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Abstract 

     The nuclear shell model was used to investigate the bulk properties of lithium 

isotopes (6,7,8,9,11Li), i.e., the ground state density distributions and C0 and C2 

components of charge form factors. The theoretical treatment was based on supposing 

that the Harmonic-oscillator (HO) potential governs the core nucleons while the 

valence nucleon(s) move through Hulthen potential. Such assumptions were applied 

for both stable and exotic lithium isotopes. The HO size parameters (𝑏𝑛 and 𝑏𝑝), the 

core radii (𝑟𝑐) and the attenuation parameters (𝜅𝑛 and 𝜅𝑝) were fixed to recreate the 

available empirical size radii for lithium isotopes under study. 

 

Keywords:  size radii, density distributions, electron scattering charge form factors,   
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 من نظائر الليثيوم المستقرة والغريبة   يةستطارة الالكترونالا
 

 امين مطاع حميد*، أركان رفعه رضا

 قسم الفيزياء, كلية العلوم, جامعة بغداد, محافظة بغداد, العراق 
 

 الخلاصة:

أي توزيعات    ، )Li)6,7,8,9,11لنظائر الليثيوم    لتحقيق الخصائص الحجميةالنووي    تم استخدام انموذج القشرة      
إلى افتراض    ة النظري   المعالجة   تلعوامل التشكيل الشحنية. استند   C2و    C0  والمركباتكثافة الحالة الأرضية  

.  هالثين  جهد ( يتحكم في نيوكليونات القلب، بينما تتحرك نيوكليونات التكافؤ تحت  HOالمذبذب التوافقي )   جهد أن
معلمات جهد المتذبذب التوافقي   من نظائر الليثيوم المستقرة والغريبة.  لكلا   او المعالجة  تم تطبيق هذا الافتراض

و وانصاف اقطار القلب و معامل التوهين لكل من البروتونات والنيوترونات ثبتت بحيث تعيد توليد انصاف  
 تحت الدراسة.الليثيوم  نظائر ل  الاقطار المتوفرة عمليا

 
Introduction   

     The advent of radioactive ion beam facilities and the discovery of exotic nuclei in the mid-

1980s by Anahita et al. [1] opened a new branch in nuclear physics studied through new 

modified theoretical models. An excess in the number of neutrons or protons distinguish these 

nuclei. One of the outstanding properties of exotic nuclei is the halo phenomenon, mainly 

characterized by the appearance of a long tail at large 𝑟 in the density distribution. Such a tail 

is needed to explain the large reaction cross-section for some neutron-rich nuclei [2]. Therefore, 

the regeneration of the long tail at large r is important. The Gaussian downfall behavior is the 

main reason the Harmonic-Oscillator Wave Functions (HOWFs) do not give satisfactory results 
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[3,4,5]. Several methods were used to study the stable and the exotic nuclei, such as using two 

HO size parameters: one for the core and the other for the halo part [6,7]. The transformed 

HOWFs (THO) in the local scale transformation [8,9] are also researched. The Woods-Saxon 

and Cosh potentials were applied with very good results to study some light stable, and exotic 

nuclei [10,11].  

 

     In this paper, the radial WF of 1𝑠1

2

 of Hulthen potential was used to describe the valance 

nucleon(s) of all studied lithium isotopes, while the core nucleons were studied using HOWFs.  

With such modification, the size radii, density distributions and charge form factors of stable 

and exotic lithium isotopes were calculated. 

 

Theoretical Formulations 

     The radial part of the second order Schrödinger differential equation is given by [12]:  

1

𝑟2

𝑑

𝑑𝑟
(𝑟2

𝑑∅𝑛𝑙𝑗,𝑡𝑧
(𝑟)

𝑑𝑟
) +

2𝜇𝑐𝑚𝑡𝑧

ℏ2
 [𝐸𝑡𝑧

−
𝑙(𝑙 + 1)ℏ2

2𝑚𝑟2
− 𝑈(𝑟)] ∅𝑛𝑙𝑗,𝑡𝑧

(𝑟) = 0            (1) 

      

       The n, 𝑙, 𝑗, t𝑧 (𝑡𝑧 =
1

2
 for proton and 𝑡𝑧 = −

1

2
 for neutron), 𝜇 and ℏ represent principle, 

orbital, total spin and total isospin for single nucleon, reduced mass (𝜇𝑐𝑚𝑡𝑧
=

𝑚𝑡𝑧𝑚𝑐

𝐴
) and 

Planck’s constant, respectively. The binding energy and separation energy of single proton or 

neutron are represented by 𝐸𝑡𝑧
 and 𝑆𝑡𝑧

 (𝐸𝑡𝑧
= −𝑆𝑡𝑧

), respectively in Eq. (1). 𝑈(𝑟) represents 

the nuclear central potential given for Hulthen mean field in the form [13]: 

𝑈(𝑟) = 𝑈𝑐𝑚𝑡𝑧

𝐻 (𝑟) =
𝑉0,𝑡𝑧

(𝑒𝛽𝑡𝑧𝑟 − 1)
                                                                                  (2) 

      

      The range of the potential 𝑅 is related to  𝛽𝑡𝑧
 by the formula 𝛽𝑡𝑧

=
1

𝑅
, besides, 𝑉0 represent 

the depth of the potential. The only 𝑠 state solution to Eq. (1) is given analytically as [13,14]:  

∅𝑛𝑙𝑗,𝑡𝑧
(𝑟) =

𝑆𝑖,𝑡𝑧
(𝑟)

𝑟
 𝑌00(𝑟̂)                                                                                           (3) 

      

      In Eq. (3), the 𝑆𝑖(𝑟) is the radial form of Weinberg states and 𝑌00(𝑟̂) is the spherical 

harmonics. Knowing that 𝑆𝑖(𝑟) is given by [13, 14]: 

𝑆𝑖,𝑡𝑧
(𝑟) = 𝑒−𝜅𝑡𝑧𝑟 ∑ 𝑎𝑗,𝑡𝑧

(𝑖)
𝑒−𝑗𝛽𝑡𝑧𝑟

𝑖

𝑗=0

                                                                                (4) 

𝑎𝑗,𝑡𝑧

(𝑖)
 satisfies the condition and the recurrence relation given by [13,14]: 

∑ 𝑎𝑗,𝑡𝑧

(𝑖)

𝑖

𝑗=0

= 0                                                                                                                       (5) 

and   

𝛼𝑗+1,𝑡𝑧

(𝑖)
= 𝛼𝑗,𝑡𝑧

(𝑖)
(

𝑗𝜔1,𝑡𝑧
− 𝜔𝑖,𝑡𝑧

+ 𝑗(𝑗 − 1)

(𝑗 + 1)(𝑗 + 𝜔1,𝑡𝑧
)

  )                                                      (6) 

where  

𝜔𝑖,𝑡𝑧
= −𝛼𝑖,𝑡𝑧

(
2𝜇𝑐𝑚𝑡𝑧

𝑉0,𝑡𝑧

ℏ2𝛽𝑡𝑧

2 )                                                                                 (7) 

 The parameters of Weinberg state (𝛼𝑖,𝑡𝑧
) are given by [13,14]: 
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𝛼𝑖,𝑡𝑧
= 𝑖 (

2𝜅𝑡𝑧
+ 𝑖𝛽𝑡𝑧

2𝜅𝑡𝑧
+ 𝛽𝑡𝑧

)                                                                                            (8) 

     In Eq. (3), the 1𝑠1

2

 state denoted by ∅1𝑠1
2

,𝑡𝑧
(𝑟) can be written with the aid of Eqs. 4 to 8 as:  

∅1𝑠1
2

,𝑡𝑧
(𝑟) =

√2𝜅𝑡𝑧
(𝜅𝑡𝑧

+ 𝛽𝑡𝑧
)(2𝜅𝑡𝑧

+ 𝛽𝑡𝑧
)

𝛽𝑡𝑧

𝑒−𝜅𝑡𝑧𝑟

𝑟
[1 −𝑒−𝛽𝑡𝑧𝑟]𝑌00(𝑟̂)         (9) 

The wave number 𝜅𝑡𝑧
 is related to the binding energy of the single proton (neutron) by:  

𝜅𝑡𝑧
2 =

2𝜇𝑐𝑚𝑡𝑧
𝑆𝑡𝑧

ℏ2
                                                                                                        (10) 

The depth of the potential has a relationship with 𝛽𝑡𝑧
 and 𝜅𝑡𝑧

 by:  

𝑉0,𝑡𝑧
= −

ℏ2𝛽𝑡𝑧
2

2𝜇𝑐𝑚𝑡𝑧

(1 +
2𝜅𝑡𝑧

𝛽𝑡𝑧

)                                                                                 (11) 

For HO potential, where in Eq. (1), 𝑈(𝑟) = −𝑉0 +
1

2
𝑚𝑡𝑧

𝜔2𝑟2, the radial WF is given by [15]: 

𝑅𝑛𝑙(𝑟, 𝑏𝑡𝑧
) =

1

(2𝑙 + 1)‼
[
2𝑙−𝑛+3(2𝑛 + 2𝑙 − 1)‼

√𝜋𝑏𝑡𝑧

3 (𝑛 − 1)!
]

1
2

(
𝑟

𝑏𝑡𝑧

)

𝑙

𝑒
−

𝑟2

2𝑏𝑡𝑧
2

 

                                             ∑ (−1)𝑘 (𝑛−1)!2𝑘(2𝑙+1)‼

(𝑛−𝑘−1)!𝑘!(2𝑙+2𝑘+1)
(

𝑟

𝑏𝑡𝑧

)
2𝑘

𝑛−1
𝑘=0                                      (12) 

where 𝑏𝑡𝑧
 stands for the HO size parameter for neutrons or protons.  

 

     The density distributions of protons and neutrons for neutron rich isotopes can be written as: 

      𝜌𝑝(𝑟) =
1

4𝜋
∑ 𝑛𝑐,𝑝|𝑅𝑛𝑐𝑙𝑐

(𝑟, 𝑏𝑝)|
2

𝑐∈𝑐𝑜𝑟𝑒                                                          (13)  

𝜌𝑛(𝑟) =
1

4𝜋
∑ 𝑛𝑐,𝑛|𝑅𝑛𝑐𝑙𝑐

(𝑟, 𝑏𝑛)|
2

𝑐∈𝑐𝑜𝑟𝑒

+
1

4𝜋
𝑛𝑣,𝑛 |∅1𝑠1

2

,𝑛(𝑟)|

2

                  (14)  

     In the above two equations, 𝑛𝑐,𝑡𝑧
 is the number of protons (neutrons) in the core (𝑐) shells.  

 

The 𝑛𝑣,𝑛 represents the number of neutron(s) in the valence part. 

 

     The density distributions of protons and neutrons for proton rich isotopes can be written as: 

𝜌𝑛(𝑟) =
1

4𝜋
∑ 𝑛𝑐,𝑛|𝑅𝑛𝑐𝑙𝑐

(𝑟, 𝑏𝑛)|
2

𝑐∈𝑐𝑜𝑟𝑒

                                                          (15)  

𝜌𝑝(𝑟) =
1

4𝜋
∑ 𝑛𝑐,𝑝|𝑅𝑛𝑐𝑙𝑐

(𝑟, 𝑏𝑝)|
2

𝑐∈𝑐𝑜𝑟𝑒

+
1

4𝜋
𝑛𝑣,𝑝 |∅1𝑠1

2

,𝑝(𝑟)|

2

                (16) 

where 𝑛𝑣,𝑝 is the number of neutron (s) in the valence part. 

 

     The density distributions of protons and neutrons for stable 6Li and 7Li nuclei can be written 

as: 

𝜌𝑡𝑧
(𝑟) =

1

4𝜋
∑ 𝑛𝑐,𝑡𝑧

|𝑅𝑛𝑐𝑙𝑐
(𝑟, 𝑏𝑡𝑧

)|
2

𝑐∈𝑐𝑜𝑟𝑒

+
1

4𝜋
𝑛𝑣,𝑡𝑧

|∅1𝑠1
2

,𝑡𝑧
(𝑟)|

2

          (17) 

     The Charge Density Distribution (CDD) can be accounted by folding the point proton and 

neutron density distribution to the CDD of single proton and neutron following the procedure 

of Ridha and Abbas [16]:  

𝜌𝑐ℎ(𝑟) = 𝜌𝑐ℎ,𝑝(𝑟) + 𝜌𝑐ℎ,𝑛(𝑟)                                                                       (18) 
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where    

𝜌𝑐ℎ,𝑝(𝑟) = ∫ 𝜌𝑝(𝑟)𝜌𝑝𝑟(𝒓 − 𝒓′)𝑑𝒓′                                                              (19) 

and  

𝜌𝑐ℎ,𝑛(𝑟) = ∫ 𝜌𝐽=0,𝑛(𝑟)𝜌𝑛𝑒𝑢(𝒓 − 𝒓′)𝑑𝒓′                                                     (20) 

     The size radii (root mean square (rms) proton, neutron, charge and matter) are evaluated 

[17]: 

〈𝑟2〉
𝑖

1
2 = √

4𝜋

𝑖
∫ 𝜌𝑖(𝑟)𝑟4𝑑𝑟

∞

0

                                                                             (21) 

where 𝑖 stands for the proton, neutron, charge and matter. 

 

Finally, the charge form factors in the plane-wave Born approximation is given by [17]: 

𝐹𝑐ℎ
𝐽 (𝑞) =  

4𝜋

𝑞𝑍
 ∫ 𝜌𝑐ℎ

𝐽 (𝑟) sin(𝑞𝑟) 𝑟𝑑𝑟

∞

0

                                                            (22) 

where 𝑞 and 𝑍 represent the momentum transferred to the nucleus from incident electrons and 

the atomic number of the target nucleus, respectively. 

𝜌𝑐ℎ
𝐽 (𝑟) = 𝜌𝑐ℎ,𝐶𝑃

𝐽 (𝑟) + 𝜌𝑐ℎ,𝑀𝑆
𝐽 (𝑟)                                                                    (23) 

Two mathematical forms of CP were chosen, the Bohr-Mottelson [18] and Tassie [19] models, 

given respectively by:                        

𝜌𝑐ℎ,𝑇
𝐽 (𝑟) = 𝑁𝑇𝑟𝐽−1

𝑑𝜌𝑐ℎ(𝑟)

𝑑𝑟
                                                                     (24) 

and                         

𝜌𝑐ℎ,𝐵𝑀
𝐽 (𝑟) = 𝑁𝐵𝑀

𝑑𝜌𝑐ℎ(𝑟)

𝑑𝑟
                                                                         (25) 

     In Eq. (23), the model space (MS) contribution is accounted from shell model calculations 

by:    [6] 

𝜌𝑀𝑆
𝐽 (𝑟) =

1

√4𝜋

1

√2𝐽𝑖 + 1
∑ 𝑋𝑎,𝑏,𝑡𝑧

𝐽𝑓  𝐽𝑖  𝐽
 ⟨𝑗𝑎||𝑌𝐽||𝑗𝑏⟩

𝑎𝑏

 𝑅𝑛𝑎𝑙𝑎𝑗𝑎,𝑡𝑧
(𝑟)𝑅𝑛𝑏𝑙𝑏𝑗𝑏,𝑡𝑧

(𝑟)      (26 ) 

      

     In Eq. (24) and (25), the normalization constants are chosen so as to regenerate the 

experimental reduced transition probability:  

𝑁𝑇 =

√(2𝐽𝑖 + 1)𝐵(𝐸𝐽, 𝐽𝑖 → 𝐽𝑓) − ∫ 𝑟𝐽+2𝜌𝑐ℎ,𝑀𝑆
𝐽 (𝑟)𝑑𝑟

∞

0

∫ 𝑟2𝐽+1 𝑑𝜌𝑐ℎ(𝑟)
𝑑𝑟

𝑑𝑟
∞

0

                  (27) 

  𝑁𝐵𝑀 =
√(2𝐽𝑖+1)𝐵(𝐸𝐽,𝐽𝑖→𝐽𝑓)−∫ 𝑟𝐽+2𝜌𝑐ℎ,𝑀𝑆

𝐽 (𝑟)𝑑𝑟
∞

0

∫ 𝑟𝐽+1𝑑𝜌𝑐ℎ(𝑟)

𝑑𝑟
𝑑𝑟

∞
0

                                                              (28) 

     The experimental reduced transition probability is related to experimental quadrupole 

moment by the relation: 

𝐵(𝐸𝐽, 𝐽𝑖 → 𝐽𝑓) =
5𝑄2

(2𝐽𝑖 + 1)16𝜋 (
𝐽 2 𝐽

−𝐽 0 𝐽
)

2                                    (23) 
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Results and Discussion 

     In the present work, the nuclear shell model was adopted to describe the core and valence 

nucleons for lithium isotopes (6,7,8,9,11Li). For 6,7Li, the configuration interaction was chosen. 

The nuclear shell model code oxbash was operated to start the calculations using the Cohen-

Kurath interaction (CKI) [20] in the p shell. The HO was used for the core 4He while the HO 

and Hulthen WFs were used for 1p-shell model space. For 8,9,11Li, the pure configuration was 

adopted. The parameters of HO and Hulthen potentials were fixed to generate the available size 

radii for all studied lithium isotopes (6,7,8,9,11Li).  

 

     In Table 1, the parameters 𝐽𝜋, 𝑡1/2, 𝑏𝑐 and 𝜅𝑡𝑧
 represent the total spin and parity, the half-

life, the HO size parameters for protons and neutrons in the core, the attenuation parameter for 

proton and neutron and finally the experimental binding energy for single protons and neutrons 

on Fermi’s level, respectively. From Eq. (10), the experimental binding energies of the single 

proton (Sp) and neutron (Sn) were used to calculate the attenuation parameter for the proton and 

neutron. The size radii for nuclei under study was reproduced using the adjustable bc,nand bc,p 

parameters. 

 

     In Table 2, the computed size radii (charge 〈r2〉
ch
1/2

, proton 〈r2〉p
1/2

, neutron 〈r2〉n
1/2

 and 

matter 〈r2〉m
1/2

) for 6,7,8,9,11Li  isotopes are shown. The calculated data were compared with the 

available experimental data. It is obvious that the results agreed with empirical data. 

 

     The computed CDD and charge form factors for C0 + C2 for 6Li and 7Li are drawn in 

Figure1(a), (b), (c) and (d), respectively. The occupation numbers in s-p-shell for 6Li adjusted 

for neutrons 𝑛1𝑠1
2

,𝑛 = 1.9  and 𝑛1𝑝,𝑛 = 0.1  and 𝑛𝑣,𝑛 =  1 and protons are   𝑛1𝑠1
2

,𝑝 =

1.2  and 𝑛1𝑝,𝑝 = 0.3 and 𝑛𝑣,𝑝 = 1.5, respectively. The occupation numbers in s-p-shell for 7Li 

adjusted for neutrons 𝑛1𝑠1
2

,𝑛 = 2  and 𝑛1𝑝,𝑛 = 0.5  and 𝑛𝑣,𝑛 = 1.5 and protons are   𝑛1𝑠1
2

,𝑝 =

1.25  and 𝑛1𝑝,𝑝 = 0.6 and 𝑛𝑣,𝑝 = 1.15, respectively. The calculated CDD in  

 

      Figure1(a) and (c) are in perfect agreement with the experimental data [21]. In Figure1(b) 

and (d) the calculated charge form factors are calculated by taking into consideration the 

contributions from model space and CP. The model space contribution was accounted using the 

configuration mixing using CKI interaction [20]. The CP was calculated using Bohr Mottelson 

(solid curves) and Tassie (short dashed curves) models. It is clear that the theoretical predictions 

of Bohr Mottelson model are in good agreement with the experimental data; in contrast, Tassie 

model highly underestimated the results at medium and large 𝑞. The normalization constant in 

Eq. (27) and (28) were selected to regenerate the quadrupole moment for 6Li 𝑄𝑒𝑥𝑝. =

−0.082 𝑒𝑓𝑚2 [22] and for 7Li 𝑄𝑒𝑥𝑝. = −4.06 𝑒𝑓𝑚2[22]. 

 

     In Figure 2(a), (b) and (c), the calculated MDDs for 8,9,11Li are shown. The theoretical 

calculations using the radial wave functions of HO and Hulthen potentials are denoted by solid 

curves denoted by HO+Hulthen. The shaded areas represent the empirical data. It is obvious 

the appearance of the long tail in all figures, which is the main feature of halo nuclei. This 

makes it obvious the excellent agreement with the experimental data. 

 

     Figure3 shows the calculated MDDs for (6,7,8,9,11Li). The long tail behavior appears for 

(8,9,11Li) more than (6,7Li) because the increase in the number of neutrons decreases the binding 

energy of the last neutron, and the increase in the tunnelling effect lead to the halo formation. 
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     The calculated Coulomb form factors for (6,7,8,9,11Li) nuclei are depicted in Figure 4. With 

the increase of the neutron number, the charge form factors are shifted forwards and upwards 

leading to an increase in the scattering process due to the screening effect.    

   

Table 1: 𝐽𝜋𝑇,  𝑡1/2, bc,n, bc,p, κn ,κp , 𝑆𝑝 and 𝑆𝑛 for lithium (6,7,8,9,11Li) isotopes 

𝑋𝑁𝑍
𝐴 (𝐽𝜋𝑇) 

[23] 

𝑡1
2

(𝑚𝑠) 

[23] 

𝑏𝑐,𝑛and 

𝑏𝑐,𝑝 

𝜅𝑛 and  
𝜅𝑝  

Exp. Neutron 

binding energy 

(MeV) [24] 

Exp. Proton 

binding energy 

(MeV) [24] 

6Li(1+0) Stable 
𝑏𝑐,𝑛 = 1.67 

𝑏𝑐,𝑝 = 1.649 

𝜅𝑛 = 0.477 

𝜅𝑝 = 0.490 

𝑆𝑛

= 5.6633245
± 0.05 

𝑆𝑝

= 4.4333246 ± 0.02 

7Li(
3

2

− 1

2
) Stable 

𝑏𝑐,𝑛 = 1.75 

𝑏𝑐,𝑝 = 1.73 

𝜅𝑛 = 0.642 

𝜅𝑝 = 0.680 

𝑆𝑛

= 7.2510939
± 0.0000045 

𝑆𝑝

= 9.9739616
± 0.0000531 

8Li(2+1) 

838.7
± 0.0003 

 

𝑏𝑐,𝑛 = 1.65 

𝑏𝑐,𝑝 = 1.63 

𝜅𝑛 = 0.293 

 

 

𝑆𝑛

= 2.0326182
± 0.0000472 

𝑆𝑝

= 12.4162941
± 0.0075596 

9Li(
3

2

− 3

2
) 

178.2
± 0.0004 

 

𝑏𝑐,𝑛 = 1.6 

𝑏𝑐,𝑝 = 1.545 
𝜅𝑛 = 0.417 

𝑆𝑛

= 4.0622175
± 0.0001922 

𝑆𝑝

= 13.9437489
± 0.0002064 

11Li(
3

2

− 5

2
) 

8.75
± 0.00006 

 

𝑏𝑐,𝑛 = 1.78 

𝑏𝑐,𝑝 = 1.77 
𝜅𝑛 = 0.132 

𝑆𝑛

= 0.3956871
± 0.0127362 

𝑆𝑝

= 15.7578592
± 0.0928497 

 

Table 2: Computed and experimental 𝑟𝑚𝑠 charge, proton, neutron and matter radii for Lithium 

(6,7,8,9,11Li). 

𝑋𝑁𝑍
𝐴 (𝐽𝜋𝑇)

[23] 

Calculate 

〈𝒓𝟐〉𝒏
𝟏/𝟐

 

 
Exp. 〈𝒓𝟐〉𝒏

𝟏/𝟐
 

Calculate 

〈𝒓𝟐〉𝒑
𝟏/𝟐

 

 
Exp. 〈𝒓𝟐〉𝒑

𝟏

𝟐  

Calculate 

〈𝒓𝟐〉𝒎
𝟏/𝟐

 

 
Exp. 〈𝒓𝟐〉𝒎

𝟏/𝟐
 

Calculate 

〈𝒓𝟐〉
𝒄𝒉
𝟏/𝟐

 

 

Exp. 〈𝒓𝟐〉
𝒄𝒉
𝟏/𝟐

 

 

6Li 2.297 2.27(7)[25] 2.486 2.45(4)[26] 2.393 
2.44(7)[26

] 
2.588 2.56(5)[27] 

 
7Li 

2.386 

 

2.39(4)[25] 
 

2.326 

 

- 

 

2.360 

 

2.38(3) 

[28] 

2.426 2.41(10)[21] 

 
8Li 

2.551 2.66(11)[26] 2.207 2.20(5)[26] 2.428 

 

2.45(6) 

[29] 

2.305 2.299(32)[30] 

 
 

9Li 

 

2.417 2.43(3)[25] 2.092 

 

 

2.076
± 0.037 

[25] 

 

2.314 

 

2.32(2) 

[31] 

2.186 2.217(35)[30] 

 
11Li 

3.337 3.36(38)[25] 2.396 

 

2.358
± 0.039 

[25] 

3.109 3.12(30)[32] 2.468 2.467(37)[30] 
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Figure 1: (a), (b), (c) and (d):  The theoretical results indicated by the solid curves (HO+H). 

The doted symbols represented the experimental data [21] for the CDDs of 6,7Li and the C0+C2 

charge form factor for 6Li [33] and for 7Li [34,35].  
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Figure 2: The solid curves represent the calculated MDDs for 8Li (a), 9Li (b) and 11Li (c). The 

shaded areas extracted from the experimental data for 8Li [36], for 9Li [27] and for 11Li [25]. 

 
Figure 3:  The computed MDDs for (6,7,8,9,11Li) are displayed for comparison. 
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Figure 4:  The calculated charge form factors for 9,11,12,14Be. 

 

Conclusions 

     It can be concluded that the reliance on the radial WF of Hulthen potential to calculate the 

bulk properties (size radii, density distributions and quadrupole moment and charge form 

factors) for lithium (6,7,8,9,11Li) isotopes gave very good results. It was found that increasing the 

core radius (the matching point between HO and Hulthen) increased the calculated rms radii. 

The computed CDD for 6Li and 7Li nuclei underestimated the data at the central region; in 

addition, there was very good agreement with the experimental data. The decrease in the 

binding energy for the valence nucleon(s) led to an increase in the tail; this is attributed to the 

increase of the tunnelling effect. There were forward and upward shifts for the lithium isotopes 

except for 6Li and 7Li. The Bohr-Mottelson and Tassie models were used to calculate the CP 

contribution for 6Li and 7Li. The results of the previous model showed very good agreement 

with the experimental data. 
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