.A.S.) if the following sufficient
condition is satisfied:

Rop1 <1 (24)
Proof: The Jacobian matrix at FEP is
—H 0 0 —p1S
=y L 0 25)
0 0 0  BiS—(u+p +6)
The characteristic equation of J(E,) is given by
BS =+ +0) = D(pu—Ny—u—-D(p-1=0. (26a)

Consequently, the equation (26a) has four roots that represent the eigenvalues of J (Ej):
M=pS—(u+p +6)

Ay =—p

26b
Ao = —(y + 1) (26b)
Ay = —U

Therefore, all the eigenvalues will be negative and hence the FEP is L.A.S. if and only if
Ro1 < 1 orequivalently 4; < 0. However, it is an unstable saddle point if and only if
Ry1 > 1 orequivalently 4, > 0. Hence, the proof is finished.
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Theorem 3: The SEP is L.A.S. if the following sufficient condition is satisfied:

Roz < 1. (27)
Proof: The Jacobian matrix at SEP is
I a nasl =
ey, M (14n7,)’ 0 —p1S
a —na§ =
JEED) = T A 0 —pN
0 0 —u ) ) 0
0 0 0 B1S + Vi — (u + py + 6)]
(28)
The equation of J(E;) is ) ~
(22 + A+ A)[—p = A[BiS + BV — (u+ s +6) —2] = 0. (29a)
Here i
A1 a nas + 2”.

T el (1)’
nal a

A= ((1+m71)2 T T “)'

Consequently, the equation (29a) has four roots that represent the eigenvalues of J(E;):
/‘{1,2:_%$% A%_4A2
A3 = —u (29b)
Ao =BiS+ BV — (u+uy +6)

Therefore, all the eigenvalues will be negative and hence the SEP is L.A.S. if and only if

Ry, < 1 orequivalently 4, < 0. However, it is an unstable saddle point if and only if

Ry, > 1 orequivalently 1, > 0. Hence, the proof is finished.

Theorem 4: The TEP is L.A.S. if the following sufficient conditions are satisfied:

LS <Pl +2u+u, +6, (30a)
uprS < (Bl + 1) (u+ps +6) . (30b)
Proof: The Jacobian matrix at TEP is
J(E3) =
_,31i —H 0 0 _ﬁ1~§
0 -y =L —pu 0 0
0 14 —B3l —u 0
il 1 Bsl BiS — (u+p1 +6)
(31)
The equation of J(E,) is
[22+ByA+By][—y — Bl —u—2A][-Bsl—u—2]=0. (32a)

Here
By =Bl +2p+p + 60 —BiS
By = (Bl + 1)+ py + 6) — upsS
Consequently, the equation (32a) has four roots that represent the eigenvalues of J(E,):
By —1
/11’4 = _71+EWIB12 - 4‘B2
Ay =—y— ,Bzf —Hu (32b)
Ay =Pl —p
So, all the above eigenvalues will be negative and hence the TEP is L.A.S. if the conditions
(30a) - (30b) hold.
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Theorem 5: The FOEP is L.A.S. if the following sufficient condition is satisfied:

Roz < 1 (33)
Proof: The Jacobian matrix at FOEP is
J(E3) = 5
[ a nas =
a -na$ <
1+nl71 (1+nl71)2 - y - ‘Ll 0 _ﬁz V1
0 Y —u =PV,
0 0 0 B1S + B2Vi + B3V, — (i + py + 6)
(34)
The equation of J(E3) is
[A2 + A+ C][—u - /1][/315 +BVi+ BV —(utu +6)— A] = 0. (35a)
Here
a nS$
€= 1+n¥; (1 + 1+nl71) ty+2u
_ o« nus
Cz - 1+Tl[71 (1+nV1 + y + ﬂ) + “(y + H)

Consequently, the equation (35a) has four roots that represent the eigenvalues of J(E53):
My =—2F2\/CE-4C,
P (35b)
Ay = B1S + BV + BV, — (u + py +6)

Therefore, all the eigenvalues will be negative and hence the FOEP is L.A.S. if and only if

Ro3 < 1 orequivalently 1, < 0. However, it is an unstable saddle point if and only if
Ro3 > 1 or equivalently 1, > 0. Hence, the proof is finished.

Theorem 6: The FIEP is L.A.S. if the following sufficient conditions are satisfied:

BiS+BVy<u+p +6 (36a)
na?$ a z nal z
< =+ (1 + =+ B,1 + 36h
(1+n§1 3 (1+nV1 p1 .U) <(1+n§1) B2 ﬂ) ( )
nﬁlfgz < < naf 7+ ,321: + ﬂ) B (36¢)
(1+nf71) (1+TLV1)
,32‘71 (ﬁlS: + ﬁz‘Z) + f:—:% < ,32‘7101 +u +6). (36d)

Proof: The Jacobian matrix at FIEP is
J(Es) = (dy)),,, ;i =1234

here
a = na§ g
dig =— ryw Bl —p ,diz = (1+n§1)2 ydig = =4S,
a -na$ F 7
G = 5y + 2 = gy Bl T dae = B 37)

ds3 = —.33]:—#:‘141 = .31I:;d42 = ﬁzf'd43 =.33f ,
doga = PSS+ BV —(u+p+0),diz =dys =d3g =dsy =dzy =0.

The equation of J(E,) is
[—53i —u— ,1] [A3 + DyA% + DA+ D3] = 0, (38)
where
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Dy = —(dqq +dyp + dys),
D, = (dy1d3; — d12dz1) + (dy1das — d1adyr) + (d2pdas — dradss),
D3 = dys(dipdyq — dy1dyy) — dipdaadyy — diadyiday + diadypdyy + digdaady,.
While
A= D;D, — D5 , that is
A= (dy; + d33)(d1adyy — dy1daz) + (dyg + dya)(diadsy — di1das) —
dpd4a(2dy1 + dyy + das) + dpa(dinday + dppday) + dap(dasdas + diadyy)

So, either

|-g:T—n-2]=0, (39)
or

[A3 + DA% + D,A + D3] = 0, (39b)

from equation (39a), we obtain that A; = —ﬁ3I: — u < 0 which is always a negative eigenvalue.
On the other hand, it is easy to verify that D; > 0 and D; > 0 under the condition (36a) -
(36b) .

While A > 0 under the conditions (36¢) - (36d). Then all the eigenvalues 4, ,A,and A, of
Eq.(39b) have negative real parts. So, FIEP is L.A.S. if the conditions (36a-36d) are holds.

Theorem 7: The SIEP of the system (3) is L.A.S. in the subregion Q € R which satisfies the
condition:

20818 + B Vi + B3V3) <u+p + 6. (40)
Proof: The Jacobian matrix at SIEP is

J(Es) = (rij)4x4 i, =1,2,3,4

here
a " naS* *
Ty =— =PI = 1= s T1a = 1S
11 Tenvy p1 u 72 (snvpz 2114 p1S™,
-nasS* « *
Ty = —— Ty =————=—y — (1" — T4 = — LV,
21 = Towr 2 122 T g2 Y — B2 U, T4 B2V1,
— — * —_ * —_ *
T3, =V, T33=—PBsI"—u, 133 =-p3V; , 741 = Bal7,

Ty = B2l , mz =PB3I", 1y = F1S"+ BV + B3V — (n+u +6),
T3 =131 =T33 =0.

By using the Gersgorin theorem [27] , if the following condition is satisfied,

I3l > Z?:l_lrijl-

i#j

Therefore, all the eigenvalues of the Jacobian matrix at (Es) exist in the sub region Q , where

0 =uU {U* eEC: |U* - Tijl < Zéil'=1|rij|}

i#j
Therefore, all the eigenvalues of J(E5) exist in the disc centered at r;;. Thus, if the diagonal

elements are negative and condition (40) holds, then all the eigenvalues will exist in the left
half plane and the SIEP is L.A.S.

5. Global stability analysis
In this part, the global stability of all equilibrium points of the system (3) has been presented
as shown in the following theorems.

Theorem 8: Assume that the FEP is L.A.S. in R%. Then it is globally asymptotically stable

(G.A.S.) provided that the following conditions hold:
Ro1 < 1, (42a)
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§<S. (42b)
Proof: We define the function
)2
Us (S, Vi, Vo D) = S5 4 Vy 4V + 1.
Clearly, U,is a positive definite function and U;: R — R is a continuously differentiable
function such that
U,(5,0,0,0) = 0 and U, (S, Vy,V,, 1) > 0,V(S,Vy,V,, 1) # (S,0,0,0).
Further,
a5 (S = S[A = By SI — uS] — yVy — BVil — uVy + yVy — B3Vol — pV,
+B,ST + B Vil + B3Vol — (u+ puy + 6)1
au = =
d_tl = (S = S)[=B1SI — u(S = $)] = BoVil — uVy — B3Vol — ul,
+ [ﬁ15+ﬁzV1+ﬁ3V2 _ 1] I
utps+6
au
dtl = —p1SI(S — S) - u(s — 8)* - BoVil — uVy — BsVol — uVy + [Roq — 11
Consequently, by using the conditions (42a — 42b), we get that:
T < SIS = §) = pl(S = §)2 + Vi + Vo] = BoVal = BsVol — 1

Obvmusly, % < 0, hence U; is a Lyapunov function. Thus, FEP is a G.A.S.

Theorem 9: Assume that the SEP is L.A.S. Then it is a G.A.S. in the subregion of R% that
satisfies the following conditions:

Roz < 1, (43a)
S<S, (43b)
vV, <V, (43c)
432 < 4411422 - (43d)

Where the symbols q;; ,i,j = 1,2 are given in the proof
Proof: We define the function
U, (S, Vi, Vo 1) = &2 5) (Vl‘zvl)z +V, +1.
Clearly, U, is the positive deflnlte function and U,: R% — R is a continuously differentiable
function such that
U,(S,7,,0,0) = 0.and U, (S, Vy, Vo, 1) > 0,(S, Vi,V 1) # (S,7,,0,0).
Additionally, get that taking the derivative in terms of time and simplifying the resulting terms

W (s-3) [A — o= BuST ,LLS] + (v, - 1) [1+ = BoVhl - uvl]
— B3Vol — uVy + B1SI + BoVil + B3Vol — (u+ py + 6)1

Do = [411(5 9" = qualS ~ (Vi ~ 1) + @2 (i~ )] - Busi(s - §)

S+ L,V + B3V
—BVil(Vy — V) = BaVol — Vs, + [% - 1] I.

dUZ [%1(5 S) = q12(5 = S)(Vi = V1) + a2 (V1 — Vl)] pisi(s =)

~BoVil(Vy = V1) = BsVal — uVy + [Roz — 111
Consequently, by using the conditions (43a — 43d), we get that:

W2 < —[@n (S = 5) ~ J@m (Vi = 7] - uv,

—B1SI(S = 8) — BVl (Vy — V) — B3Vl — 1.
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Where ,
a+u(1+nvy) _ an$+n¥;+1) _ naS+u(1+nvy)(1+n¥;)
v 12 T W () 922 T T () (i)

Obvmusly, % < 0, hence U, is the Lyapunov function. Thus, SEP is a G.A.S.

qi1 =

Theorem 10: Assume that, the TEP is L.A.S. Then it is a G.A.S. in the subregion of R} that
satisfies the following conditions:

max{1,5} < S, (44a)
I<I. (44b)
Proof: We define the function
(s- S) o a1
Us(S, Vi,V ) = YV 4V, + (1 —i- Iln;).
Clearly, U; is the positive deflnlte function and Us: RT — R is a continuously differentiable
function such that Us($,0,0,1) = 0 and Us(S,Vy, Vs, 1) > 0,Y(S,Vy, Vo, 1) = (S,0,0,1).

Further,

du
_3 = (5 S) [A = By ST — uS] —yVy — BoVil — pVy +yVy — BsVal — uV,

+(I = D[ B1S + BV + BsVo — (1 + py + 6)].
From conditions (44a) and (44b), we get:
L < —(Bu + 1)(S = 8)" = (Bol + 1)V — (Bsl + W)Vs.
Consequently, due to conditions (44a) - (44b) % < 0, we have Uj; is the Lyapunov function.
Thus, the TEP isa G.A.S.

Theorem 11: Assume that the FOEP is L.A.S. Then it is a G.A.S. in the subregion of R} that
satisfies the following conditions:

Ros < 1, (459)
$<s, (45h)
121 <V, (45c)
Vo, <V, (45d)
k$, < 2ki1ky; (45e)
k2, < 2kyykss. (45f)

Where the symbols k;; , i, j = 1,2,3 are given in the proof
Proof: We define the function

—7.)2 AY
UL (S, Vy, V1) = &= 25> + 0 2V1) L zvz) ol
Clearly, U, is the positive definite function and U,: R} — R is a continuously differentiable
function such that U,(S,V,,7,,0) = 0and U,(S,Vy, V2, 1) > 0,Y(S, V1, V2, 1) # (S, V3, 1,,0).

Additionally, we have
% - (S S) [A T 1+ny; PaSI - ,uS] + (Vl Vl) [1+nV —yVi— BVl — #Vl]

+(V2 - Vz) YV — B3Vol — uVo] + By ST+ BoVil + B3Vol — (u+ py + 6)1.

dU4_ [k11(5 S) _klz(S S)(Vl V1)+k22 (V1 Vl)]

2 (1, = 1) = haa (V= 1) (Ve = V) + kaa (V2 = 7))

—ﬁlsl(s —8) = BVul(Vy — V) — BaVul (Vo — V) + % - 1] I
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= —kaa(5 = 3)" = kia(S = §)(Va = 7o) + 2 (v, - )|
22 (v, = Vy)" = kg (Vs = 1) (V2 — Vz) +has (V= )]
_ﬁlsl(s - S) - ,Blel(Vl - 171) - ﬁ3V21(V2 - 172) + [Ro:g - 1]1

Consequently, by using the conditions (45a — 45f) we get that:

dau. k k
<= Wku(s=5) - |22 (i - Vl)l l 22 (v, = V) = Jkas(Vy — Vz)l
—B.SI(S - S) — ,82V11(V1 V1) = BsVol (Vo = V) =1
_a+u(1+nvy) _a(nS+nVi+1) _ naS+(u+y)(1+nVy)(1+nV;)
Where, ki = (1+nV1) P2 T () (14niy) T 22 T (1+nvy) (1+n¥;)
k23 =y ,kizz3 =

Obvmusly, 4% < 0, hence U, is the Lyapunov function with respect to E5. Thus, the FOEP is
aG.AS.

Theorem 12: Assume that the FIEP is L.A.S. Then it is a G.A.S. in the subregion of R that
satisfies the following conditions:

max {1,§} <S, (46a)
I<lI, (46b)
max {1, 17'1} < Vi, (46¢)
R%, < 4R {1R,;, (46d)

Where the symbols R;;,i,j = 1,2 are given in the proof.
Proof: We define the function

22 _=)\? L
Us(S,Vy, Vy, 1) = (S‘ZS) G Zvl) +V, + (1 iy - Ilnj)

Clearly, Us is a positive definite function and Us: Rf — R is a continuously differentiable
function such that

Us (5 7,0, i) = 0and U(S, Vy, Vo, 1) > 0,¥(S, V,, Vy, ) # (5 Vl,o,i).

Additionally, we have

2 (5-9) -2

o = BiST= S|+ (Vi = V1) [ = BaVal = whi

—BsVol — uV, + (1 - 1)[,315 + BoVi + B3V, — (u+py +6)] .

1+nV;

dU5 _ [Rn 5 5) — Ry, (5 s) (V1 - 171) + Rzzz(Vl - 171)2]

~Bu(s=8) (1 -D)is =11 =B, (va = Vu) (1 = T)[Va = 1] = o = BVl

Consequently, by using the conditions (46a - 46d), we get that:

e < [R5 ~3) T (1~ 7)1 (5 -1~ D5 -1

—B> (V1 - 171) (1 - I:)[V1 —1] - (H + ﬁsI:)Vz
Where,
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a+(u+B.0)(1+nvy) amS+n¥, +1) "“§+(#+321:)(1+”V1)(1+n§1)

(1+nvy) » M2 (1+nvy)(14n¥; )

R, = = - =

Consequently, due to the conditions above % < 0, then Us is Lyapunov function with respect

to E, in the region that satisfies the given condition Thus, the FIEP isa G.A.S.
Theorem 13: Assume that the SIEP is L.A.S. Then it is a G.A.S. in the subregion of RZ that
satisfies the following conditions:

B1S + BaVi + B3V, <p+py + 6, (473)
Wi < §W11W221 (47b)
Wiy < %W22W33, (47c¢)
Wi < §W11W441 (47d)
w3, < §W22W441 (47e)
Wi, < §W33 Wi . (47f)

Where the symbols W;; , i,j = 1,2,3,4 are given in the proof.

Proof: We define the function
_c*)2 _U2 _1*\2 _1%\2
Clearly, Uy is the positive definite function and Ug: R — R is a continuously differentiable

function such that
Ug(S*, V5V, T7) = 0and Ug (S, Vy, Vo, 1) > 0,V(S, Vy, Vo, 1) = (8% V], Vs, 7).
Additionally, we have

dUs __ « as % as
TR = (S =S [A— 12— BuST = S|+ (Vi = VD) |1 = YVa = BVl — Vs

+ (Vo = V)yVy = BsVol — uVa] + (I = I7)[B1ST + BoVil + B3Vl — (u+ pq + 6)I].

dUs

W * * * W *
o= — |2 (5 = 5% = Wip(S — SO — Vi) + 222 (v, - 172

~ [ =80~ Wi 5O = 1) + 22U - 1Y
— P22 (v = Vi)? = W (Vs = V)V, = V5) + 222 (v, — V3]
B [% (Ve = VP2 + Wo(V, = VU - 1) + %(1 _ I*)Z]
a [% (Vo = V)2 + Way(V, = VU = 1) + %(1 _ I*)Z] _
Consequently, by using the conditions (47a - 47f), we get that:

2 2
dUe Wi * Wa2 * Wi * Waa *
ES_[ - (=59 - T(V1—V1)l —I - =59+ T(I—I)l

2 2
- l W22 v, — Vl*) (W3 (V, — Vz*)l _ l W2z v, — Vl*) + %(1 _ I*)l

3 2 3

2
—[ -V + %(1—1*)] .

Where,
_a+(u+pI")(14nVy) __a(nS"+nvy+1)
Wi, = (1+nvy) Wiz = (1+nvy) (1+nV;)
naS+(ByI* +u+y)(A+nvy) (1+nvy) "
Waz = Gy e = BT Wa =y

Wop=pu+u, +6— (,315 + BV, + .33V2)

1561



Saadi and Al-Husseiny Iragi Journal of Science, 2024, Vol. 65, No.3, pp: 1548-1570

Wiz = B3l" +u ,Woy = Bo(Vi = I")  Way = B3V, — 1)
Consequently, due to the conditions above % < 0, then Uy is the Lyapunov function with
respect to E5 in the region that satisfies the given condition. Thus, the SIEP is a G.A.S.

6. Numerical simulation

In this part, In order to verify our findings and comprehend how changing parameter values
affect the system dynamics, numerical simulations are run. The following hypothetical
parameter values are used, and the system is numerically solved. We begin with the various
initial conditions. The obtained trajectories are drawn using Matlab 2014a.

A = 5000, 8, = 0.0003,5, = 0.00002, 8; = 0.000002,c = 0.5,
n = 0.00005, 0 =0.003, y = 0.4, u, = 0.3, u = 0.01.

6000 4000
2 5000 -—g 2000
.—g 4000 2500 = 1000
oy —_— = 2000 5
S oo 90 g 2000 3:
Z 2000 ¢
& 8
-
0 0
0 50 100 0 50 100
Days Days
" 4
10000 2 210
-~
=
=) -
] = (&)
& 5000f 4 ———— 5000 0O | 5500
3 2000 = 3500
< 250 250
>
0 0
0 50 100 Y 50 100
Days Days

Figure 2: Time series of the trajectories of the system (3) for the sets of data as given in Eq.(48)
which approaches to Es = (0.0959,0.0641, 0.6186,1.5725) and R, = 3.298.

Obviously, the phase plot that is given by Figure 2 shows the SIEP of the system (3) that is
givenby Es = (0.0959,0.0641, 0.6186,1.5725) isa G.A.S. and this confirms our obtained
analytical results.

Now, in order to discuss the effect of the parameter values of the system (3) on the dynamical
behavior of the system, the system is numerically solved for the data that are given in Eq.(48)
with varying one or more parameters each time. It is observed that for the rest of the data as
given in Eq.(48) with changing the parameters « = 0, 8, = 0.0000003 and 5 = 0.0002 , the
solution of the system (3) approaches asymptotically to E, = (3.161,0,0,0) as shown in
Figure 3.
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Figure 3: Time series of the trajectories of the system (3) for the rest of the data as given in
Eq.(48) with changing the parameters a =0,£; = 0.0000003 and ;3 = 0.0002 , which
approaches to E, = (3.161,0,0,0) and R,; = 0.03.

By changing the parameters y = 0,5; = 0.0000003, 3, = 0.000002 and S5 = 0.02 with

keeping the rest of parameter values as in Eq.(48), , then the trajectories of the system (3)
approaches asymptotically to E; = (0.8930,2.2677,0,0) as shown in Figure 4.

< 10% < 10>

10 3
- 2000
(> =
:_'E g 2 1200 /
2 s = —
2 5000 S
81
c% 2500 <
90 =
0 0
0 50 100 0 50 100
Days Days
oy 6000 10000
=
4 9 5000 - 5500
& 4000 2000 i 3500
K= 250 S 5000 250
3 2000 ‘*__E
=
0 0 e
0 50 100 0 50 100
Days Days

Figure 4: Time series of the trajectories of the system (3) for the rest of the data as given in
Eq.(48) with changing the parameters y = 0,5, = 0.0000003, S, = 0.000002 and B35 =
0.02 , which approaches to E; = (0.8930,2.2677,0,0) and Ry, = 0.153.

For Eq.(48) with changing the parameter a = 0, then the trajectories of the system (3) approach
asymptotically to E, = (0.1043,0,0,1.5942) as shown in Figure 5.
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Figure 5: Time series of the trajectories of the system(3) for the rest of the data as given in
Eq.(48) with changing the parameters a=0 , which approaches to E, =
(0.1043,0,0,1.5942) and R, = 1.68.

By changing the parameters ; = 0.0000003, and 3 = 0.0000002 and keeping the rest of
parameters values as in Eq.(48), , then the trajectories of the system (3) approach asymptotically
to E; = (0.1542 ,0.1182,2.8885, 0) as shown in Figure 6.

4 4
5 x 10 5 < 10
L =
=) £
= =]
51 S0 g 1 — 2000
2 2500 S 3000
= — 90 =
75 = 35
0 0 !
0 50 100 . ok g
Days
Q 10000
= =]
= =2 5500
R= —— 5000 3 5000 3500
2 2000 = 5
S 2 = 250
< 250 -
- 0
0 50 100 0 50 100
Days Days

Figure 6: Time series of the trajectories of the system (3) for the rest of the data as given in
Eq.(48) with changing the parameters f; = 0.0000003, and 83 = 0.0000002 , which
approachesto E5; = (0.1542 ,0.1182,2.8885,0) and Ry; = 0.95463

For Eq.(48) with changing the parameter y = 0, then the trajectories of the system (3) approach
asymptotically to E, = (0.0953,0.1360,0, 1.5901) as shown in Figure 7.
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Figure 7: Time series of the trajectories of the system (3) for the rest of the data as given in
Eq.(48) with changing the parameters y = 0, which approaches to £, = (0.0953,0.1360,0,
1.5901).

Now, we discuss the effect of the vaccination rate a , for Eq.(48) with different values of
vaccination rate a given by the values of the parameters « = 0.5 x 107°, the trajectories of
system (3) approach to TEP as shown in Figure 8.
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100
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= S
s . i
% 5000 £ 50
2 -
0 0
0 50 100 0 50 100
Days Days
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= ——
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= 2
Q
K= 100 2 1
S = -
2 — 0.5
= |
0 -~ 0
0 50 100 0 50 100
Days Days

Figure 8: Time series of the trajectories of the system (3) for the rest of the data as given in
Eq.(48) with changing the parameters a = 0.5 x 107, which approaches to (TEP).

On the other hand, however, for Eq.(48) with different values of vaccination rate a given

by the values of the parameters a = 50 , the trajectories of system (3) approach to SIEP as
shown in Figure 9.
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Figure- 9 Time series of the trajectories of the system (3) for the rest of the data as given in
Eq.(48) with changing the parameters a = 50, which approaches to (SIEP).

Now, we discuss the effect of the vaccination ratey, for Eq.(48) with different values of
vaccination rate y given by the values of the parameters y = 0.4 x 1076 , the trajectories of
the system (3) approach to FIEP as shown in Figure 10.
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Figure 10: Time series of the trajectories of the system (3) for the rest of the data as given in
Eq.(48) with changing the parameters ¥ = 0.4 x 10~°, which approaches to (FIEP).

On the other hand, however, for Eq.(48) with different values of vaccination rate y given by

the values of the parameters y = 50 , the trajectories of the system (3) approach to SIEP as
shown in Figure 11.
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Figure 11: Time series of the trajectories of the system (3) for the rest of the data as given in
Eq.(48) with changing the parameters y = 50, which approaches to (SIEP).

Now, we discuss the effect of the fear rate of the vaccine , for Eq.(48) with different values of
fear rate n given by the values of the parameters n = 0.5 x 10~ , the trajectories of the system
(3) approach SIEP as shown in Figure 12.
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Figure 12: Time series of the trajectories of the system (3) for the rest of the data as given in
Eq.(48) with changing the parameter n = 50, which approaches to (SIEP).

On the other hand, however, for Eq.(48) with different values of fear rate n given by the
parameter value n = 50, the trajectories of the system (3) approach as shown in Figure 13.
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Figure 13: Time series of the trajectories of the system (3) for the rest of the data as given in
Eq.(48) with changing the parameter n = 50.

7. Conclusion and discussion

In this section, we have looked at the impact of the COVID-19 disease on the two stages of
the vaccination process which are explored mathematically and analytically. Understanding the
impacts of vaccination on the populace is the study's goal. The system's boundedness has been
studied. All potential system equilibrium points and their existence conditions are established.
All feasible equilibrium points are studied for local and global stability. Both analytical and
numerical methods are used to study the qualitative dynamical behavior as a result of changing
the parameter values. Finally, system (3) is numerically solved for the hypothetical data set that
is biologically plausible as given in Eq. (48). The results are explained in some common
graphics. The results are summed up as follows:

1- Hypothetical parameters values are given by Eq.(48), and the system (3) has a globally
asymptotically stable equilibrium point E5 = (S*, V', V5, I7).

2- For the existence condition the vaccination rate = 0 , it decreases the contacts rate between
the susceptible with infected population 8, below the specific value and increases the contacts
rate between the vaccinated individuals of the second dose with infected population 83 more
than the particular value destabilizes the vaccination equilibrium point and the asymptotic
trajectory to the FEP of the system (3).

3- For the existence condition the vaccination rate y = 0 , decreases both the contacts rate
between the susceptible with infected population £, , the contacts rate between the vaccinated
individuals of the first dose with infected population g, below the specific value and increasing
the contacts rate between the vaccinated individuals of the second dose with infected population
B3 more than the specified value leads the endemic and vaccine to become destabilizing from
the second dosage equilibrium point, and the trajectories of the system (3) approach
asymptotically to the equilibrium point SEP .

4- Decreasing the contacts rate between the susceptible with infected population ; below the
specific value and decreasing the contacts rate between the vaccinated individuals of the second
dose with infected population g5 lowering the particular value results in the endemic
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equilibrium point becoming unstable, and the trajectories of system (3) approach to the
equilibrium point (FOEP) .

5- It is observed that the proportion of caution and the vaccine and commitment to prevention
factor only isn't enough to reduce the epidemic. But can reduce the epidemic dangers by
applying all of it together.
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