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 Abstract 

     By definition, the detection of protein complexes that form protein-protein interaction 

networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global 

search methods, are proven in the literature to be more successful than greedy methods in 

detecting protein complexes. However, the design of most of these EA-based approaches 

relies on the topological information of the proteins in the PPIN. Biological information, 

as a key resource for molecular profiles, on the other hand, acquired a little interest in the 

design of the components in these EA-based methods. The main aim of this paper is to 

redesign two operators in the EA based on the functional domain rather than the graph 

topological domain. The perturbation mechanism of both crossover and mutation 

operators is designed based on the direct gene ontology annotations and Jaccard similarity 

coefficients for the proteins. The results on yeast Saccharomyces cerevisiae PPIN provide 

a useful perspective that the functional domain of the proteins, as compared with the 

topological domain, is more consistent with the true information reported in the Munich 

Information Center for Protein Sequence (MIPS) catalog. The evaluation at both complex 

and protein levels reveals that feeding the components of the EA with biological 

information will imply more accurate complex structures, whereas topological 

information may mislead the algorithm towards a faulty structure. 

 

Keywords: Evolutionary algorithm; functional similarity; gene ontology; protein 

complex; protein-protein interaction network. 
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 خلاصة:ال
  ( تعد PPINsالتي تشكل شبكات تفاعل البروتين البروتين ) و   ية مركبات البروتينالالتعريف، فإن اكتشاف    حسب      

) ذات العلاقة،  الأدبيات    تثبت وكما أ.  NP-hard  من نوع   مشكلة   كخوارزميات ،  (EAsأن الخوارزميات التطورية 
. ومع ذلك، فإن تصميم  ية مركبات البروتين الالمحلية في اكتشاف    الخوارزمياتتعتبر أكثر نجاحا من  ،  شاملةبحث  
من ناحية  و .  PPINيعتمد على المعلومات الطوبولوجية للبروتينات في    EAالقائمة على مفهوم ال    الخوارزمياتمعظم  

  هكذا كمورد رئيسي للملفات الجزيئية، القليل من الاهتمام بتصميم    والتي تعد   أخرى، اكتسبت المعلومات البيولوجية،
المعلومات    باعتماد  EAأعادة صياغة جزئين من مكونات خوارزمية ال    خوارزميات. الهدف الرئيسي من هذا البحث هو

الطفرة   المزج وعملية  التغيير في عملية  آلية  تم تعديل  الطوبولوجية.  المعلومات  بدلا من  مجال    باعتمادالبيولوجية 
للبروتينات. وفرت    Jaccardوظيفي يعتمد على التعليقات التوضيحية المباشرة لعلم الوجود الجيني ومعامل تشابه  

الخمائر   مقارنة  بأن    Saccharomyces cerevisiae PPINالنتائج على شبكات  للبروتينات،  الوظيفي  المجال 
 بالمجال الطوبولوجي، أكثر اتساقًا مع المعلومات الحقيقية الواردة في كتالوج مركز معلومات ميونيخ لتسلسل البروتين 

 (MIPS ).  تغذية مكونات  تقييم النتائج على مستوى المركب ومستوى البروتين بأن    يكشف حيثEA    بمعلومات بيولوجية
أكثر دقة، في حين أن المعلومات الطوبولوجية قد تضلل  الوصول الى مركبات بروتينية ذات هيكلية  ستعني ضمنيًا  

  خاطئة.هيكلية مركبات الخوارزمية نحو  

 

1. Introduction 

     Thanks to the genomics revolution, we have witnessed, over the years, the birth of new protein-

coding genes and RNA genes with novel functions in all organisms. However, some of these 

functional proteins, such as those in Severe Acute Respiratory Syndrome (SARS) and Coronavirus 

Disease 19 (COVID-19), have very harmful effects. While proteins rarely act alone, they team up 

into networks of complexes as described as biological functions at both cellular and systemic levels 

in all living organisms. In each living organism, the complete map of protein interactions is known 

as the interactome. Large protein-protein interaction networks (PPINs) are naturally complex and 

form highly inhomogeneous scale-free architectures in which a few highly connected proteins play 

a central role in mediating interactions among numerous, less connected proteins. Thus, the 

detection of protein complexes and understanding of the complete reconstruction of physical 

interactions within protein complexes will be very useful to get a clear idea about cellular 

organization, mechanisms regulating cell life, even therapeutic purposes, and more [1]. 

 

      A variety of topology-based complex augmentation/division, and cluster refinement 

approaches have been proposed in the literature. However, all of these approaches can be defined 

in the context of the topological information of 𝑛 proteins being represented by the domain for 

both the heuristic rule and the heuristic operator. As protein complexes persist within specific 

topological characteristics, all the proposed heuristic rules and operators in this category are geared 

toward satisfying some of these topology-based objectives. Different studies acquired and 

developed different levels of topology-based relatedness or cost functions. These functions are 

used to iteratively evaluate how the generated solution should improve. For example, the cost 

function is based on the numbers of intra-cluster and inter-cluster connections in [2], local 

neighborhood density, and partition density in [3], [4], [5], and [6]. In these methods, scholars 

focused on a narrow aspect of the heuristic framework to only underscore the merits of topological 

characteristics to generate interconnected sub-graphs. Thus, different speculations of the adjacency 

matrix identify different levels of interconnected complexes. 

     Unfortunately, like many real-world optimization problems, the computational complexity of 

complex detection problems falls into the category of non-deterministic polynomial time hard (NP-
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hard) problems. For such a combinatorial optimization problem with 𝑛 parameters, an exhaustive 

greedy search for the optimal solution becomes computationally prohibitive, particularly when 𝑛 

is large. Evolutionary algorithms (EAs) have been proven to be a viable and often superior 

alternative to greedy in solving NP-hard problems while accommodating their combinatorial 

explosion [7]. 

     The building blocks of many evolutionary-based complex detection algorithms, provided in the 

literature, are designed based on the topological domain of the protein network to be decomposed. 

The key contribution of this paper is to revisit the design of evolutionary algorithms and extend 

their framework to cope with biological information. Two components of the EA framework, 

crossover and mutation, will be viewed as different manifestations of GO-based heuristic 

operators. 

     The remainder of this paper starts with a related work to our proposed EA-based complex 

detection algorithm and a brief introduction to the graph, topology, and ontology of PPINs. This 

is followed by introducing the proposed GO-based formulations that are used in regulating the 

flow of the proposed evolutionary-based complex detection algorithms. The discussions and 

results provided demonstrate that it is curious enough to develop only non-ontology-based 

complex detection algorithms. Finally, this paper ends by briefly concluding the work and giving 

recommendations for further research to start such new ramifications. 

 

2. Related work  

     One of the earliest evolutionary-based complex detection algorithms is suggested in 2014 [8]. 

All the components of the designed evolutionary algorithm are based on the adjacency matrix (i.e., 

topology domain). Further, they modeled the problem as a single objective function with different 

complex structure formulations (modularity, community fitness, conductance, community score, 

expansion, internal density, normalized cut, negative ratio association, and ratio cut). Again, all 

these structure formulations are based on the simplified graph approaches. They proved that 

evolutionary-based complex detection methods are more robust than other state-of-the-art greedy 

methods. 

 

        In [9], a multi-objective complex detection model is introduced as two objective functions to 

be optimized by a multi-objective evolutionary algorithm. Further a dual-heuristic mutation 

operator (known as “protein complex attraction and repulsion”) is also suggested to improve the 

performance of the single-objective evolutionary-based algorithm of [8] and their multi-objective 

evolutionary algorithms. Unlike the traditional non-heuristic mutation operator, more inherent 

topological properties at both the complex level and the protein level are exposed by the dual-

heuristic operator. At the complex level, the proposed heuristic operator aims at revealing the 

complex’s sparse interactions while delimiting its proper boundary as closely as possible. On the 

other hand, at the protein level, the heuristic mutation resembles the heuristic mutation operator 

proposed in [10] to re-assign the protein-complex attribution in such a way that more protein intra-

connections are perceived. Another example of a topological-based heuristic mutation operator is 

proposed in [11, 12] to breakdown the coexistence of a pair of proteins according to their 

topological similarity. Their interactions can serve for either intra-delineation topology or inter-

delineation topology. 

 

        However, when complex PPINs are simplified in graph theory as topology domains 

composed of proteins (nodes) and interactions (edges), the functional richness of each protein is 

lost. Unfortunately, to our knowledge, only a few works in the literature, such as [13, 14], have 
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examined the incorporation of the functional domain in the design of evolutionary-based complex 

detection algorithms. Biological information as reflected by the gene ontology (GO) drives 

similarity into the design of a multi-objective evolutionary algorithm. However, they only applied 

a direct way of modeling it in the optimization function, with the aim of maximizing functional 

modules. Both [13] and [14] developed a topological-based protein-cluster contribution objective 

and closeness centrality objectives. In [13], the proposed GO-based function is formulated with 

respect to the measure of [15]. In [14], another objective function based on the direct GO 

annotation with the average of pairwise GO semantic similarity is formulated.  

 

      Recent studies have investigated the injection of biological information into the flow of EA 

operators, i.e., crossover and mutation [16] and [17]. In [16], a new crossover operator is proposed 

that incorporates biological information in the form of both gene semantic similarity and protein 

functional similarity in its design. The proposed GO-based crossover operator has the ability to 

partition proteins into more accurate complex structures than the counterpart canonical crossover 

operator. In [17], an EA with a GO-based mutation operator is proposed in an attempt to be more 

effective than a canonical EA in detecting protein complexes. The operator works with the three 

GO categories and their fusion. 

   

3. Background 

     Mathematically, a PPIN is defined as an interaction graph with finite sets of 𝑛 nodes (proteins) 

and 𝑚 edges (interactions). Figure 1 depicts a PPIN from the yeast Saccharomyces cerevisiae 

interactome, which contains up to 4687 potential interactions for 990 different proteins. In Figure 

1, the network (top left) is decomposed into several complexes (top right) on the basis of 81 known 

complexes annotated from the collection of protein complexes in the Munich Information Center 

for Protein Sequence (MIPS) database [18].  

 

 
Figure 1: An illustrative example for an interaction graph representing a yeast PPIN with 990 

different proteins and 4687 potential interactions (top left). 

 

     One of the identified complexes and one of its proteins are zoomed out at the bottom. In bottom 

right, the complex structure with all its proteins and all its intra-connections. Protein 'YCR046C' 
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(protein #104) is zoomed out with all its intra-connections (blue edges) and its two inter-

connections (red edges). 

 

3.1 Topology domain 

     Usually, the interaction graph can be represented by a symmetric adjacency matrix    𝐴 =
[𝑎𝑖𝑗]𝑛×𝑛, where protein pair 𝑃𝑖 and 𝑃𝑗 are said to be adjacent (i.e. 𝑎𝑖𝑗 = 1 and 𝑎𝑗𝑖 = 1) if there is 

an interaction between them. Otherwise, 𝑎𝑖𝑗 = 0 and 𝑎𝑗𝑖 = 0.  

 

3.2 Gene ontology and functional domain 

     Gene ontology (GO) is the guide for describing gene and protein functions. Actually, the 

correlation of a gene product to a GO term is called GO annotation. One widespread use is to 

derive commonalities in the location or function of genes that are over- or under-expressed. The 

goal of GO is to create strict shared vocabularies and clarify its role across different organisms 

[19]. These strict vocabularies are separated into three sub-ontologies: Molecular Function (MF), 

Cellular Component (CC), and Biological Process (BP). Functional similarity (𝐹𝑆) quantifies 

protein pairwise functional similarity scores and thus infers their relationships based on their 

GOAs. Also, from 𝐹𝑆, we can formulate a functional-based similarity matrix 𝐹𝑆. 

 

4. Functional domain for designing the proposed EA 

     The proposed evolutionary-based complex detection algorithm aims to conceptually relate its 

components to more biological knowledge. Beside the topological domain 𝐴, we call for another, 

but functional, domain (𝐹).  

 

4.1 𝐹 matrix versus 𝐴 matrix 

     The adopted functional domain is based on the direct GO annotations for the proteins. In this 

domain, the Jaccard similarity metric (Eq. 1) is used:  

       𝐹 = [𝐹𝑆𝑖𝑗]𝑛×𝑛                       (1) 

where 𝐹𝑆𝑖𝑗 is the functional similarity (Eq. 2) between the direct GO Slim terms 𝑇𝑃𝑖 and 𝑇𝑃𝑗 of a 

protein pair 𝑃𝑖 and 𝑃𝑗, respectively.   

      𝐹𝑆𝑖𝑗 =
|𝑇𝑃𝑖∩𝑇𝑃𝑗|

|𝑇𝑃𝑖∪𝑇𝑃𝑗|
=

|𝑇𝑃𝑖∩𝑇𝑃𝑗|

|𝑇𝑃𝑖|+|𝑇𝑃𝑗|−|𝑇𝑃𝑖∩𝑇𝑃𝑗|
           (2) 

where 𝑇𝑃𝑖 and 𝑇𝑃𝑗 are the set of the three sub-ontology terms for, respectively, protein 𝑇𝑃𝑖 and 𝑇𝑃𝑗: 

       𝑇𝑃𝑖 = {𝑀𝐹𝑖 ∪ 𝐵𝑃𝑖 ∪ 𝐶𝐶𝑖}            (3) 

        𝑇𝑃𝑗 = {𝑀𝐹𝑗 ∪ 𝐵𝑃𝑗 ∪ 𝐶𝐶𝑗}                       (4) 

     Let us consider a set of protein pairs depicted in Figure 1 (bottom right), where the common 

protein that pairs all other proteins is protein \#104 'YCR046C'. In the following example, the 

considered pairs are of protein \#104 ('YCR046C') with: protein \#167 ('YML025C'), protein \#572 

('YJL063C'), and protein \#425 ('YNL284C'). Further, let us consider another uncoupled protein, 

\#827 ('YBR122C') with protein \#104 ('YCR046C'). Thus, protein \#827 ('YBR122C') is apart 

from the sub-PPIN depicted in Figure 1 (bottom right). The topological information of these pairs 

is as advised by the adjacency matrix from the yeast Saccharomyces cerevisiae intractome. This 

intractome entails the neighboring or existence of interactions (i.e., 𝑎𝑖𝑗 = 1 and 𝑎𝑗𝑖 = 1) between 

protein 'YCR046C' and each of protein \#167 ('YML025C'), protein \#572 ('YJL063C'), and 

protein \#425 ('YNL284C'). On the other hand, there is no interaction between 'YCR046C' and 

'YBR122C' (i.e. 𝑎𝑖𝑗 = 0 and 𝑎𝑗𝑖 = 0). Referring to the MIPS catalog, however, we found that both 
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protein \#167 ('YML025C') and protein \#572 ('YJL063C') are defined to be paired with protein 

\#104 ('YCR046C') in the same complex (i.e., their connections are defined to be intra-connections 

with protein \#104 'YCR046C'). However, protein \#425 ('YNL284C') is defined to be 

interconnected with protein \#104 ('YCR046C'). In other words, although they are neighbors, they 

are located at two different complexes. Finally, the detached protein \#425 ('YNL284C') to protein 

\#104 ('YCR046C'), with respect to the MIPS catalog, is found to be located at the same complex. 

Shortly speaking, one can see that the topological information (as provided by the adjacency matrix 

for the pair of neighbor proteins \#104 and \#425 and for the pair of detached proteins \#104 and 

\#827) tends to deceive or mislead the unmasking ability of the complex detection algorithm in 

such a way as to faultily gather proteins \#104 and \#425 at the same complex, while scattering 

away proteins \#104 and \#827 at two different complexes.  

        Unlike the topological information provided by the domain of the adjacency matrix, consider 

the biological domain as supplied by the GO terms. The common and tuncommon GO terms for 

protein 'YCR046C' with the three neighbor proteins: protein \#167 ('YML025C'), protein \#572 

('YJL063C'), and protein \#425 ('YNL284C') and with the disjoint protein \#827 ('YBR122C') are 

depicted in Figures 2 - 5. 

 
Figure 2: Direct GO terms of both protein #104: ’YCR046C’ and protein #167: ’YML025C’. 

Similar MF, BP, and CC terms are clarified with green color. 

 

 
Figure 3: Direct GO terms of both protein #104: ’YCR046C’ and protein #572: ’YJL063C’. 

Similar MF, BP, and CC terms are clarified with green color. 
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Figure 4: Direct GO terms of both protein #104:’YCR046C’ and protein #425: ’YNL284C’. 

Similar MF, BP, and CC terms are clarified with orange color. 

 

 
Figure 5: Direct GO terms of both protein #104: ’YCR046C’ and protein #827: ’YBR122C’. 

Similar MF, BP, and CC terms are clarified with green color. 

  

     In these figures, protein \#104 ('YCR046C') and each of the intra-neighbor protein \#167 

('YML025C') and protein \#572 ('YJL063C') are depicted in blue color with their intra-

connections. However, the inter-neighbor protein \#425 ('YNL284C') with its interconnection to 

protein \#104 ('YCR046C') is colored red. Finally, the disjointed protein \#827 ('YBR122C') is 

depicted in yellow. Also, in the figures, the common terms between protein \#104 ('YCR046C') 

and each of the intra-complex proteins, i.e. the intra-connected protein \#167 ('YML025C') and 

protein \#572 ('YJL063C'), and the disjoint protein \#827 ('YBR122C'), are colored green, while 

the uncommon terms are given in blue color. However, the common/uncommon GO terms with 

respect to the inter-neighbor protein \#425 ('YNL284C'), are given, respectively, in orange and 

blue colors. These figures simply provide a useful perspective that the individual functional 

similarities between protein \#104 ('YCR046C') and each of its neighbors: protein \#167 

('YML025C'), protein \#572 ('YJL063C'), and even the disjoint protein \#827 are greater than the 

functional similarity with the counterpart inter-neighbor protein \#425 ('YNL284C'). This can be 

seen by the number of common and uncommon GO terms in each figure. 
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4.2 The proposed GO-based EA 

     The proposed GO-based EA is defined as an iterated transformation function that is composed 

of a sequence of sub-functions. It starts with an initial population of encoded solutions. The locus-

based individual representation is used to encode each partitioning solution. In locus-based 

representation, here, each individual chromosome 𝐼 in the population 𝕀 = {𝐼1, 𝐼2, … , 𝐼𝑝𝑜𝑝−𝑠𝑖𝑧𝑒} is 

defined as a collection of 𝑛 proteins–proteins fitting in the same complex. Each chromosome, 𝑃𝑖, 

has  𝑛 entities, i.e. 𝐼𝑖 = {𝐼𝑖,1, 𝐼𝑖,2, … , 𝐼𝑖,𝑛}, where the locus, 𝑗,  points to the protein, 𝑃𝑗,  and the allele 

value, 𝐼𝑖,𝑗, points to one of the neighboring of proteins 𝑃𝑗 should fit in the complex formation.  The 

decoding function δ of an individual chromosome sketches different complex structures, and thus 

a different number of complexes, for the network. 

  

     Good solutions, and thus good areas of the search space, are quantitatively evaluated using the 

modularity function, 𝑄 (Eq. 5) [20].  

                             𝑄(𝒞) = ∑ [
𝑚𝐶𝑖

|𝑚|
− (

∑ |𝑑𝑣|𝑣∈𝐶𝑖

2|𝑚|
)2]𝐾

𝑖=1                                                          (5) 

     Then, another set of solutions will be generated by the iterative composition of three main 

evolution operators. These are selection, the proposed GO-based crossover, and the proposed GO-

based mutation. A set of parent solutions is selected, using binary tournament selection, based on 

their modularity values. The canonical uniform crossover, 𝑟𝑝𝑐, with crossover probability, 𝑝𝑐, 

forms an offspring individual by uniformly inheriting the topological information from the two 

individual parents 𝐼1 and 𝐼2. Thus, uniform crossover works as follows: 

∀𝑖| 1 ≤ 𝑖 ≤ 𝑝𝑜𝑝 − 𝑠𝑖𝑧𝑒 ⋀ ∀𝑗| 1 ≤ 𝑗 ≤ 𝑛:  

𝐼𝑖,𝑗
′ = {

𝐼1,𝑗   𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 0.5           

𝐼2,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
                                            (6) 

where 𝑟𝑎𝑛𝑑 is a uniform random value, sampled a new for each protein 𝑃𝑗. The canonical 

crossover operator uniformly inherits the topological information from two individual parents. 

Figure 7 depicts an example of a uniform crossover.  

In this paper, we proposed a GO-based crossover as follows: 

∀𝑖| 1 ≤ 𝑖 ≤ 𝑝𝑜𝑝 − 𝑠𝑖𝑧𝑒 ⋀ ∀𝑗| 1 ≤ 𝑗 ≤ 𝑛: 

𝐼𝑖,𝑗
′ = {

𝐼1,𝑗   𝑖𝑓 𝐹𝑆𝑃𝑗,𝐼1,𝑗
> 𝐹𝑆𝑃𝑗,𝐼2,𝑗

      

𝐼2,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           
                                            (7) 

 

     The essential rule of the proposed mutation operator is based on the migration operator of [10]. 

The operator works on allele values (i.e., protein neighboring) and alters, with a specified normally 

low migration probability 𝑝𝑚, its neighbor. In this paper, a redesign of the topological-based 

mutation operator proposed in [10] to work under the functional domain is offered. A protein GO-

based mutation operator, 𝑚𝑝𝑚 when activated for a given protein, will change the complex of this 

protein to a new complex where it could maintain the maximum function homogeneity. The 

general sketch for the proposed GO-based mutation operator is outlined in Algorithm 1. 
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Algorithm 1 General sketch for the proposed GO-based mutation  

1: input 𝐼𝑖 ←{𝐼𝑖,1, 𝐼𝑖,2, . . . , 𝐼𝑖,𝑛};/* Genotype of an individual 𝑖 */  

2:  input C𝑖 ←{𝐶1,𝐶2, . . . ,𝐶𝐾 };/* Phenotype C𝑖 as a set of complexes */  

3: input 𝐴, 𝐹;/* Topological and functional information for 𝑛 proteins */  

4: output 𝐼𝑖 , C𝑖 ;/* Genotype and phenotype of the mutated individual 𝑖 */  

 /* For each protein 𝑗 in 𝐼𝑖 */  

5: for 𝑗 ∈ {1, . . . , 𝑛} do  

6:  if (𝜒𝑗 ≤ 𝑝𝑚) then  

7:   𝐶𝑗 ←𝐶|𝐶 ∈ C𝑖 ∧𝑃𝑗 ∈ 𝐶;/* Home complex to which protein 𝑗 belongs */  

8:   𝑆𝑢𝑚𝐹𝑆 ←∑ 𝐹𝑆𝑗𝑝p∈Cj ;/* Functional similarity of protein 𝑗 in 𝐶𝑗 */  

   /* For each complex 𝐶𝑘 ≠ 𝐶𝑗 and there is a neighbor protein to protein 𝑗 in 𝐶𝑘 */ 

9:   for 𝑘 ∈ {1, . . . ,𝐾} do  

10

: 

   if (𝐶𝑘 ≠ 𝐶𝑗 ) ∧ (∃𝑝|𝑎 𝑗 𝑝 ←1) then  

11

: 

    𝑁𝑒𝑤𝑆𝑢𝑚𝐹𝑆 ←∑ 𝐹𝑆𝑗𝑝p∈Cj ;  

12

: 

    if (𝑁𝑒𝑤𝑆𝑢𝑚𝐹𝑆 > 𝑆𝑢𝑚𝐹𝑆) then  

13

: 

     𝑆𝑢𝑚𝐹𝑆 ← 𝑁𝑒𝑤𝑆𝑢𝑚𝐹𝑆;/* Update the functional similarity */ 

14

: 

     𝐼𝑖, 𝑗 ← 𝑝;/* Update the genotype at locus 𝑗 */ 

15

: 

     𝐶𝑗 ← 𝐶𝑘 ;/* Update the complex to which protein 𝑗 migrates*/ 

16

: 

    end if 

17

: 

   end if 

18

: 

  end for 

19

: 

 end if  

20

: 

end for  

 

5. Results and discussions  

     In this section, we aim to compare the performance of these GO-based EAs against the state-

of-the-art topological-based EA used in the literature [8]. Two yeast Saccharomyces cerevisiae 

PPINs are used in the performance evaluation. The GO terms assigned to the proteins were 

downloaded from the Saccharomyces Genome Database (SGD) at http://genome-

www.stanford.edu/Saccharomyces/ in the period June 2021-April 2022. The networks are denoted 

as PPI-D1 and PPI-D2. PPI-D1 contains 4687 interactions for 990 proteins annotated with a total 

of 1245 BP, 452 CC, and 541 MF GO terms. PPI-D2 contains 6993 interactions for 1443 proteins 

annotated with a total of 1570 BP terms, 566CC terms, and 659 MF terms. 
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     To validate the quality of the generated solutions for the proposed algorithms, two benchmark 

gold standard complex sets are considered, drawn from the Munich Information Center for Protein 

Sequence (MIPS) catalog (Complex-D1 and Complex-D2) [16]. A predicted complex 𝐶𝑖 matches 

one of the true complexes from the benchmark set in 𝑆∗ (say 𝑆j), if the proteins of both complexes 

overlap or intersect with overlapping score (Eq. 8 and Eq. 9) that is equal to or greater than a 

specified threshold 𝜎𝑂𝑆. In the experiments, we set  𝑂𝑆 to range from 0.1 to 0.8, in an incremental 

step of 0.05. 

𝑂𝑆(𝐶𝑖, 𝑆𝑗) =
|𝐶𝑖∩ 𝑆𝑗|

2

|𝐶𝑖||𝑆𝑗|
             (8) 

where |∙| is refer to the number of common proteins to both a predicted complex and a true standard 

complex. 

𝑚𝑎𝑡𝑐ℎ (𝐶𝑖, 𝑆𝑗) =  {
1  𝑖𝑓  𝑂𝑆(𝐶𝑖, 𝑆𝑗) ≥ 𝜎𝑂𝑆

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑥              
                      (9) 

     The percentage of the true benchmark complexes that match (with respect to the overlapping 

score) any of the detected complexes is known as 𝑟𝑒𝑐𝑎𝑙𝑙. On the other hand, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 refers to 

the fraction of the detected complexes that match any of the true complexes. The 𝐹 score, then, 

represents the harmonic mean of both  recall and precision. 

 

     𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑆𝑖|𝑆𝑖∈𝑆∗⋀∃𝐶𝑗∈𝐶→𝑚𝑎𝑡𝑐ℎ(𝑆𝑖,𝐶𝑗)

𝐾∗          (10) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐶𝑖|𝐶𝑖∈𝐶⋀∃𝑆𝑗∈𝑆∗→𝑚𝑎𝑡𝑐ℎ(𝐶𝑖,𝑆𝑗)

𝐾
         (11) 

 

𝐹 =
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
           (12) 

     While recall and precision measure the cumulative quality of the detected complexes for an 

algorithmic prediction at the complex level, recallN and precisionN can estimate the detection 

accuracy at the protein level. Finally, FN score imitates the F score but at the protein level for both 

𝑟𝑒𝑐𝑎𝑙𝑙𝑁 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 measures. 

                                                           𝑟𝑒𝑐𝑎𝑙𝑙𝑁 =
∑ |𝑚𝑖|

𝐾𝑠
𝑖=1

∑ |𝑆𝑖|
𝐾𝑆
𝑗=1

         (13) 

where |𝑚𝑖| = 𝑚𝑎𝑥|𝐶𝑖∩𝑆𝑗| {∀ 𝑆𝑗 ∈  𝑆∗ ∧ 𝑚𝑎𝑡𝑐ℎ(𝑆𝑖, 𝐶𝑗) ≥ 𝜎𝑂𝑆} 

   

                                                        𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 =
∑ |𝑚𝑖|

𝐾𝑐
𝑖=1

∑ |𝐶𝑖|
𝐾𝑐
𝑖=1

        (14) 

 

where |𝑚𝑖| = 𝑚𝑎𝑥|𝐶𝑗∩𝑆𝑖| {∀ 𝐶𝑗 ∈  𝐶∗ ∧ 𝑚𝑎𝑡𝑐ℎ(𝐶𝑗 , 𝑆𝑖) ≥ 𝜎𝑂𝑆} 

 

                                                   𝐹𝑁 =
2  ×  𝑟𝑒𝑐𝑎𝑙𝑙𝑁  ×  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁

𝑟𝑒𝑐𝑎𝑙𝑙𝑛+  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁
        (15) 

 

     The setting of the parameters is allowed to match, more or less, the settings used in the literature 

[8–12], [16], and [17]. The population size is set to 100. The maximum number of generations 

used to stop the evolutionary process is set to 100 (i.e., 10,000 function evaluations). Control 

parameters for the main evolutionary operators are set to the following: the probability of uniform 

crossover, 𝑝𝑐 = 0.8, the probability of the mutation operator, 𝑝𝑚 = 0.2, and the probability of the 
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GO-based mutation operator is also set to 𝑝𝑚 = 0.2. The evaluation metrics are reported in Tables 

1–6 for the average of 30 different simulation runs for the best solutions obtained (in terms of 

modularity). For ease of comparison, the results of the proposed GO-based EAs are highlighted in 

bold when they outperform the counterpart canonical EA. 

 

Table 1: Performance comparison for PPI-D1 in terms of 𝑟𝑒𝑐𝑎𝑙𝑙, and  𝑟𝑒𝑐𝑎𝑙𝑙𝑁 for an average of 

30 runs. 

𝑶𝑺 
𝑟𝑒𝑐𝑎𝑙𝑙 𝑟𝑒𝑐𝑎𝑙𝑙𝑁 

𝑬𝑨 𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 𝑬𝑨  𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 

0.10 0.9029 0.9457 0.8363 0.8349 0.8223 0.8647 

0.15 0.8504 0.8979 0.7786 0.8056 0.7961 0.8212 

0.20 0.7978 0.8572 0.7329 0.7676 0.7743 0.7816 

0.25 0.7568 0.8222 0.6816 0.7174 0.7428 0.7004 

0.30 0.7183 0.7885 0.6491 0.6640 0.7053 0.6331 

0.35 0.6871 0.7534 0.6329 0.6349 0.6805 0.6145 

0.40 0.6598 0.7278 0.6085 0.5976 0.6517 0.5759 

0.45 0.6192 0.6885 0.5756 0.5489 0.6079 0.5256 

0.50 0.5987 0.6769 0.5624 0.5161 0.5904 0.5056 

0.55 0.5581 0.6346 0.5479 0.4793 0.5485 0.4876 

0.60 0.5384 0.6047 0.5325 0.4572 0.5121 0.4732 

0.65 0.5106 0.5662 0.5252 0.4281 0.4718 0.4583 

0.70 0.4837 0.5282 0.5171 0.3987 0.4364 0.4489 

0.75 0.4431 0.4752 0.4932 0.3676 0.3897 0.4252 

0.80 0.4170 0.4291 0.4662 0.3499 0.3516 0.4045 

 

Table 2: Performance comparison for PPI-D2 in terms of 𝑟𝑒𝑐𝑎𝑙𝑙, and  𝑟𝑒𝑐𝑎𝑙𝑙𝑁 for an average of 

30 runs. 

𝑶𝑺 
𝑟𝑒𝑐𝑎𝑙𝑙 𝑟𝑒𝑐𝑎𝑙𝑙𝑁 

𝑬𝑨 𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 𝑬𝑨  𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 

0.10 0.9598 0.9820 0.9344 0.5744 0.5398 0.6275 

0.15 0.8956 0.9353 0.8518 0.5535 0.5263 0.5985 

0.20 0.8344 0.8687 0.7704 0.5290 0.4960 0.5651 

0.25 0.7622 0.8064 0.6991 0.4804 0.4672 0.5187 

0.30 0.6900 0.7411 0.6451 0.4416 0.4355 0.4911 

0.35 0.6158 0.6687 0.5744 0.3968 0.4010 0.4346 

0.40 0.5676 0.6173 0.5316 0.3550 0.3566 0.3864 

0.45 0.4993 0.5433 0.4649 0.3064 0.3158 0.3229 

0.50 0.4784 0.5180 0.4396 0.2792 0.2862 0.2850 

0.55 0.4027 0.4367 0.3884 0.2403 0.2472 0.2579 

0.60 0.3662 0.3987 0.3582 0.2151 0.2217 0.2370 

0.65 0.3207 0.3476 0.3364 0.1899 0.1921 0.2103 

0.70 0.2662 0.2951 0.2798 0.1488 0.1613 0.1730 

0.75 0.2367 0.2644 0.2620 0.1322 0.1413 0.1488 

0.80 0.2040 0.2249 0.2449 0.1083 0.1167 0.1362 
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Table 3: Performance comparison for PPI-D1 in terms of 𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛, and  𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛𝑁 for an 

average of 30 runs. 

𝑶𝑺 
𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛𝑁  

𝑬𝑨 𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 𝑬𝑨  𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 

0.10 0.7776 0.7632 0.8001 0.6868 0.7522 0.6530 

0.15 0.7304 0.7102 0.7691 0.6802 0.7417 0.6501 

0.20 0.7148 0.6872 0.7607 0.6755 0.7352 0.6454 

0.25 0.7015 0.6703 0.7534 0.6629 0.7261 0.6298 

0.30 0.6710 0.6313 0.7353 0.6367 0.6995 0.5943 

0.35 0.6456 0.5994 0.7249 0.6154 0.6780 0.5808 

0.40 0.6257 0.5807 0.7140 0.5895 0.6556 0.5603 

0.45 0.5894 0.5406 0.6887 0.5459 0.6120 0.5203 

0.50 0.5716 0.5305 0.6800 0.5160 0.5932 0.5046 

0.55 0.5294 0.4924 0.6629 0.4793 0.5485 0.4876 

0.60 0.5107 0.4696 0.6443 0.4572 0.5121 0.4732 

0.65 0.4843 0.4395 0.6355 0.4281 0.4718 0.4583 

0.70 0.4591 0.4096 0.6257 0.3987 0.4364 0.4489 

0.75 0.4207 0.3687 0.5967 0.3676 0.3897 0.4252 

0.80 0.3960 0.3329 0.5642 0.3499 0.3516 0.4045 

 

Table 4: Performance comparison for PPI-D2 in terms of 𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛, and  𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛𝑁 for an 

average of 30 runs. 

𝑶𝑺                         𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛𝑁 

𝑬𝑨 𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 𝑬𝑨  𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 

0.10 0.6059 0.5897 0.5803 0.7061 0.7535 0.6960 

0.15 0.5749 0.5506 0.5672 0.6976 0.7399 0.6932 

0.20 0.5456 0.5191 0.5454 0.6846 0.7199 0.6823 

0.25 0.4935 0.4666 0.5043 0.6640 0.6928 0.6640 

0.30 0.4721 0.4422 0.4991 0.6472 0.6743 0.6562 

0.35 0.4369 0.4112 0.4776 0.6105 0.6458 0.6438 

0.40 0.4175 0.3936 0.4569 0.5626 0.6083 0.5968 

0.45 0.3818 0.3566 0.4264 0.5227 0.5644 0.5509 

0.50 0.3737 0.3486 0.4156 0.5008 0.5411 0.5221 

0.55 0.3214 0.2983 0.3802 0.4641 0.4962 0.4907 

0.60 0.3013 0.2793 0.3609 0.4366 0.4628 0.4709 

0.65 0.2773 0.2562 0.3499 0.4007 0.4186 0.4456 

0.70 0.2392 0.2230 0.3225 0.3401 0.3729 0.4196 

0.75 0.2148 0.2010 0.3022 0.3076 0.3292 0.3611 

0.80 0.1929 0.1791 0.2799 0.2614 0.2798 0.3259 
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 Table 5: Performance comparison for PPI-D1 in terms of 𝐹, and  𝐹𝑁 for an average of 30 runs. 

𝑶𝑺 
𝑭 𝑭𝑵 

𝑬𝑨 𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 𝑬𝑨  𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 

0.10 0.8352 0.8444 0.8174 0.7534 0.7853 0.7439 

0.15 0.7856 0.7928 0.7733 0.7373 0.7676 0.7255 

0.20 0.7539 0.7623 0.7461 0.7182 0.7540 0.7068 

0.25 0.7279 0.7378 0.7152 0.6889 0.7342 0.6630 

0.30 0.6936 0.7006 0.6892 0.6500 0.7023 0.6130 

0.35 0.6654 0.6671 0.6755 0.6249 0.6791 0.5971 

0.40 0.6420 0.6454 0.6568 0.5935 0.6536 0.5679 

0.45 0.6037 0.6050 0.6269 0.5474 0.6100 0.5229 

0.50 0.5847 0.5943 0.6154 0.5161 0.5918 0.5051 

0.55 0.5432 0.5541 0.5997 0.4793 0.5483 0.4876 

0.60 0.5241 0.5282 0.5829 0.4573 0.5121 0.4732 

0.65 0.4970 0.4944 0.5749 0.4282 0.4718 0.4583 

0.70 0.4710 0.4611 0.5660 0.3988 0.4364 0.4489 

0.75 0.4315 0.4148 0.5398 0.3677 0.3897 0.4252 

0.80 0.4062 0.3746 0.5104 0.3499 0.3516 0.4045 

 

Table 6: Performance comparison for PPI-D2 in terms of 𝐹, and  𝐹𝑁 for an average of 30 runs. 

𝑶𝑺 
𝑭 𝑭𝑵 

𝑬𝑨 𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 𝑬𝑨  𝑬𝑨𝑮𝑶𝒙 𝑬𝑨𝑮𝑶𝒎 

0.10 0.7426 0.7367 0.7159 0.6332 0.6285 0.6598 

0.15 0.6998 0.6930 0.6808 0.6170 0.6147 0.6423 

0.20 0.6594 0.6496 0.6385 0.5965 0.5869 0.6180 

0.25 0.5989 0.5910 0.5858 0.5572 0.5577 0.5822 

0.30 0.5604 0.5537 0.5627 0.5247 0.5288 0.5616 

0.35 0.5108 0.5090 0.5213 0.4806 0.4944 0.5183 

0.40 0.4808 0.4803 0.4911 0.4316 0.4491 0.4684 

0.45 0.4323 0.4301 0.4445 0.3860 0.4045 0.4066 

0.50 0.4193 0.4163 0.4270 0.3582 0.3739 0.3681 

0.55 0.3571 0.3541 0.3841 0.3163 0.3297 0.3376 

0.60 0.3303 0.3281 0.3593 0.2878 0.2994 0.3146 

0.65 0.2971 0.2947 0.3428 0.2572 0.2628 0.2852 

0.70 0.2518 0.2537 0.2996 0.2067 0.2249 0.2449 

0.75 0.2250 0.2281 0.2806 0.1848 0.1974 0.2107 

0.80 0.1981 0.1992 0.2612 0.1530 0.1645 0.1921 

 

     Recall that by the definition of recall, precision, and F measures on the one hand, and by the 

definition of recallN, precisionN, and FN measures on the other hand, one can say that the group 

of complex-level measures is interested in the quantity of the matched complexes. On the other 
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hand, the protein-level measures are used to assess the quality of the matched complexes. In other 

words, while recall assesses the quantity of matched benchmark reference (MIPS) complexes, 

recallN assesses their quality. Similarly, precision is used to assess the quantity of matched 

predicted complexes, while precisionN assesses their quality. Finally, F and FN assess, 

respectively, the overall performance for the quantity and quality of matched complexes. First, for 

the quantity of the matched complexes, based on the results reported in Tables 1–6, one can 

observe that the proposed GO-based crossover operator and the proposed GO-based mutation 

operator work as opposite operators. The GO-based crossover operator works as a fine-grained 

operator to yield relatively many small-sized complexes, which in turn results in rediscovering 

more known MIPS complexes by the proposed 𝐸𝐴𝐺𝑂𝑥 (as reflected by recall values in Table 1 and 

Table 2) than the counterpart canonical 𝐸𝐴. The GO-based mutation operator, on the other hand, 

works as a coarse-grained operator to return relatively a limited number of large-sized complexes, 

and thus more matched predicted complexes are obtained by 𝐸𝐴𝐺𝑂𝑚 (as reflected by precision 

values in Tables 3 and 4) than the counterpart canonical 𝐸𝐴. On overall, the positive impact of the 

GO-based crossover operator and the GO-based mutation operator, individually, enable their GO-

based EAs (i.e. 𝐸𝐴𝐺𝑂𝑥 and 𝐸𝐴𝐺𝑂𝑚) to achieve more matched real and predicted complexes than 

the canonical 𝐸𝐴 (as reflected by 𝐹 values in Table 3).  

  

     Second, for the quality of the matched complexes, one can also observe that the proposed GO-

based crossover operator and the proposed GO-based mutation operator work as opposite 

operators. High qualified MIPS complexes and high qualified predicted complexes are matched 

better by, respectively, the proposed 𝐸𝐴𝐺𝑂𝑥 and 𝐸𝐴𝐺𝑂𝑚 than the counterpart canonical 𝐸𝐴 (as 

reflected by, respectively, recallN, and precisionN in Tables 1 - 6). This in turns yields high correct 

matched complexes for the proposed 𝐸𝐴𝐺𝑂𝑥 and generally for higher values of overlapping score 

for the proposed 𝐸𝐴𝐺𝑂𝑚 (as reflected by FN values in Table 5 and Table 6).  

  

     Finally, interested behavior can also be obtained by the proposed GO-based crossover operator 

and the proposed GO-based mutation operator, which will empower the proposed GO-based EAs 

to be more robust. This is reflected by the more reliable results obtained after the proposed 𝐸𝐴𝐺𝑂𝑥 

and 𝐸𝐴𝐺𝑂𝑚 than the counterpart canonical 𝐸𝐴 (in Tables 1-6) when the detection problem becomes 

harder to solve by increasing the matching score (i.e., 𝑂𝑆) to more than 0.5.  

 

6. Conclusions and future works 

     The design of one or more GO-based components in the framework of the EA gives it the green 

light to easily outperform the state-of-the-art heuristic algorithms. The injection of the GO 

information into the evolutionary operators of the EA (crossover and mutation) has proven to 

improve the performance of the algorithm. The injection of the GO information into the 

evolutionary operators of the EA is proven to improve the performance of the algorithm.  The 

injection of the GO information empowers the crossover operator to freeze out the main lack of 

the traditional modularity model (i.e., the resolution limit) and to generate fine-grain complexes 

with homogeneous structures. The additional biological information enables the GO-based 

mutation to generate coarse-grain complexes with more homogeneous structures. The 

collaboration of the modularity with the GO-based mutation operator or the GO-based crossover 

operator promotes the whole EA framework to further adjust the functional structures of the coarse 

and fine-grain complexes. 

     One of the main ramifications of the current work is the investigation of the impact of GO on 

the performance of multi-objective evolutionary algorithms. Likewise, many real-world problems, 
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such as complex detection in PPINs, can be better delineated when depicted as a multi-objective 

optimization problem (MOP) and tackled by a multi-objective optimization algorithm (MOEA). 

Unfortunately, insufficient investigation room is indicated in the literature for EAs, particularly 

MOEAs. In designing a multi-objective optimization model to control the work of any multi-

objective evolutionary algorithm, it should be wise to pay special attention to the contrasting 

modes for coping with the contradictory requirements ascribed to the intra-complex and inter-

complex structures. 

 

Declaration 

     The authors declare that all figures associated with the paper were prepared by them. 

  
References 

[1] S. Srihari and H. W. Leong, "A survey of computational methods for protein complex prediction from 

protein interaction networks," Journal of bioinformatics and computational biology, vol. 11, no. 02, p. 

1230002, 2013. 

[2] King, A D et al., “Protein complex prediction via cost-based clustering,” Bioinformatics (Oxford, 

England), vol. 20, No. 17, pp. 3013-3020, (2004). doi:10.1093/bioinformatics/bth351 

[3]  Bader, G.D., Hogue, C.W, “An automated method for finding molecular complexes in large protein 

interaction networks,” BMC Bioinformatics, vol. 4, no. 2, pp. 1-27, 2003. https://doi.org/10.118 

6/1471-2105-4-2 

[4] X.-L. Li, C.-S. Foo, S.-H. Tan, and S.-K. Ng., “Interaction graph mining 

for protein  complexes using local clique merging,” Genome Informatics, vol. 16, no. 2, pp. 260–269, 

2005. 

[5]  Li, Xiao-Li et al., “Discovering protein complexes in dense reliable neighborhoods of protein 

interaction networks,” Computational systems bioinformatics, Computational Systems Bioinformatics 

Conference, vol. 6, pp. 157-168, 2007.  

[6] Ahn, YY., Bagrow, J. & Lehmann, S., "Link communities reveal multiscale complexity in 

networks,” Nature, Vol. 466, pp. 761–764, 2010. https://doi.org/10.1038/nature09182  

[7]  G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi, 

“Complexity and approximation: Combinatorial optimization problems and their approximability 

properties,” Springer Science & Business Media, 2012. 

[8] C. Pizzuti and S. E. Rombo, "Algorithms and tools for protein–protein interaction networks clustering, 

with a special focus on population-based stochastic methods," Bioinformatics, vol. 30, no. 10, pp. 

1343-1352, 2014. 

[9] B. a. A. Attea and Q. Z. Abdullah, "Improving the performance of evolutionary-based complex 

detection models in protein–protein interaction networks," Soft Computing, vol. 22, no. 11, pp. 3721-

3744, 2018. 

[10] W. A. Hariz and M. F. Abdulhalim, "Improving the performance of evolutionary multi-objective co-

clustering models for community detection in complex social networks," Swarm and Evolutionary 

Computation, vol. 26, pp. 137-156, 2016. 

[11] A. H. Abdulateef, A. A. Bara’a, A. N. Rashid, and M. Al-Ani, "A new evolutionary algorithm with 

locally assisted heuristic for complex detection in protein interaction networks," Applied Soft 

Computing, vol. 73, pp. 1004-1025, 2018. 

[12] A. H. H. Abdulateef, B. A. Attea, and A. N. Rashid, “Heuristic Modularity for Complex Identification 

in Protein-Protein Interaction Networks”, Iraqi Journal of Science, vol. 60, no. 8, pp. 1846–1859, Aug. 

2019. 

[13] A. Mukhopadhyay, S. Ray, and M. De, "Detecting protein complexes in a PPI network: a gene 

ontology based multi-objective evolutionary approach," Molecular BioSystems, vol. 8, no. 11, pp. 

3036-3048, 2012. 

https://doi.org/10.118


Abdulateef  et al.                                            Iraqi Journal of Science, 2024, Vol. 65, No. 3, pp: 1725-1740 
 

1740 

[14] S. Bandyopadhyay, S. Ray, A. Mukhopadhyay, and U. Maulik, "A multiobjective approach for 

identifying protein complexes and studying their association in multiple disorders," Algorithms for 

Molecular Biology, vol. 10, no. 1, pp. 1-15, 2015. 

[15] D. Lin, "An information-theoretic definition of similarity," in Icml, vol. 98, no. 1998, pp. 296-304, 

1998.  

[16] I. H. Alani, D. A. Alzubaydi, and B. A. Attea, "An Evolutionary Algorithm with Gene Ontology-aware 

Crossover Operator for Protein Complex Detection, " unpublished, Iraqi Journal of Science, vol. 64, 

No. 4, 2023. 

[17] I. H. Abdulateef, D. A. J. Alzubaydi, and B. A. Attea, “A Tri-Gene Ontology Migration Operator for 

Improving the Performance of Meta-heuristics in Complex Detection Problems”, Iraqi Journal of 

Science, vol. 64, no. 3, pp. 1426–1441, Mar. 2023.   

[18] D. F. H.-W. Mewes, U. Gu ̈ldener, G. Mannhaupt, K. Mayer, M. Mokrejs, B. Morgenstern, M. 

Mu ̈nsterko ̈tter, S. Rudd, and B. Weil, "Mips: a database for genomes and protein sequences," Nucleic 

acids research, vol. 30, no. 1, pp. 31-34, 2002.  

[19] C. Pesquita, "Improving semantic similarity for proteins based on the gene ontology," M.S. thesis, 

Department of Informatics, University of Lisbon, Faculty of Sciences, Portugal 2007. 

[20] M. Girvan and M. E. Newman, "Community structure in social and biological networks," Proceedings 

of the national academy of sciences, vol. 99, no. 12, pp. 7821-7826, 2002. 

 

 


