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Abstract  

     In this study, the linear Volterra integral problem of the second kind will be treated 

with delay using a Lagrange polynomial. The Volterra integral problem is solved 

numerically using the chosen technique to obtain the best approximation. 

Additionally, the test examples are provided to demonstrate, through comparison with 

other methods' outcomes, the great degree of accuracy of the approximative solutions. 

Moreover, To verify the accuracy of the calculations that is used in these test 

examples, the absolute error is used to compare it to the exact solution. For this 

method, the program is written by MATLAB R2018a language.  

 

Keywords: Delay Integral Equation, Lagrange Polynomial, Linear, Second Kind, 

Volterra Integral Equation.  
 

حدود   اتفولتيرا التكاملية الخطية التباطؤية من النوع الثاني بأستخدام متعددالحل العددي لمعادلة 
 لاكرانج

 

 منى منصور مصطفى, *ايمان عبد الهادي ضاري 

 قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق 
 

 الخلاصة 
معادلة فولتيرا التكاملية الخطية التباطؤية من النوع الثاني باستخدام متعددة    مسألة  في هذه الدراسة تم معالجة      

حدود لاكرانج. مسألة فولتيرا التكاملية تم حلها عدديا باستخدام التقنية المختارة لايجاد حل تقريبي افضل. بالاضافة  
  درجة   الطرق الاخرى من حيثنتائج  الفرق بين الطريقة المقترحة و   لتوضيح    الامثلة الاختباريةم اعطاء  ت الى ذلك  

تم الاعتماد على الخطأ المطلق للمقارنة به مع الحل المضبوط للتاكد من دقة حسابات هذه  للحل.  الدقة والتقريب  
 الأمثلة. كما وتم كتابة البرامج الخاصة بهذه الطريقة بأستخدام  لغة الماتلاب.

 
1. Introduction 

     Scientists and researchers are interested in the delay integral equations because they can be 

found in a variety of mathematical formulations of modeling problems, for instance, in medical 

science, biomathematics, and models of population growth [1] , [2]. An essential subset of delay 

differential equations is the delay integral equations. Many methods for solving the delay 

integral equations have been discussed and investigated by various researchers. The variational 

iteration method was proposed to find the solution to linear and nonlinear delay Volterra 
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integral equations by [1] in 2012. The single-term Walsh series approach was used to solve 

delay Volterra integral equations [3]. The Z-decommission method has been applied to solve 

the equations of the Fredholm and Volterra types with time delay [4]. The non-polynomial 

spline is presented in [5] by A. M. Muhammad that is applied to the Volterra integral equation 

with delay. The computational Block-Pulse functions method was presented to find a numerical 

solution to Volterra integral equations with delay [6]. The Bernstein polynomials were proposed 

to present an effective solution for the 2nd  kind of linear Volterra integral equations with delay 

[7]. The Nystrom-Clenshaw-Curtis quadrature was proposed in 2019 by [8] for solving Volterra 

integral equations with proportional delays. Also, in 2019 the finite difference method was 

suggested to solve an initial value problem for a linear first-order Volterra delay integro-

differential equation [9] . The pseudo-spectral methods were suggested by [10] in 2020 to solve 

nonlinear Volterra integral equations with vanishing variable delays. An improved numerical 

scheme is proposed based on block pulse functions proposed to solve Volterra-type integral 

equations with time delay [11]. The sinc collocation method was used to solve the Volterra 

integral equations with proportional delay [12]. The Haar wavelet was developed for the 

solution of linear delay integral equations [13]. A class of the Volterra delays integral equations 

with noncompact operators is approximated by collocation methods [14] . The Haar collocation 

scheme is used for the solution to the class of system of delay integral equations for 

heterogeneous data communication[15] . Series solutions to the non-linear delay integral 

equations are considered by a modified approach of the homotopy analysis method [16]. 

Functional integral equations of the Volterra integral equations with constant delays type for 

significant test equations are investigated in [17] in 2022. Finally, a new approach to solving 

the linear fractional differential equation with a delay that uses the backward finite difference 

formula is discussed in [18] in 2022. 

     On the other hand,  a lot of researchers have been utilizing Lagrange polynomials to obtain 

numerical solutions to various types of problems. In 2014, The authors of [19] and [20] used 

Lagrange polynomials to find a solution to integral and integro-differential Volterra-Fredholm 

Integral equations respectively, Also, in 2020, the author [21] used the Lagrange polynomials 

to solve linear fractional Volterra-Fredholm integro-differential equations. 

 In this work, we consider a linear Volterra integral equation of the 2nd kind with a constant 

time delay 𝜏 > 0 of the form: 

 

𝑢(𝑥) = {
𝑓(𝑥) + ∫ 𝑘(x, t)𝑢(𝑡 − 𝜏) 𝑑𝑡

𝑥

𝑎
, 𝑥 ∈ [0, 𝑏], 𝜏 ∈ (0, 𝑥)

𝜑(𝑥)                                                 , 𝑥 ∈   [−τ, 0)
                        (1) 

     

    where the functions 𝑓(𝑥), 𝑘(x, t), 𝜑(𝑥)are sufficiently smooth functions and 𝑢(𝑥) is the 

unknown function to be determined using the Lagrange polynomial.  

 

     This Volterra integral equation is population modeling for humans. The 𝑢(𝑥) is the number 

of population in time 𝑥 and all children born at the time interval 0 < 𝜏 < 𝑥 who survive to time 

𝑥. Also, 𝑓(𝑥) is the survival function which is the function of the number of people that survive 

to the age x [2]. 

     This article is structured as follows: in Section 2, the definition of the Lagrange polynomial 

is given. Section 3 describes the methodology of the suggested method. Section 4 contains the 

algorithm of the method. Whilst section 5 contains the numerical test example. Finally, 

conclusions are highlighted in Section 6. 

 

2. Lagrange Polynomial 

     The purpose of this part is to integrate the Lagrange polynomial's notations and definitions 

that have been given entirely in [21]: 
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 For a set of n+1 data points {(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)}, define the Lagrange formula as 

follows: 

𝑃𝑛(𝑥) = ∑ 𝑢𝑗  𝐿𝑗(𝑥) 𝑛
𝑗=0  ,                                                                        (2) 

where  

                           𝐿𝑗(𝑥) = ∏
(𝑥−𝑥𝑘)

(𝑥𝑗−𝑥𝑘)

𝑛
𝑘=0
𝑘≠𝑗

  .                                               

 3. Methodology 

     Below, a new technique for solving Eq.1 is provided by using a Lagrange polynomial. To 

apply the new technique, the interval [−𝜏, 𝑏] is first divided into 2N subintervals with equal 

space such that: 

 𝑥𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = 0,±1,±2,… ,±𝑁, where 𝑥−𝑁 = 𝜏, 𝑥0 = 𝑎 𝑎𝑛𝑑 𝑥𝑁 = 𝑏.        (3) 

       Now, applying the Lagrange polynomial in Eq.2 for the set of nodes that are defined in 

Eq.3, we get 

𝑃2𝑁−1(𝑥) = ∑ 𝑢𝑗  ∏
(𝑥−𝑥𝑘)

(𝑥𝑗−𝑥𝑘)

𝑁
𝑘=−𝑁
𝑘≠𝑗

 𝑁
𝑗=−𝑁   .                                        (4) 

  Which is a polynomial of degree 2N-1. Therefore, substituting Eq.4 in Eq.1 to obtain: 

∑ 𝑢(𝑥𝑗) ∏
(𝑥−𝑥𝑘)

(𝑥𝑗−𝑥𝑘)

𝑁
𝑘=−𝑁
𝑘≠𝑗

 𝑁
𝑗=−𝑁 = 𝑓(𝑥) + ∫ 𝑘(x, t)

𝑥

𝑎
(∑ 𝑢(𝑥𝑗) ∏

(𝑥−𝜏−𝑥𝑘)

(𝑥𝑗−𝑥𝑘)

𝑁
𝑘=−𝑁
𝑘≠𝑗

 𝑁
𝑗=−𝑁 ) .   (5) 

Note that 𝑢(𝑥𝑗) = 𝜑(𝑥𝑗) , 𝑗 = −𝑁,−𝑁 + 1,… ,−1. 

To find the solution to u(x) at the point 𝑥𝑗 , 𝑗 = 0,1, … ,𝑁, substituting  x=xj in Eq.5 to get a 

system of 𝑁 + 1 equations, which is given by: 

                          𝐴𝑢⃑ = 𝑏⃑                                                                                                 (6) 

Where   𝐴 = [𝑎𝑖𝑗],    𝑢⃑ = [𝑢𝑖],     and  𝑏⃑ = [𝑏𝑖], such that: 

𝑎𝑖𝑗 = {
1 − ∫ 𝑘(𝑥𝑖, 𝑡) 𝐿𝑖,𝑗(𝑡 − 𝜏) 𝑑𝑡

𝑥𝑖

𝑎
  𝑖𝑓 𝑖 = 𝑗

−∫ 𝑘(𝑥𝑖, 𝑡)𝐿𝑖,𝑗(𝑡 − 𝜏) 𝑑𝑡
𝑥𝑖

𝑎
  𝑖𝑓 𝑖 ≠ 𝑗

   ,      𝑖, 𝑗 = 0,1, … ,𝑁  .                                 (7)     

𝑏𝑖 = 𝑓(𝑥𝑖) + ∑ 𝑢(𝑥𝑗) ∫ 𝑘(𝑥𝑖, 𝑡)
𝑥𝑖

𝑎
𝐿𝑖,𝑗(𝑡)

−1
𝑗=−𝑁 𝑑𝑡,      𝑖 = 0,1, … ,𝑁 .                        (8) 

such that 

𝐿𝑖,𝑗(𝑥) = ∏
(𝑥−𝑥𝑗)

(𝑥𝑖−𝑥𝑗)

𝑁
𝑗=−𝑁
𝑗≠𝑖

  .                                                                                          (9) 

i. e. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 − ∫ 𝑘(𝑥0, 𝑡) 𝐿0,0(𝑡 − 𝜏) 𝑑𝑡

𝑥0

𝑎

−∫ 𝑘(𝑥0, 𝑡) 𝐿0,1(𝑡 − 𝜏) 𝑑𝑡

𝑥0

𝑎

−∫ 𝑘(𝑥0, 𝑡) 𝐿0,2(𝑡 − 𝜏) 𝑑𝑡

𝑥0

𝑎

−∫ 𝑘(𝑥1, 𝑡) 𝐿1,0(𝑡 − 𝜏) 𝑑𝑡

𝑥1

𝑎

1 − ∫ 𝑘(𝑥1, 𝑡) 𝐿1,1(𝑡 − 𝜏) 𝑑𝑡

𝑥1

𝑎

−∫ 𝑘(𝑥1, 𝑡) 𝐿1,2(𝑡 − 𝜏) 𝑑𝑡

𝑥1

𝑎

−∫ 𝑘(𝑥2, 𝑡) 𝐿2,0(𝑡 − 𝜏) 𝑑𝑡

𝑥2

𝑎

−∫ 𝑘(𝑥2, 𝑡) 𝐿2,1(𝑡 − 𝜏) 𝑑𝑡

𝑥2

𝑎

1 − ∫ 𝑘(𝑥2, 𝑡) 𝐿2,2(𝑡 − 𝜏) 𝑑𝑡

𝑥2

𝑎

⋯  ⋯            −∫ 𝑘(𝑥0, 𝑡) 𝐿0,𝑁(𝑡 − 𝜏) 𝑑𝑡

𝑥0

𝑎

⋯ ⋯ −∫ 𝑘(𝑥1, 𝑡) 𝐿1,𝑁(𝑡 − 𝜏) 𝑑𝑡

𝑥1

𝑎

⋯ ⋯ −∫ 𝑘(𝑥2, 𝑡) 𝐿2,𝑁(𝑡 − 𝜏) 𝑑𝑡

𝑥2

𝑎

⋮ ⋮ ⋮
⋮ ⋮ ⋮

−∫ 𝑘(𝑥𝑁 , 𝑡) 𝐿𝑁,0(𝑡 − 𝜏) 𝑑𝑡

𝑥𝑁

𝑎

−∫ 𝑘(𝑥𝑁 , 𝑡) 𝐿𝑁,1(𝑡 − 𝜏) 𝑑𝑡

𝑥𝑁

𝑎

−∫ 𝑘(𝑥𝑁 , 𝑡) 𝐿𝑁,2(𝑡 − 𝜏) 𝑑𝑡

𝑥𝑁

𝑎

    

⋱ ⋮
⋱ ⋮

⋯ ⋯ 1 − ∫ 𝑘(𝑥𝑁 , 𝑡) 𝐿𝑁,𝑁(𝑡 − 𝜏) 𝑑𝑡

𝑥𝑁

𝑎 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑢0

𝑢1

𝑢2

⋮
⋮

𝑢𝑁]
 
 
 
 
 

 

 =

[
 
 
 
 
 
 
 𝑓(𝑥0) + ∑ 𝑢(𝑥𝑗)∫ 𝑘(𝑥0, 𝑡)

𝑥0

𝑎
𝐿0,𝑗(𝑡)𝑑𝑡−1

𝑗=−𝑁

𝑓(𝑥1) + ∑ 𝑢(𝑥𝑗)∫ 𝑘(𝑥1, 𝑡)
𝑥1

𝑎
𝐿1,𝑗(𝑡)𝑑𝑡−1

𝑗=−𝑁

𝑓(𝑥2) + ∑ 𝑢(𝑥𝑗)∫ 𝑘(𝑥2, 𝑡)
𝑥2

𝑎
𝐿2,𝑗(𝑡)𝑑𝑡−1

𝑗=−𝑁

⋮
⋮

𝑓(𝑥𝑁) + ∑ 𝑢(𝑥𝑗)∫ 𝑘(𝑥𝑁 , 𝑡)
𝑥𝑁

𝑎
𝐿𝑁,𝑗(𝑡)𝑑𝑡−1

𝑗=−𝑁 ]
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4. Description of the Algorithm 

     In this algorithm, the Lagrange polynomial is used to find the numerical solution to the linear 

Volterra integral equation of the 2nd kind with delay.: 

 

Input:𝑓(𝑥), 𝑘(𝑥, 𝑡) 𝑎𝑛𝑑 𝜑(𝑥)  (the functions are defined in Eq.1), 𝑎, 𝑏 𝑎𝑛𝑑 𝜏 ( the constants 

are defined in Eq.1), n  is the number of subintervals in [𝑎, 𝑏], such that 𝑁 = 2𝑛. 

 

Output: 𝑢⃑ = [𝑢𝑖] (the vector is defined in Eq.6) 

Step 1: Set ℎ =
𝑏−𝑎

𝑛
,   𝑁 ∈ ℕ.  

Step 2: Calculate 𝑥𝑖 = 𝑎 + 𝑖ℎ, with 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏,      𝑖 = 0,1,2, … , 𝑛. 

Step 3: Use steps 1 and 2 with Eq.7 to find the matrix a. 

Step 4: Compute the vector b using Eq.8 and steps 1 and 2. 

Step 5: Find the solution to the linear system in Eq.6 using the above steps and the Gauss 

elimination method.  

Moreover, an integral part of Eq. 7 and Eq. 8 was calculated using the exact solution for integral 

instead of numerical integration. 

 

5. Numerical Test Example 

     In this section, to illustrate the proposed technique for solving the linear Volterra integral 

equation of the 2nd kind with delay, some numerical test examples are given. The exact solution 

is known and used to demonstrate the validity of the numerical solution that is produced by 

using our method. Additionally, at all points in these examples, the absolute error is determined 

which is defined by the following: 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = |𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛| 
Test Example 1  

Consider the following linear Volterra integral equation of the second kind with delay[11]: 

𝑢(𝑥) = {
sin 𝑥 + 𝑥2 cos(𝑥 − 1) − 𝑥2 cos(−1) + ∫ 𝑥2𝑢(𝑡 − 1)

𝑥

0
𝑑𝑡 , 𝑥 ∈ [0,1]

𝑥 −
𝑥3

3!
                                                                  ,   𝑥 ∈ [−1,0)

  

with the exact solution being 𝑢(𝑥) = sin(𝑥), for 𝑥 ∈ [0,1]. Table 1 contains the results of this 

example using the Lagrange polynomial to get a numerical solution in the range [0, 1], with 

n=10 and h=0.1. 

Table 1: The numerical solution and the exact solution with the absolute error of test example 

1 
𝒏 Numerical solution Exact solution Absolute error 

0 -4.25077117680179e-18 0 4.25077117680179e-18 

0.1 0.0998386935148979 0.099833416646828 5.27686806976979e-06 

0.2 0.198705477158925 0.198669330795061 3.61463638635105e-05 

0.3 0.295619245147809 0.295520206661340 9.90384864697202e-05 

0.4 0.389610068370245 0.389418342308651 0.00019172606159443 

0.5 0.479735785214625 0.479425538604203 0.000310246610422176 

0.6 0.565094976138383 0.564642473395035 0.000452502743348085 

0.7 0.644835869294776 0.644217687237691 0.00061818205708449 

0.8 0.718164110192649 0.717356090899523 0.000808019293126157 

0.9 0.784349621738702 0.783326909627483 0.00102271211121854 

1 0.842733601377288 0.841470984807897 0.00126261656939119 

 

Compared to the results in [11] which solve the same examples using block pulse functions, it 

is clear that the results obtained using the Lagrange polynomial represent the best 

approximation. 
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Test Example 2 

     Consider another linear Volterra integral equation of the second kind with delay [11][16]: 

 𝑢(𝑥) = {
𝑒𝑥 + 𝑥𝑒𝑥−1 + 𝑥𝑒−1 + ∫ 𝑥𝑢(𝑡 − 1)

𝑥

0
𝑑𝑡  ,   𝑥 ∈ [0,1]

𝑒𝑥,                                                       𝑥 ∈ [−1,0)
  

with the exact solution being 𝑢(𝑥) = ex, for 𝑥 ∈ [0,1]. Table 2 contains the results of this 

example's use of the Lagrange polynomial to get a numerical solution in the range [0, 1], with 

n=10 and h=0.1. 

 

Table 2: The numerical solution and the exact solution with the absolute error of test example 

2 
𝒏 Numerical solution Exact solution Absolute error 

0 1 1 0 

0.1 1.10517091807565 1.10517091807565 0 

0.2 1.22140275816017 1.22140275816017 0 

0.3 1.349858807576 1.349858807576 0 

0.4 1.49182469764127 1.49182469764127 0 

0.5 1.64872127070013 1.64872127070013 0 

0.6 1.82211880039051 1.82211880039051 0 

0.7 2.01375270747048 2.01375270747048 0 

0.8 2.22554092849247 2.22554092849247 0 

0.9 2.45960311115695 2.45960311115695 0 

1 2.71828182845905 2.71828182845905 0 

 

Compared to the results in [11] which solve the same examples using block pulse functions and 

the results obtained in [16] using series solutions, it is clear that the results obtained using the 

Lagrange polynomial represent the best approximation. 

Test Example 3 

Consider another linear Volterra integral equation of the second kind with a delay[6] 

 𝑢(𝑥) = {
𝑥2 (1 −

1

2
) +

2𝑥3

3
−

𝑥4

4
+ ∫ 𝑥𝑢(𝑡 − 1)

𝑥

0
𝑑𝑡    , 𝑥 ∈ [0,1]

𝑥2                                                                         , 𝑥 ∈ [−1,0) 
 

 

with the exact solution being 𝑢(𝑥) = x2, for 𝑥 ∈ [0,1] . Table 3 contains the results of this 

example using the Lagrange polynomial to get a numerical solution in the range [0, 1], with 

n=10 and h=0.1. 

 

Table 3: The numerical solution and the exact solution with the absolute error of test example 

3 
𝒏 Numerical solution Exact solution Absolute error 

0 1.97872909775964e-17 0 1.97872909775964e-17 

0.1 0.0100000000000001 0.01 0 

0.2 0.0400000000000001 0.04 0 

0.3 0.0900000000000001 0.09 0 

0.4 0.16 0.16 0 

0.5 0.25 0.25 0 

0.6 0.36 0.36 0 

0.7 0.49 0.49 0 

0.8 0.64 0.64 0 

0.9 0.81 0.81 0 

1 1 1 0 
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       Compared to the results in [6] which solve the same examples using the block-pulse 

function approach, it is clear that the results obtained using the Lagrange polynomial represent 

the best approximation as seen in Table 4. 

 

Table 3: comparison with the results in [6] 

x Exact solution 
Numerical solution using Lagrange 

Polynomial 
Results obtained in  [6] 

0 0 1.97872909775964e-17 0.001 

0.1 0.01 0.0100000000000001 0.0108 

0.2 0.04 0.0400000000000001 0.391 

0.3 0.09 0.0900000000000001 0.0914 

0.4 0.16 0.16 0.1577 

0.5 0.25 0.25 0.2558 

0.6 0.36 0.36 0.3634 

0.7 0.49 0.49 0.4807 

0.8 0.64 0.64 0.6493 

0.9 0.81 0.81 0.8061 

 

6. Conclusions: 

     In this work, the Lagrange polynomial has been applied to evaluate the second kind of linear 

Volterra integral equation with delay. The following points are suggested based on the 

numerical findings that are got from the previous examples: 

• The approximations developed by MATLAB software show the accuracy and validity of the 

proposed approach. 

• The method can be improved and applied to the nonlinear Volterra integral equations. 

• The approach can be extended to solve the nth-order nonlinear Volterra integro-differential 

problem. 

• Use another type of the Lagrange polynomial for example modified Lagrange polynomial. 

 

7.  conflict of interest  

     Conflict of Interest: The authors declare that they have no conflicts of interest. 

 
References  

[1] M. Avaji, J. S. Hafshejani, S. S. Dehcheshmeh, and D. F. Ghahfarokhi, “Solution of Delay Volterra 

Integral Equations using the Variational Iteration Method,” Journal of Applied Sciences, vol. 12, 

no. 2. pp. 196–200, 2012. 

[2] M. Nouri and K. Maleknejad, “Numerical Solution of Delay Integral Equations by Using Block 

Pulse Functions Arises in Biological Sciences,” International Journal of Mathematical Modelling 

& Computations, vol. 06, no. 03, pp. 221–232, 2016. 

[3] R. C. G. Sekar and K. Murugesan, “Numerical Solutions of Delay Volterra Integral Equations 

Using Single-term Walsh Series Approach,” International Journal of Applied and Computational 

Mathematics, vol. 3, no. 3, pp. 2409–2421, 2017. 

[4] M. Almousa and O. N. Ogilat, “A new approach for solution of linear time-delay integral equations 

via Z-decommission method,” Far East Journal of Mathematical Sciences, vol. 102, no. 11, pp. 

2551–2561, 2017. 

[5] A. M. Muhammad, “Numerical Solution Of Volterra Integral Equation With Delay By Using Non-

Polynomial Spline Function,” Misan Journal for Academic Studies, p. 133, 2017. 

[6] H. K. Dawood, “Computational Block-Pulse Functions Method for Solving Volterra Integral 

Equations with Delay,” JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied 

Sciences, vol. 27, no. 1, pp. 32–42, 2019. 



Dhari and Mustafa                                    Iraqi Journal of Science, 2024, Vol. 65, No.3, pp: 1541-1547 
 

1547 

[7] A. M. Muhammad and A. M. Ayal, “Numerical Solution of Linear Volterra Integral Equation with 

Delay using Bernstein Polynomial,” International Electronic Journal of Mathematics Education, 

vol. 14, no. 3, pp. 735–740, 2019. 

[8] W. L. Guo and F. R. Lin, “Nyström-Clenshaw-Curtis quadrature for the solution of Volterra 

integral equations with proportional delays,” AIP Conference Proceedings, vol. 2116, no. July, 

2019. 

[9] E. Cimen and S. Yatar, “Numerical solution of volterra integro-differential equation with delay,” 

Journal of Mathematics and Computer Science, vol. 20, no. 3, pp. 255–263, 2019. 

[10] Z. Xiao-yong, “A new strategy for the numerical solution of nonlinear Volterra integral equations 

with vanishing delays,” Applied Mathematics and Computation, vol. 365, p. 124608, 2020. 

[11] S. S. C., H. B. S., and L. Lata, “An improved method based on block pulse functions for the 

numerical solution of Volterra type delay integral equations,” Malaya Journal of Matematik, vol. 

S, no. 1, pp. 163–167, 2020. 

[12] B. Mallick and P. K. Sahu, “A Numerical Approach for Solving Volterra Integral Equation with 

Proportional Delay using Sinc-Collocation Method,” International Journal of Applied and 

Computational Mathematics, vol. 6, no. 5, 2020. 

[13] R. Amin, K. Shah, M. Asif, and I. Khan, “Efficient numerical technique for solution of delay 

Volterra-Fredholm integral equations using Haar wavelet,” Heliyon, vol. 6, no. 10, p. e05108, 2020. 

[14] H. Song, Y. Xiao, and M. Chen, “Collocation methods for third-kind Volterra integral equations 

with proportional delays,” Applied Mathematics and Computation, vol. 388, no. 11771111, p. 

125509, 2021. 

[15] H. Wu, R. Amin, A. Khan, S. Nazir, and S. Ahmad, “Solution of the Systems of Delay Integral 

Equations in Heterogeneous Data Communication through Haar Wavelet Collocation Approach,” 

Complexity, vol. 2021, 2021. 

[16] S. N. Huseen and A. S. Tayih, “Series Solutions of Delay Integral Equations via a Modified 

Approach of Homotopy Analysis Method,” Iraqi Journal of Science, vol. 62, no. 11, pp. 4006–

4018, 2021. 

[17] P. Darania and S. Pishbin, “Stability Analysis of the High-order Multistep Collocation Method for 

the Functional Integral Equations with Constant Delays,” Boletim da Sociedade Paranaense de 

Matematica, vol. 40, no. 40, pp. 1–11, 2022. 

[18] A. K. Hameed and M. M. Mustafa, “Numerical Solution of Linear Fractional Differential Equation 

with Delay Through Finite Difference Method,” Iraqi Journal of Science, vol. 63, no. 3, pp. 1232–

1239, 2022. 

[19] M. M. Mustafa and I. N. Ghanim, “Numerical Solution of Linear Volterra-Fredholm Integral 

Equations Using Lagrange Polynomials,” vol. 4, no. 5, 2014. 

[20] M. M. Mustafa and A. M. Muhammad, “Numerical Solution of Linear Volterra-Fredholm Integro- 

Differential Equations Using Lagrange Polynomials,” vol. 4, no. 9, 2014. 

[21] N. K. Salman and M. M. Mustafa, “Numerical solution of fractional Volterra-Fredholm integro-

differential equation using lagrange polynomials,” Baghdad Science Journal, vol. 17, no. 4, pp. 

1234–1240, Dec. 2020. 

 


