Electron Scattering from Stable and Exotic Li Isotopes

Ameen M. Hameed*, Arkan R. Ridha
Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 29/11/2022 Accepted: 3/4/2023 Published: 30/3/2024

Abstract
The nuclear shell model was used to investigate the bulk properties of lithium isotopes ($^{6,7,8,9,11}$Li), i.e., the ground state density distributions and C0 and C2 components of charge form factors. The theoretical treatment was based on supposing that the Harmonic-oscillator (HO) potential governs the core nucleons while the valence nucleon(s) move through Hulthen potential. Such assumptions were applied for both stable and exotic lithium isotopes. The HO size parameters ($b_\text{n}$ and $b_\text{p}$), the core radii ($r_\text{c}$) and the attenuation parameters ($\kappa_\text{n}$ and $\kappa_\text{p}$) were fixed to recreate the available empirical size radii for lithium isotopes under study.

Keywords: size radii, density distributions, electron scattering charge form factors, exotic nuclei, shell model, Lithium isotopes, Hulthen potential

Introduction
The advent of radioactive ion beam facilities and the discovery of exotic nuclei in the mid-1980s by Anahita et al. [1] opened a new branch in nuclear physics studied through new modified theoretical models. An excess in the number of neutrons or protons distinguish these nuclei. One of the outstanding properties of exotic nuclei is the halo phenomenon, mainly characterized by the appearance of a long tail at large $r$ in the density distribution. Such a tail is needed to explain the large reaction cross-section for some neutron-rich nuclei [2]. Therefore, the regeneration of the long tail at large $r$ is important. The Gaussian downfall behavior is the main reason the Harmonic-Oscillator Wave Functions (HOWFs) do not give satisfactory results.
[3,4,5]. Several methods were used to study the stable and the exotic nuclei, such as using two HO size parameters: one for the core and the other for the halo part [6,7]. The transformed HOWFs (THO) in the local scale transformation [8,9] are also researched. The Woods-Saxon and Cosh potentials were applied with very good results to study some light stable, and exotic nuclei [10,11].

In this paper, the radial WF of 1s\(^2\) of Hulthen potential was used to describe the valance nucleon(s) of all studied lithium isotopes, while the core nucleons were studied using HOWFs. With such modification, the size radii, density distributions and charge form factors of stable and exotic lithium isotopes were calculated.

**Theoretical Formulations**

The radial part of the second order Schrödinger differential equation is given by [12]:

\[
\frac{1}{r^2} \frac{d}{dr} \left( r^2 \frac{d\varphi_{nlj,tz}(r)}{dr} \right) + \frac{2\mu_{cm_{tz}}}{h^2} \left[ E_{tz} - \frac{l(l+1)\hbar^2}{2mr^2} - U(r) \right] \varphi_{nlj,tz}(r) = 0 \tag{1}
\]

The n, l, j, tz (tz = \(\frac{1}{2}\) for proton and tz = \(-\frac{1}{2}\) for neutron), \(\mu\) and \(h\) represent principle, orbital, total spin and total isospin for single nucleon, reduced mass \((\mu_{cm_{tz}} = \frac{m_{t_+}m_c}{A})\) and Planck’s constant, respectively. The binding energy and separation energy of single proton or neutron are represented by \(E_{tz}\) and \(S_{tz} (E_{tz} = -S_{tz})\), respectively in Eq. (1). \(U(r)\) represents the nuclear central potential given for Hulthen mean field in the form [13]:

\[
U(r) = U^H_{cm_{tz}}(r) = \frac{V_{0 tz}}{\left(e^{\beta_{tz}r} - 1\right)} \tag{2}
\]

The range of the potential \(R\) is related to \(\beta_{tz}\) by the formula \(\beta_{tz} = \frac{1}{R}\), besides, \(V_0\) represent the depth of the potential. The only s state solution to Eq. (1) is given analytically as [13,14]:

\[
\varphi_{nlj,tz}(r) = \frac{S_{1 tz}(r)}{r} Y_{00}(\hat{r}) \tag{3}
\]

In Eq. (3), the \(S_{i}(r)\) is the radial form of Weinberg states and \(Y_{00}(\hat{r})\) is the spherical harmonics. Knowing that \(S_{i}(r)\) is given by [13, 14]:

\[
S_{iz}(r) = e^{-\kappa_{tz}r} \sum_{j=0}^{i} a_{j,tz}^{(i)} e^{-j\beta_{tz}r} \tag{4}
\]

\(a_{j,tz}^{(i)}\) satisfies the condition and the recurrence relation given by [13,14]:

\[
\sum_{j=0}^{i} a_{j,tz}^{(i)} = 0 \tag{5}
\]

and

\[
a_{j+1,tz}^{(i)} = a_{j,tz}^{(i)} \left( \frac{j\omega_{1,tz} - \omega_{i,tz} + j(j-1)}{(j+1)(j+\omega_{1,tz})} \right) \tag{6}
\]

where

\[
\omega_{i,tz} = -\alpha_{i,tz} \left( \frac{2\mu_{cm_{tz}} V_{0 tz}}{\hbar^2 \beta_{tz}^2} \right) \tag{7}
\]

The parameters of Weinberg state \((\alpha_{i,tz})\) are given by [13,14]:

\[1392\]
\[ \alpha_{i,tz} = i \left( \frac{2\kappa_{tz} + i\beta_{tz}}{2\kappa_{tz} + \beta_{tz}} \right) \]  

In Eq. (3), the 1s\textsubscript{\(\frac{1}{2}\)} state denoted by \( \phi_{1s_{\frac{1}{2}}tz}(r) \) can be written with the aid of Eqs. 4 to 8 as:

\[ \phi_{1s_{\frac{1}{2}}tz}(r) = \frac{\sqrt{2\kappa_{tz}(\kappa_{tz} + \beta_{tz})(2\kappa_{tz} + \beta_{tz})}}{\beta_{tz}} e^{-\kappa_{tz}r} r^{\frac{3}{2}} [1 - e^{-\beta_{tz}r}] Y_{00}(\hat{r}) \]

The wave number \( \kappa_{tz} \) is related to the binding energy of the single proton (neutron) by:

\[ \kappa_{tz}^2 = \frac{2\mu_{cm}S_{tz}}{\hbar^2} \]

The depth of the potential has a relationship with \( \beta_{tz} \) and \( \kappa_{tz} \) by:

\[ V_{0, tz} = -\frac{\hbar^2 \beta_{tz}^2}{2\mu_{cm}S_{tz}} \left( 1 + \frac{2\kappa_{tz}}{\beta_{tz}} \right) \]

For HO potential, where in Eq. (1), \( U(r) = -V_0 + \frac{1}{2} m_{tz} \omega^2 r^2 \), the radial WF is given by [15]:

\[ R_{nl}(r, b_{tz}) = \frac{1}{(2l + 1)!} \sqrt{\frac{1}{\sqrt{\pi} b_{tz}^3 (n - 1)!}} \left( \frac{r}{b_{tz}} \right)^l e^{-\frac{r^2}{2b_{tz}^2}} \]

\[ \sum_{k=0}^{l+1} (-1)^k \frac{(n-1)! 2^{l+1}!!}{(n-k-1)! l! 2^{2k-l} l!!} \left( \frac{r}{b_{tz}} \right)^{2k} \]

where \( b_{tz} \) stands for the HO size parameter for neutrons or protons.

The density distributions of protons and neutrons for neutron rich isotopes can be written as:

\[ \rho_p(r) = \frac{1}{4\pi} \sum_{c \in \text{core}} n_{c,p} |R_{n,c,l}(r, b_p)|^2 \]

\[ \rho_n(r) = \frac{1}{4\pi} \sum_{c \in \text{core}} n_{c,n} |R_{n,c,l}(r, b_n)|^2 + \frac{1}{4\pi} n_{v,n} |\phi_{1s_{\frac{1}{2}}n}(r)|^2 \]

In the above two equations, \( n_{c,tz} \) is the number of protons (neutrons) in the core (\( c \) shells).

The \( n_{v,n} \) represents the number of neutron(s) in the valence part.

The density distributions of protons and neutrons for proton rich isotopes can be written as:

\[ \rho_n(r) = \frac{1}{4\pi} \sum_{c \in \text{core}} n_{c,n} |R_{n,c,l}(r, b_n)|^2 \]

\[ \rho_p(r) = \frac{1}{4\pi} \sum_{c \in \text{core}} n_{c,p} |R_{n,c,l}(r, b_p)|^2 + \frac{1}{4\pi} n_{v,p} |\phi_{1s_{\frac{1}{2}}p}(r)|^2 \]

where \( n_{v,p} \) is the number of neutron(s) in the valence part.

The density distributions of protons and neutrons for stable \(^6\text{Li}\) and \(^7\text{Li}\) nuclei can be written as:

\[ \rho_{tz}(r) = \frac{1}{4\pi} \sum_{c \in \text{core}} n_{c,tz} |R_{n,c,l}(r, b_{tz})|^2 + \frac{1}{4\pi} n_{v,tz} |\phi_{1s_{\frac{1}{2}}t}(r)|^2 \]

The Charge Density Distribution (CDD) can be accounted by folding the point proton and neutron density distribution to the CDD of single proton and neutron following the procedure of Ridha and Abbas [16]:

\[ \rho_{ch}(r) = \rho_{ch,p}(r) + \rho_{ch,n}(r) \]
where

\[ \rho_{ch,p}(r) = \int \rho_p(r) \rho_{pr}(r - r') dr' \]  

(19)

and

\[ \rho_{ch,n}(r) = \int \rho_{j=0,n}(r) \rho_{neu}(r - r') dr' \]  

(20)

The size radii (root mean square (rms) proton, neutron, charge and matter) are evaluated [17]:

\[ \langle r^2 \rangle_i^{\frac{1}{2}} = \frac{4\pi}{i} \int_0^{\infty} \rho_i(r) r^4 dr \]  

(21)

where \( i \) stands for the proton, neutron, charge and matter.

Finally, the charge form factors in the plane-wave Born approximation is given by [17]:

\[ F_{ch}^l(q) = \frac{4\pi}{qZ} \int_0^{\infty} \rho_{ch}^l(r) \sin(qr) r dr \]  

(22)

where \( q \) and \( Z \) represent the momentum transferred to the nucleus from incident electrons and the atomic number of the target nucleus, respectively.

\[ \rho_{ch}^l(r) = \rho_{ch,CP}^l(r) + \rho_{ch,MS}^l(r) \]  

(23)

Two mathematical forms of CP were chosen, the Bohr-Mottelson [18] and Tassie [19] models, given respectively by:

\[ \rho_{ch,CP}^l(r) = N_T r^j \frac{d\rho_{ch}(r)}{dr} \]  

(24)

and

\[ \rho_{ch,BM}^l(r) = N_{BM} \frac{d\rho_{ch}(r)}{dr} \]  

(25)

In Eq. (23), the model space (MS) contribution is accounted from shell model calculations by: [6]

\[ \rho_{MS}^l(r) = \frac{1}{\sqrt{4\pi}} \frac{1}{\sqrt{2j_i + 1}} \sum_{a,b,l} X_{a,b,l}^{j_i} \langle j_a||j_b \rangle R_{n_{a\lambda}a\lambda_{a\lambda}l\lambda}(r)R_{n_{b\lambda}b\lambda_{b\lambda}l\lambda}(r) \]  

(26)

In Eq. (24) and (25), the normalization constants are chosen so as to regenerate the experimental reduced transition probability:

\[ N_T = \sqrt{\frac{(2j_i + 1)B(E_j, j_i \rightarrow j_f) - \int_0^{\infty} r^{j+2} \rho_{ch,MS}^l(r) dr}{\int_0^{\infty} r^{j+2} \frac{d\rho_{ch}(r)}{dr} dr}} \]  

(27)

\[ N_{BM} = \sqrt{\frac{(2j_i + 1)B(E_j, j_i \rightarrow j_f) - \int_0^{\infty} r^{j+2} \rho_{ch,MS}^l(r) dr}{\int_0^{\infty} r^{j+2} \frac{d\rho_{ch}(r)}{dr} dr}} \]  

(28)

The experimental reduced transition probability is related to experimental quadrupole moment by the relation:

\[ B(E_j, j_i \rightarrow j_f) = \frac{5Q^2}{(2j_i + 1)16\pi \left( \begin{array}{c} j \ 2 \\ -j \ 0 \end{array} \right)^2} \]  

(23)
Results and Discussion

In the present work, the nuclear shell model was adopted to describe the core and valence nucleons for lithium isotopes ($^{6,7,8,9,11}$Li). For $^{6}$Li, the configuration interaction was chosen. The nuclear shell model code oxbash was operated to start the calculations using the Cohen-Kurath interaction (CKI) [20] in the p shell. The HO was used for the core $^4$He while the HO and Hulthen WFs were used for 1p-shell model space. For $^{8,9,11}$Li, the pure configuration was adopted. The parameters of HO and Hulthen potentials were fixed to generate the available size radii for all studied lithium isotopes ($^{6,7,8,9,11}$Li).

In Table 1, the parameters $J^N$, $t_{1/2}$, $b_c$ and $k_{cz}$ represent the total spin and parity, the half-life, the HO size parameters for protons and neutrons in the core, the attenuation parameter for proton and neutron and finally the experimental binding energy for single protons and neutrons on Fermi’s level, respectively. From Eq. (10), the experimental binding energies of the single proton ($S_p$) and neutron ($S_n$) were used to calculate the attenuation parameter for the proton and neutron. The size radii for nuclei under study was reproduced using the adjustable $b_{cn}$ and $b_{cp}$ parameters.

In Table 2, the computed size radii (charge ($r^2_{ch}$), proton ($r^2_{p}$), neutron ($r^2_{n}$) and matter ($r^2_{m}$)) for $^{6,7,8,9,11}$Li isotopes are shown. The calculated data were compared with the available experimental data. It is obvious that the results agreed with empirical data.

The computed CDD and charge form factors for C0 + C2 for $^6$Li and $^7$Li are drawn in Figure1(a), (b), (c) and (d), respectively. The occupation numbers in s-p-shell for $^6$Li adjusted for neutrons $n_{1s_{1/2}} = 1.9$ and $n_{1p_{1/2}} = 0.1$ and $n_{1p_{1/2}} = 0.1$ and protons are $n_{1s_{1/2}} = 1.2$ and $n_{1p_{1/2}} = 0.3$ and $n_{1p_{1/2}} = 1.5$, respectively. The occupation numbers in s-p-shell for $^7$Li adjusted for neutrons $n_{1s_{1/2}} = 2$ and $n_{1p_{1/2}} = 0.5$ and $n_{1p_{1/2}} = 1.5$ and protons are $n_{1s_{1/2}} = 2.25$ and $n_{1p_{1/2}} = 0.6$ and $n_{1p_{1/2}} = 1.15$, respectively. The calculated CDD in

Figure1(a) and (c) are in perfect agreement with the experimental data [21]. In Figure1(b) and (d) the calculated charge form factors are calculated by taking into consideration the contributions from model space and CP. The model space contribution was accounted using the configuration mixing using CKI interaction [20]. The CP was calculated using Bohr Mottelson (solid curves) and Tassie (short dashed curves) models. It is clear that the theoretical predictions of Bohr Mottelson model are in good agreement with the experimental data; in contrast, Tassie model highly underestimated the results at medium and large q. The normalization constant in Eq. (27) and (28) were selected to regenerate the quadrupole moment for $^6$Li $Q_{exp.} = -0.082$ $efm^2$ [22] and for $^7$Li $Q_{exp.} = -4.06$ $efm^2$[22].

In Figure 2(a), (b) and (c), the calculated MDDs for $^{8,9,11}$Li are shown. The theoretical calculations using the radial wave functions of HO and Hulthen potentials are denoted by solid curves denoted by HO+Hulthen. The shaded areas represent the empirical data. It is obvious the appearance of the long tail in all figures, which is the main feature of halo nuclei. This makes it obvious the excellent agreement with the experimental data.

Figure3 shows the calculated MDDs for ($^{6,7,8,9,11}$Li). The long tail behavior appears for ($^{8,9,11}$Li) more than ($^6$Li) because the increase in the number of neutrons decreases the binding energy of the last neutron, and the increase in the tunnelling effect lead to the halo formation.
The calculated Coulomb form factors for \((^6,^7,^8,^9,^9,^1\text{Li})\) nuclei are depicted in Figure 4. With the increase of the neutron number, the charge form factors are shifted forwards and upwards leading to an increase in the scattering process due to the screening effect.

**Table 1:** \(J^\pi T\), \(t_{1/2}\), \(b_{c,n}\), \(b_{c,p}\), \(\kappa_n\), \(\kappa_p\), \(S_n\) and \(S_p\) for lithium \((^6,^7,^8,^9,^9,^1\text{Li})\) isotopes

<table>
<thead>
<tr>
<th>(\frac{\Delta X_n}{2}(J^\pi T)) [23]</th>
<th>(t_{1/2}(\text{ms})) [23]</th>
<th>(b_{c,n}) and (b_{c,p})</th>
<th>(\kappa_n) and (\kappa_p)</th>
<th>Exp. Neutron binding energy (MeV) [24]</th>
<th>Exp. Proton binding energy (MeV) [24]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^6\text{Li}(1^+0))</td>
<td>Stable</td>
<td>(b_{c,n} = 1.67)</td>
<td>(b_{c,p} = 1.649)</td>
<td>(\kappa_n = 0.477)</td>
<td>(\kappa_p = 0.490)</td>
</tr>
<tr>
<td>(^7\text{Li}(^3^−_2))</td>
<td>Stable</td>
<td>(b_{c,n} = 1.75)</td>
<td>(b_{c,p} = 1.73)</td>
<td>(\kappa_n = 0.642)</td>
<td>(\kappa_p = 0.680)</td>
</tr>
<tr>
<td>(^8\text{Li}(2^+_1))</td>
<td>838.7</td>
<td>(b_{c,n} = 1.65)</td>
<td>(b_{c,p} = 1.63)</td>
<td>(\kappa_n = 0.293)</td>
<td>(S_n = 2.0326182 \pm 0.0000472)</td>
</tr>
<tr>
<td>(^9\text{Li}(^3^−_2))</td>
<td>178.2</td>
<td>(b_{c,n} = 1.6)</td>
<td>(b_{c,p} = 1.545)</td>
<td>(\kappa_n = 0.417)</td>
<td></td>
</tr>
<tr>
<td>(^1\text{Li}(^3^−_2))</td>
<td>8.75</td>
<td>(b_{c,n} = 1.78)</td>
<td>(b_{c,p} = 1.77)</td>
<td>(\kappa_n = 0.132)</td>
<td></td>
</tr>
</tbody>
</table>

**Table 2:** Computed and experimental \(r_{\text{ms}}\) charge, proton, neutron and matter radii for Lithium \((^6,^7,^8,^9,^9,^1\text{Li})\).

<table>
<thead>
<tr>
<th>(\frac{\Delta X_n}{2}(J^\pi T)) [23]</th>
<th>Calculate (\langle r^2 \rangle_{\text{ch}}^{1/2})</th>
<th>Exp. (\langle r^2 \rangle_{\text{ch}}^{1/2})</th>
<th>Calculate (\langle r^2 \rangle_{p}^{1/2})</th>
<th>Exp. (\langle r^2 \rangle_{p}^{1/2})</th>
<th>Calculate (\langle r^2 \rangle_{n}^{1/2})</th>
<th>Exp. (\langle r^2 \rangle_{n}^{1/2})</th>
<th>Calculate (\langle r^2 \rangle_{m}^{1/2})</th>
<th>Exp. (\langle r^2 \rangle_{m}^{1/2})</th>
<th>Calculate (\langle r^2 \rangle_{\text{ch}}^{1/2})</th>
<th>Exp. (\langle r^2 \rangle_{\text{ch}}^{1/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^6\text{Li})</td>
<td>2.297</td>
<td>2.27(7)[25]</td>
<td>2.486</td>
<td>2.45(4)[26]</td>
<td>2.393</td>
<td>2.44(7)[26]</td>
<td>2.588</td>
<td>2.56(5)[27]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^7\text{Li})</td>
<td>2.386</td>
<td>2.39(4)[25]</td>
<td>2.326</td>
<td>-</td>
<td>2.360</td>
<td>2.38(3)[28]</td>
<td>2.426</td>
<td>2.41(10)[21]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^8\text{Li})</td>
<td>2.551</td>
<td>2.66(11)[26]</td>
<td>2.207</td>
<td>2.20(5)[26]</td>
<td>2.428</td>
<td>2.45(6)[29]</td>
<td>2.305</td>
<td>2.299(32)[30]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^9\text{Li})</td>
<td>2.417</td>
<td>2.43(3)[25]</td>
<td>2.092</td>
<td>2.076 (\pm 0.037)[25]</td>
<td>2.314</td>
<td>2.32(2)[31]</td>
<td>2.186</td>
<td>2.217(35)[30]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^1\text{Li})</td>
<td>3.337</td>
<td>3.36(38)[25]</td>
<td>2.396</td>
<td>2.358 (\pm 0.039)[25]</td>
<td>3.109</td>
<td>3.12(30)[32]</td>
<td>2.468</td>
<td>2.467(37)[30]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Figure 1**: (a), (b), (c) and (d): The theoretical results indicated by the solid curves (HO+H). The dotted symbols represented the experimental data [21] for the CDDs of $^6,^7$Li and the C0+C2 charge form factor for $^6$Li [33] and for $^7$Li [34,35].
Figure 2: The solid curves represent the calculated MDDs for $^8\text{Li}$ (a), $^9\text{Li}$ (b) and $^{11}\text{Li}$ (c). The shaded areas extracted from the experimental data for $^8\text{Li}$ [36], for $^9\text{Li}$ [27] and for $^{11}\text{Li}$ [25].

Figure 3: The computed MDDs for ($^{6,7,8,9,11}\text{Li}$) are displayed for comparison.
Figure 4: The calculated charge form factors for $^{9,11,12,14}$Be.

Conclusions

It can be concluded that the reliance on the radial WF of Hulthen potential to calculate the bulk properties (size radii, density distributions and quadrupole moment and charge form factors) for lithium ($^{6,7,8,9,11}$Li) isotopes gave very good results. It was found that increasing the core radius (the matching point between HO and Hulthen) increased the calculated rms radii. The computed CDD for $^6$Li and $^7$Li nuclei underestimated the data at the central region; in addition, there was very good agreement with the experimental data. The decrease in the binding energy for the valence nucleon(s) led to an increase in the tail; this is attributed to the increase of the tunnelling effect. There were forward and upward shifts for the lithium isotopes except for $^6$Li and $^7$Li. The Bohr-Mottelson and Tassie models were used to calculate the CP contribution for $^6$Li and $^7$Li. The results of the previous model showed very good agreement with the experimental data.

References


