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Abstract  

     Solving problems via artificial intelligence techniques has widely prevailed in 

different aspects. Implementing artificial intelligence optimization algorithms for NP-

hard problems is still challenging. In this manuscript, we work on implementing the 

Naked Mole-Rat Algorithm (NMRA) to solve the n-queens problems and overcome 

the challenge of applying NMRA to a discrete space set. An improvement of NMRA 

is applied using the aspect of local search in the Variable Neighborhood Search 

algorithm (VNS) with 2-opt and 3-opt. Introducing the Naked Mole Rat algorithm 

based on variable neighborhood search (NMRAVNS) to solve N-queens problems 

with different sizes. Finding the best solution or set of solutions within a plausible 

amount of time is the main goal of the NMRAVNS algorithm. The improvement of 

the proposed algorithm boosts the exploitation capability of the basic NMRA and 

gives a greater possibility, with the emerging search strategies, to find the global best 

solution. This algorithm proved successful and outperformed other algorithms and 

studies with a remarkable target. A detailed comparison is performed, and the data 

results are presented with the relevant numbers and values. NMRA and NMRAVNS 

comparisons are implemented and recorded. Later on, a comparison between the 

Meerkat Clan Algorithm, Genetic Algorithm, Particle Swarm Optimization, and 

NMRAVNS is tested and presented. Finally, NMRAVNS is evaluated against the 

examined genetic-based algorithm and listed to prove the success of the proposed 

algorithm. NMRAVNS outperformed previous findings and scored competitive 

results with a high number of queen sizes, where an average time reduction reached 

about 87% of other previous findings. 

 

Keywords: naked mole-rat algorithm, n-queens problems, optimization, artificial 

intelligence, variable neighborhood search. 
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والتغلب على التحدي    n-queensلحل مشاكل  Naked Mole-Rat Algorithm (NMRA) على تطبيق  
جانب البحث   ستعمال با NMRAمنفصل. يتم تطبيق تحسين   على مجموعة فضاء NMRAالمتمثل في تطبيق  

-Naked moleتقديم خوارزمية    (opt-3)و    (opt-2)( مع  VNSالمحلي في خوارزمية بحث الجوار المتغير ) 
rat  ( استنادًا إلى البحث المتغير في الأحياء المجاورةNMRAVNSلحل مشاكل )  n-queens   ذات الأحجام

فترة زمنية   هو إيجاد الحل الأفضل أو مجموعة الحلول خلال  NMRAVNSالمختلفة. الهدف الرئيسي لخوارزمية  
استغلال   قدرة  من  المقترحة  الخوارزمية  تحسين  يعزز  مع الأساس  NMRAمعقولة.  أكبر  إمكانية  ويعطي   ية 

ناجحة وتفوقت على   نتائج  الخوارزمية  أثبتت هذه  للعثور على أفضل حل شامل.  البارزة  البحث  استراتيجيات 
المس الخوارزميات  الأخرى  مع    تعملةوالدراسات  البيانات  نتائج  مفصلة وعرضت  مقارنة  إجراء  تم  رائع.  بهدف 

. في وقت لاحق ، تم اختبار وتقديم  NMRAVNSو    NMRAوتسجيل مقارنة   الأرقام والقيم المعتبرة. يتم تنفيذ
. أخيرًا  NMRAVNSوالخوارزمية الجينية ، وتحسين سرب الجسيمات ، و   ، السراقيط مقارنة بين خوارزمية عشيرة  

المدروسة وإدراجها لإثبات نجاح الخوارزمية المقترحة. تفوقت   مقابل الخوارزمية الجينية   NMRAVNS، يتم تقييم  
NMRAVNS   كبير من أحجام   على النتائج السابقة وحققت نتائج تنافسية مع عددn-queens    حيث وصل

 .الأخرى  السابقة  النتائج من  ٪ 87 حوالي  إلى  الوقت  تقليل متوسط  
1. Introduction  

     Technology evolves as life expectancy increases. As the amount of artificial intelligence 

(AI) embedded in various aspects of modern life grows exponentially, various AI techniques 

for solving, thinking about, and overcoming humanity’s daily problems begin to emerge. Some 

issues and problems require a swarm intelligence algorithm (SI), which is a particular branch 

of AI, in order to meditate on a specific issue. SI algorithms mimic natural creatures in which 

a group cooperates as an individual to achieve its goals [1]. Applying a swarm intelligence 

algorithm is still challenging and problematic for a specific set of concerns, as it consumes a 

considerable amount of time. 

 

     As a result, a metaheuristic approach is introduced in order to produce the best solution in a 

reasonable amount of time and space [2]. Advanced swarm algorithms with a metaheuristic 

approach are mostly applied to solve a hard problem that consumes a considerable amount of 

time. These are known as "NP-hard problems," and their solutions can be found in non-

polynomial time. Solving NP-hard problems still requires a strategic and appropriate approach 

to finding the best or optimum solutions. Optimization algorithms and techniques are 

increasingly being used to solve such problems. A number of optimization algorithms have 

been introduced and proven to be effective in achieving specific goals. 

 

     The N-queens problem is one of those NP-hard problems that this manuscript embraces. 

Given the difficulty of the n-queens problem and the level of complexity it reaches as the value 

of n increases, it represents a large solution space, particularly the discrete one, to employ 

improvement and enhancement. The naked mole-rat algorithm is one of the optimization 

algorithms that has proven its efficiency in finding solutions. Considering the effectiveness of 

the naked mole-rat algorithm in optimizing the continuous solution space, therefore, an 

adaptation to work with a discrete solution space is required. Using a variable neighborhood 

search algorithm (VNS), which employs a local search strategy with multiple alternatives 

within a discrete search space [3], an integration of VNS with the aforementioned naked mole-

rat algorithm is introduced, and an improvement is presented to solve the NP-hard problem. 

This integration is enhanced and employed in the proposed Naked Mole-Rat Algorithm based 

on Variable Neighborhood Search (NMRAVNS). 

 

The major highlights of this work are summarized as follows: 

• Based on the Naked-Mole Rat algorithm and Variable Neighborhood Search, a new enhanced 

algorithm is derived. 



Hussein and Zahid                                      Iraqi Journal of Science, 2024, Vol. 65, No.1, pp: 528- 545 

 

530 

• Adaptation in the improved algorithm is introduced to tackle the discrete space problem. 

• High exploitation has been achieved via employing variable neighborhood search within the 

improved algorithm. 

• Time-wise performance was significantly boosted compared to the traditional algorithms.  

 

     In this paper, we will discuss the current knowledge, existing solutions, and our proposed 

solution for the raised NP-hard problem. Related work is discussed in the next subsection of 

the introduction, exploring the NMRA literature review. The NP-hard problem and the N-queen 

problem are presented in the introduction’s second subsection. Improvements and 

enhancements applied to the current algorithms will be presented in the methodology section. 

The improved algorithm (NMRAVNS) is being tested. Comparisons will be presented in the 

discussion and results analysis sections. There will also be an explanation of the findings and a 

results analysis. Finally, a conclusion is induced in the conclusion section. 

 

1.1 NMRA Literature Review 

     Several algorithms were introduced to imitate the swarm behavior in nature to solve 

problems in real life and were employed as swarm intelligence optimization algorithms. Among 

those swarm optimization algorithms are particle swarm optimization (PCO) [4], artificial bee 

colony (ABC) [5], grey wolf optimization (GWO) [6], and others. The naked mole-rat algorithm 

(NMRA) is among those swarm optimization algorithms that were introduced, researched, and 

confirmed for their competitiveness. Numerous types of research involve NMRA, 

enhancement, and improvement.  

 

     The authors of the [7] manuscript discussed how to overcome stagnation in local optima in 

differential evolution (DE) and poor exploration in NMRA by proposing a newly designed 

algorithm that updates the NMRA worker phase by incorporating deferential evolution and 

leaving all parameters alone. Singh et al. [8] used the generated weight map by the modified 

NMRA to reserve important information in the final image without the use of artifacts; the 

proposed fNMRA is built on a feature-level fusion when the refinement of the weight maps is 

done.  

 

[9] proposed an enhanced NMRA (ENMRA) to mitigate the current algorithm limitations like 

poor exploration, slow convergence, and a deadlock in local optima. In [9], they implemented 

the search strategy of the grey wolf optimization algorithm (GWO) to improve the exploration 

for the basic NMRA, differential evolution equations were used to improve exploitation, and a 

neighborhood search strategy was used to prevent the algorithm from settling in local optima 

by applying neighborhood search around the best-utilized individual. This paper studies the 

NMRA's limitations in exploration, improves its search strategy to overcome this limitation, 

and applies the improved NMRA to an NP-hard problem to verify its enhancement and 

robustness. 

 

1.2 N-Queens Problem 

     Consider the NP-Hard problem of n-queens and how difficult, if not impossible, it is to solve 

using traditional algorithms, as explained in the Sharma et al. study [10]. Since the n-queens 

problem requires a distribution of the queens on every row so that no queen can attack others 

in any possible move, applying such conditions makes it hard to find the best solution for the 

board: placing all the queens in positions such that no other queen can threaten others by moving 

vertically, horizontally, or diagonally and within a plausible time.  
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     N-queens problems have different variations depending on the value of (n); it could be a 4-

queen problem, an 8-queens problem, a 12-queens problem, etc. The important aspect of the n-

queens problem deployed in this study is its ability to solve and deal with discrete problem 

space. Alternatively, other algorithms are used to handle continuous space problems, 

specifically in communication, network traffic, voice-over-IP (VoIP), etc. The discrete 

characteristic of n-queens is utilized to deduce the solution for the current discrete problem 

space. 

1.3 Naked mole-rat algorithm  

     Nature provides the most effective problem solvers and mitigation strategies. One of the 

swarms’ intelligences inspired by nature is the naked mole-rat algorithm (NMRA). This 

algorithm imitates naked mole-rate creatures and their mating strategies and foraging styles as 

a group.  As described in [11], the naked mole-rat algorithm implements the four rules of the 

naked mole-rat animals and applies three phases. The four rules are as follows: They live in 

groups of 70 to 80 rats and can number up to 295; a single queen leads each group and divides 

them into workers and breeders. Minor tasks are done by a worker, and the best worker joins 

the breeder subgroup, while the breeder is meant only for the mating and breeding processes. 

The best-performing member of the breeder group mates with the queen.  

 

     The NMRA and its implementation were divided into three phases based on these rules: 

internalization, the worker phase, and finally the breeder phase. Phase is designed to represent 

exploration patterns in the NMRA and help the algorithm find good solutions in its search pool. 

 

     While the breeder phase defines the exploitation process, its main goal is to provide local 

search ability within a specific part of the search domain. Collectively, both phases—the worker 

and breeder phases—combined to define the heuristic algorithm. The NMRA worker phase 

mechanism is defined by the following equation: 

 

 𝑊𝑖
(𝑡+1)

= 𝑊𝑖
𝑡 + 𝜆(𝑊𝑗

𝑡 − 𝑊𝑘
𝑡) (1) 

 

     where wi
t refers to the ith worker within the tth iteration, wi

(t+1) is defined as the new solution 

or worker, λ is the factor of mating, and wj
t and wk

t are two random solutions selected from the 

worker’s pool. The K value is obtained from a uniform distribution in the range of [0, 1]. 

While the breeder phase is defined by equation 2: 

 

 𝑏𝑖
(𝑡+1)

= (1 − 𝜆)𝑏𝑖
𝑡 + 𝜆(𝑑 − 𝑏𝑖

𝑡)   (2) 

 

     Here in equation 2, 𝑏𝑖
𝑡 refers to the breeder i within the iteration t. Breeders’ mating 

frequency is controlled via λ factor, it also helps in identifying and recognizing a new breeder 

bi
(t+1) in the next coming iteration. 

 

     The naked mole-rat algorithm is used in optimization, using different approaches and 

solutions. NMR is used to optimize energy efficiency in a wireless protocol in WSN [12], used 

in localization optimization [13], and in antenna design as multi-objective NMRA [14]. The 

NMR algorithm is also used in feature selection, as in [15]. An enhanced version of the NMR 

algorithm is used to find the optimal solutions for wireless sensor networks in an underground 

infrastructure [16]. The naked mole-rat algorithm, like many other swarm algorithms, mimics 

nature to solve or achieve what it needs, as introduced by Solgotra et al. in their article [11]. 

 

     Solgotra et al. also mentioned that, according to the experimental results and numbers, the 

NMR algorithm is very competitive with other heuristic and cutting-edge algorithms. The NMR 
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algorithm, like many other swarm intelligence algorithms, uses intelligence to meet its needs in 

nature. Accordingly, we studied and implemented the NMR algorithm to solve the N-queens 

problems, whose hardness and complexity make them not solvable in the traditional ways, at 

least not in a reasonable time. For a better understanding of NMRA, a pseudo-code of the Naked 

Mole Rat Algorithm is presented in Algorithm 1: 

Algorithm 1. NMRA Algorithm 

Input: No. of naked mole rats (N), No. of breeders (B: N/5), No. of workers (W: N−B), breeding 

probability (bp). 

Output: Best Solution. 

BEGIN 

Initialize population of N naked mole rats. 

Evaluate the fitness of the population. 

d = the best solution 

Divide the population into breeders and workers. 

WHILE (t < tmax ) DO 

FOR i=1 to W DO 

perform worker phase:  wi
(t+1) = wi

t + λ (wj
t – wk

t) 

evaluate wi
(t+1) 

END FOR  

FOR i=1 to B DO 

IF rand > bp 

perform breeder phase: bi
(t+1) = (1- λ) wi

t + λ (d – bi
t) 

evaluate bi
(t+1) 

END FOR 

combine the new worker and breeder population 

evaluate the population 

Update d if there is a better solution 

t=t+1 

END WHILE 

Return the best solution d 

END 

 

2. Methodology  

     The methodology discussed in this manuscript is divided into three sections. The first section 

explains how to apply NMRA to the N-Queen problem, beginning with solution representation 

and moving on to the implementation phases, while the second section presents the 

improvement of NMRA. Finally, the third part will explain parameters and their tuning values 

for the NMRA algorithm while applying it to solving NP problems.  
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Figure 1: Working methodology stages 

 

Figure 1 depicts the stages of the working methodology used in this manuscript. For system 

compatibility, the first stage involves applying the NMRA algorithm to the N-Queens problem 

using discrete solution space. The second stage involved NMRA improvement by merging VNS 

algorithm concepts into the working methodology of the NMRA. Stage 3 includes parameter 

tuning and adjusting. As the whole concept has been practically implemented using the 

MATLAB programming environment, NMRA parameters have been tuned, and 2-opt and 3-

opt concepts have also been integrated to obtain the best solution space. The fourth stage is 

having the NMRAVNS algorithm improved and testing the results by comparing the output for 

different n-queens using the unimproved NMRA. Results obtained using MATLAB were 

incredibly enhanced and improved, and all the comparisons and results’ discussions have been 

elaborated on in the third section of this paper, titled “Discussion and Results Analysis.” 

 

2.1 Applying NMRA to N-queens problem 

2.1.1 Solution Representation 

     As its name suggests, the N-queens problem can have different sizes; Figure 2 illustrates 

two of them, the 8-queens problem and the 4-queens problem, in Figures 2 (a) and (b), 

respectively. Other variations of the n-queens problem do exist, and the higher the value of (n), 

which represents the chessboard dimension, the harder it is to solve. For example, the 16-queens 

problem is more difficult to solve than an 8-queens problem and hence requires extra time to 

find the best solutions for the queens’ places. There is a direct relationship between the degree 

of the n-queens problem, i.e., the value of n, and the complexity level it has. Correspondingly, 

the amount of time required is also increased with a higher value of n. The reason for this direct 

relationship between the value of n and the complexity level is that for each extra level, the 

already-placed queens will have a bigger potential effect than any new placement. For example, 

as Figure 2(a) shows, the queen placed in the 8th cell added a no placement cell that goes all the 

way across the board horizontally, vertically, and diagonally in all directions. In this case, the 

restriction added up to the 8 rows beneath the queen. 
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     In Figure 2 (b), the degree of n-queens is 4, implying less complexity. As shown in Figure 

2(b), the queen placed in the cell (4b) also has a placement restriction horizontally, vertically, 

and diagonally, except this time its restriction extended only for 4 rows, which is the degree of 

this n-queen and hence its complexity for placement of other queens down the board. The time 

required to find that safe placement solution is much shorter than in the previous eight-queen 

example. 

 

 
Figure 2: n-queens problem with two examples. 

 

     As for NMRA to be applied and utilized to find the solution for N-Queen’s problems, a 

solution must be presented in a compatible system with regard to the problem itself, as discussed 

thoroughly above in the introduction. Because N-queens' problems are represented by discrete 

values for their queens' positions on the board, a solution representation would be presented as 

a vector of discrete values within the range of the queen problem, i.e., if the problem being 

solved is for 8 queens, then a range of discrete integer values from 1 to 8 is presented, and 

similarly for a 16 queen problem, a range of discrete integer values from 1 to 16 is presented. 

 

2.1.2 Implementation Phases  

     The NMRA algorithm simply tries to find the optimal solution for a general optimization 

problem, and it does that by working with two categories: breeder and worker categories [17]. 

It always searches for the best solution within the worker category and moves it to the breeder, 

and it moves the worst from the breeder to the worker.  

 

     In our implementation of the NMRA, we have to work with the same categories but from a 

discrete standpoint instead of a continuous one. An interpretation and adjustment have to be 

made for this shift in order to apply the mentioned algorithm to the discrete space set and try to 

solve the studied problems. 

 

     The proposed implementation contains three phases, starting with the first phase of 

“subtracting solutions,” moving to the second phase of “multiplication by lambda,” and then 

the final phase of  "adding solutions.” Figure 3 depicts the phases of implementation. 
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Figure 3: NMRA to N-Queens Implementation phases 

 

     Figure 3 illustrates briefly the phases used for NMRA implementation into an N-queens 

problem. Prior to applying the first phase, solution initialization is adopted for the worker and 

breeder solutions. using those solutions as input for the first phase, i.e., the subtraction phase, 

where two solutions are subtracted to produce a new one. The third phase then integrates the 

output of the subtraction phase by multiplying each value of the produced vector with a random 

value selected from the range of [0, 1] called lambda, denoted by (λ). Using the swap operation 

concept, the final phase combined both results from the previous phases. 

     The aforementioned process was denoted by phases, which included several steps. The 

newly proposed approach for discrete solution implementation is listed in the following detailed 

phases for a broader understanding of impact: 

 

PHASE 1: Subtracting Solutions:  

     The NMRA implementation of the first phase starts after the initialization of the initial 

generation, and the following steps are applied to produce the next generation using equation 

(1), where phase 1 represents the subtraction portion of equation (1), i.e., (wj
t – wk

t) 

• Step 1: Two solutions produced out of the next generation using equation (1) are randomly 

selected, i.e., Sj and Sk. 

• Step 2: The subtracting process is applied by starting an element-wise comparison of the two 

vectors, i.e., solutions. An element from either solution (Si, Sk) is picked in case their values are 

identical, and a zero is placed for a non-matching value to produce the new subtracted solution 

called Ssub. 

Figure 4 explains phase one of NMRA implementations with the steps mentioned above. Sj and 

Sk are presented with an example’s values. Sj1 represents the first value in that solution, and Sj8 

indexes the last value of the Sj solutions. Indexing applies for Sk and Ssub accordingly. 

                      Sj1                      Sj2   

……………………………………………………………………     Sj8  

Sj 2 5 3 7 1 8 4 6 

  

                         Sk1                     Sk2    

……………………………………………………………………    Sk8  

Sk 3 5 6 7 1 2 4 8 

 
Ssub 0 5 0 7 1 0 4 0 

                       Ssub1                  Ssub2   

…………………………………………………………………   Ssub8  

Figure 4 : PHASE 1: Subtracting Solution Example 
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PHASE 2: Multiplication by Lambda: 

Phase 2 represents the multiplication part of (λ ) by (wj
t – wk

t) produced in phase 1. 

• Step 1:  Lambda (λ) is produced by generating a random floating-point number between 0 and 

1 using equation (2): 

𝜆 (𝑅)  𝑤ℎ𝑒𝑟𝑒 𝑅 ∈ {0, . . . ,1}                          (3) 

• Step 2: A new vector is generated with the exact length of the Ssub solution obtained in phase 

1 and a random floating point number using equation 3 for each element of that vector. 

• Step 3: Using the newly generated lambda (λ) from equation (3) as the threshold, initiate 

element-wise processing for the newly produced vector in step 2 of this phase. 

• Step 4: Produce a New Solution Smul for this generation by applying the following: 

If the value of Lambda (λ) is bigger than the element of the newly created vector in step (2) 

then place zero in that index. Otherwise, place the correspondent value produced from phase 

(1) in that index, i.e., the Ssub value. 

Steps 1 through 4 for phase 2 are depicted with an example in Figure 5 for a better 

understanding. 

Let Lambda λ = 0.5 

Ssub 0 5 0 7 1 0 4 0 

 

rand 0.81 0.9 0.12 0.91 0.27 0.09 0.63 0.54 

 
Smul 0 5 0 7 0 0 4 0 

 

 

Figure 5 : PHASE 2: Multiplication by Lambda Example 

 

PHASE 3: Adding Solutions:  

Phase 3 translates the final part of equation (1), the addition part. Where the final result of phase 

1’s subtraction output alongside the multiplication process of phase 2 is added to 𝑊𝑖
𝑡 using the 

following procedure: 

• Step 1: Mark any non-zero values’ positions in Sj that have equal values with Smul. 

• Step 2: Swap the values for those marked positions in Step 1 to produce the final “added 

solutions,” Sadd. 

Figure 6 demonstrates phase 3 with its three steps and an example value for the mentioned 

solutions and procedures. 

 

  

 
Smul 0 5 0 7 0 0 4 0 

 
- Select non-zero values positions in Sj that have identical values with Smul 

 

 6 1 3 2 4 7 8 5 

a- Swap the values for those marked positions in the previous step to produce the final the 

 added solution Sadd 

 6 1 3 2 4 7 8 5 

 
Sadd 6 5 3 7 8 2 4 1 

 

Si 6 1 3 2 4 7 8 5 

                                             Figure 6: PHASE 3: Adding Solutions 
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      As discussed previously, these steps interpret equation (1), the worker part of the NMRA, 

where two new workers are selected and the steps in each phase from phase 1 to phase 3 are 

applied to introduce the best worker among the two randomly selected workers. Whereas the 

breeder part of NMRA is represented by equation (2), a breeder is updated and compared with 

the best breeder for mating purposes, and the least-performed breeder is reallocated as a worker.  
 

     For a complete evaluation of the performance of the improved NMRA algorithm, we applied 

it to the n-queens problem. From this point, we have settled the parameters for both algorithms: 

NMRA and the Improved NMRA, i.e., NMRAVNS. Comparisons would be made in the 

discussion section, later on, to evaluate the performance from several perspectives. 
 

2.2. NMRA Improvement  

     An improvement is introduced to the implementation of NMRA on discrete values via VNS, 

where the newly proposed algorithm has emerged. The improvement is represented by 

implementing the variable neighborhood search (VNS) mechanism for the NMRA to search 

and find the best solutions from the current population. VNS is mainly utilized for its local 

search approach [18]. We have implemented the local search aspect via a two-position swap 

operation, or what is known as a “2-opt,” to look for local optimum, and if it does not find it, a 

three-position swap, known as a “3-opt,” is applied to better optimize the solution. NMRAVNS 

has adopted the VNS mechanism in the searching phase for the best solutions from a discrete 

value set. A pseudo-code of the NMRA implementation for discrete space is presented in 

Algorithm 2. 

 

Algorithm 2. NMRAVNS  
Input: No. of naked mole rats (N), No. of breeders (B: N/5), No. of workers (W: N−B), breeding 

probability (bp). 

Output: Best Solution. 

BEGIN 

Initialize population of N naked mole rats. 

Evaluate the fitness of the population. 

d = the best solution 

Divide the population into breeders and workers. 

WHILE (t < tmax ) DO 

FOR i=1 to W DO 

perform worker phase:  wi
(t+1) = wi

t + λ (wj
t – wk

t) 

evaluate wi
(t+1) 

END FOR  

FOR i=1 to B DO 

IF rand > bp 

perform breeder phase: bi
(t+1) = (1- λ) wi

t + λ (d – bi
t) 

evaluate bi
(t+1) 

END FOR 

combine the new worker and breeder population 

evaluate the population and find the current best solution dCB 

Perform VNS Algorithm on dCB and compute SVNS 

IF f(SVNS) < f(dCB) 

d = SVNS 

END IF 

t=t+1 

END WHILE 

Return the best solution d 

END 
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We use variable neighborhood search (VNS) local search to support performance, enhance local 

convergence, and minimize the stochastic search probability for better results and outcomes 

within the NMRA. A proven successful metaheuristic search algorithm is the Variable 

Neighborhood Search (VNS) algorithm.  a widely used search algorithm in optimization 

problems to find the local optimum. Basically, it employs a local search to find the local 

optimum. We have implemented VNS local search by using a 2- or 3-opt swap procedure over 

the best current solution to find an improved solution, i.e., the local optimum [19]. The VNS 

algorithm is presented in Algorithm 3: 

 
Algorithm 3. VNS algorithm  

Input: current best solution (SCB). 

Output: Improved Solution. 

BEGIN 

k=1 

WHILE (k≤2) DO 

IF (k=1) 

  Perform (2-opt) operation on CB, (n) times to obtain Local best solution SLBS. 

  IF f(SLBS) < f(SCB) 

   SCB = SLBS 

   k=1 

ELSE 

 k=k+1 

END IF 

 ELSE 

  Perform (3-opt) operation on CB, (n) times to obtain Local best solution SLBS. 

IF f(SLBS) < f(SCB) 

   SCB = SLBS 

ELSE 

 k=k+1 

  END IF 

END IF 

END WHILE 

return (SCB) 
 

2.3 NMRAVNS Parameters description, tuning and testing 

NMRA is applied to N-Queens problems as illustrated in Section 2.1. Parameters’ descriptions 

and values are recorded. The improved algorithm, NMRAVNS, was applied to the N-queens 

problem to compare the results. The values set for the NMRA and NMRAVNS are presented 

in Table 1. 

Table 1: Parameters description of NMRA and NMRAVNS algorithms for solving n-queens 

problems 

Algorithm Parameters Values 

NMRA Initializations Random 

Representations Integer String which is n long 

Population size 10,20, 30, ..100 

Breeding probability 0.5 

Maximum iterations 100,500 

NMRAVNS Initializations Random 

 Representations Integer String which is n long 

 Population size 10,20,30,…,100 

 Breeding probability 0.5 

 Maximum iterations 100,500 

 Max Generation of (2-opt) and (3-opt) neighbors Population size/2 



Hussein and Zahid                                      Iraqi Journal of Science, 2024, Vol. 65, No.1, pp: 528- 545 

 

539 

 

     We can see in Table 1 that both algorithms start by initializing their solutions from a random 

set. While the representation process of the initialized solutions is an integer string that is n 

long, the population size begins at 10 and increases in 10-fold increments until it reaches 100. 

The likelihood of breeding is 50%. Maximum iterations are between 100 and 500, according to 

the queen size applied. It is 100 for the 8-queen problem and 500 for the 16-queen problem. For 

the improved NMRA, the maximum number of 2-opt and 3-opt neighbors that it can reach is 

half the population size. Implementation of the NMRAVNS algorithm over different values of 

n-queens and results produced by using MATLAB software version R2021b.  

 

3. Discussion and Results Analysis 

     In this section, the results of the four phases of the proposed methodology are presented and 

discussed.  

 

3.1 NMRAVNS Improvement time complexity-wise & iteration-wise 

     NMRAVNS has been applied for 8 and 16 queens, respectively, to test and evaluate its 

performance from a time-wise perspective and number of iterations with regard to the NMRA 

algorithm. With population size starting at 10 solutions and stopping at 100 with 10 folds, the 

number of iterations as well as time for reaching the best solution in seconds have been recorded 

and presented in Table 2 for both NMRA and NMRAVNS. 

  

Table 2 : Comparison between basic NMRA and the proposed algorithm NMRAVNS for 

solving 8 and 16 queens problem. 

Queen No. Pop. Size NMRA NMRAVNS 

Iteration No. Time (sec) Iteration No. Time (sec) 

8 10 17 0.00323 2 0.00223 

20 9 0.00353 2 0.00147 

30 6 0.00433 3 0.00275 

40 10 0.00728 1 0.00224 

50 5 0.00547 1 0.0021 

60 4 0.00538 1 0.00279 

70 5 0.00726 1 0.00332 

80 4 0.00556 1 0.0027 

90 3 0.00488 1 0.00368 

100 3 0.00592 1 0.00308 

16 10 283 0.04906 40 0.00915 

20 224 0.09872 18 0.0091 

30 210 0.12345 38 0.02469 

40 205 0.15742 6 0.0065 

50 119 0.11724 26 0.02914 

60 124 0.15207 20 0.02621 

70 133 0.18125 14 0.02239 

80 125 0.192827 8 0.01505 

90 71 0.12358 13 0.02568 

100 69 0.134807 3 0.00947 

Time Avg.   0.069163  0.010187 
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Table 2 discusses NMRAVNS enhancement in terms of NMR using two N-queens problems 

(8 and 16). A comparison was made from two points of view to illustrate the results’ 

improvement: time-wise and in terms of the number of iterations required to reach the best 

solution. For reliable and more accurate results, an average has been taken for each recorded 

value instead of picking the best one. This average is taken out of ten trials for better casting 

and increased accuracy.  

 

     We clearly see in Table 2 for the 8-queen problem that NMRAVNS outperforms NMRA 

regarding the time required to find the best solution as well as the number of iterations. Time-

wise performance enhancement roughly ranges from 0.001 (second) to 0.005 (second). The 

number of iterations required for each fold of the population size is incredibly decreased for the 

8-queen problem and for the 10-fold population size, with a decrement in the number of 

iterations ranging from 15 iterations for the same population size to a 2-iteration difference for 

the lowest enhancement.  

Table 2 shows that NMRAVNS outperformed NMRA in terms of time and number of iterations 

for the 16-queen problem. The biggest time difference was recorded in a population of 80 with 

a 0.177777-second difference in 16 queen problems. The largest number of iterations being 

dropped when NMRAVNS is applied is 243 iterations in the first fold with a population size of 

10 within 16 queen problems. 

 

     For an overall evaluation and understanding of the current comparison in Table 2, an average 

execution time is calculated for the recorded time for each fold of the population until the best 

solution is produced by both algorithms, i.e., NMRA and NMRAVNS, for the two cases of 8 

and 16 queens, respectively. A difference of 0.058976 is found when NMRAVNS is 

implemented, as its average time recorded was 0.010187, while for NMRA it was 0.069163. 

Mentioning the average time for both comparison parties, the base NMRA and the improved 

algorithm NMRAVNS, we can use equation 3 to calculate the time reduced upon implementing 

the improved algorithm and for the N-queen cases mentioned in Table 2, where we will use the 

average time for both aforementioned algorithms. 

 

  Time Reduction (TR) = (
𝐵𝑎𝑠𝑒 𝑇𝑖𝑚𝑒−𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑇𝑖𝑚𝑒

𝐵𝑎𝑠𝑒 𝑇𝑖𝑚𝑒
) ∗ 100 (4) 

 

     Upon applying equation (4) to the numbers obtained in Table 2, where base time represents 

the average time used to solve N-queens problems employing NMRA, which is 0.069163, and 

improved time is the average time used for the same instances employing NMRAVNS, a value 

of 85.27102642, which is an 85.27% improvement in time reduction, is obtained when 

comparing the basic NMRA and the improved NMRAVNS. 

 

3.2 NMRAVNS vs other algorithms for solving 8 & 16 queens problem 

     Variant comparisons have to be made to obtain reliable and precise results, which in turn 

gives a better evaluation for the implementation of the proposed algorithm. From this point of 

view, a comparison has been made between NMRAVNS and other related algorithms such as 

the Meerkat Clan Algorithm (MCA), Genetic Algorithm (GA), and Particle Swarm 

Optimization (PSO), all of which have solved NP-hard problems such as n-queens problems 

and others as a common ground for comparison [20]–[22]. These mentioned algorithm solutions 

applied to the n-queens problem are addressed in [23].  

 

     Time and number of iterations were used as comparison metrics for the mentioned 

algorithms and NMRAVNS. When an 8-queen problem is addressed, NMRAVNS outperforms 

PSO and GA algorithms in both metrics (time and number of iterations). As per MCA, it’s also 
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outperformed via NMRAVNS in time regards, and most of the iteration numbers are also 

outperformed, or at least have the same number of iterations for both. For the 16-queen problem, 

it is obviously noticeable that NMRAVNS is incredibly faster than MCA, GA, and PSO for the 

denoted population size. Generally, NMRAVNS’s average time is 0.01018 seconds, while the 

closest average time was obtained from MCA, which recorded 0.0449 seconds. GA results in 

2.7215 second as an average time, while PSO average time was 62.18117. 

 

Table 3: Comparison between NMRAVNS and some algorithms for solving 8 and 16 queens 

problem. 

Queen 

No. 

Pop. 

Size 

NMRAVNS MCA [23] GA [23] PSO [23] 

Iteration 

No. 

Time 

(sec) 

Iteration 

No. 

Time 

(sec) 

Iteration 

No. 

Time 

(sec) 

Iteration 

No. 

Time 

(sec) 

8 10 2 0.00223 5 0.028 12 1.8485 13 1.1977 

8 20 2 0.00147 2 0.013 7 1.7053 4 1.3741 

8 30 3 0.00275 1 0.017 3 1.543 2 1.5269 

8 40 1 0.00224 2 0.027 3 1.3966 4 1.4405 

8 50 1 0.0021 2 0.014 5 1.4659 3 1.3814 

8 60 1 0.00279 1 0.032 2 1.4373 3 1.4725 

8 70 1 0.00332 1 0.022 2 1.9066 4 1.621 

8 80 1 0.0027 2 0.02 3 1.9255 3 1.8541 

8 90 1 0.00368 1 0.017 3 2.3777 4 2.2561 

8 100 1 0.00308 1 0.019 3 2.4925 3 2.1666 

16 10 40 0.00915 20 0.029 60 1.9999 23547 61.9999 

16 20 18 0.0091 24 0.049 70 2.9999 18444 95.9999 

16 30 38 0.02469 17 0.053 39 2.3333 10003 76.9999 

16 40 6 0.0065 14 0.061 31 3 143366 147.6666 

16 50 26 0.02914 14 0.069 25 2.3333 15150 194.6665 

16 60 20 0.02621 10 0.105 24 2.6666 13247 203.9999 

16 70 14 0.02239 8 0.061 35 4.6666 3853 69.6666 

16 80 8 0.01505 8 0.067 36 4.9999 4443 91.3333 

16 90 13 0.02568 8 0.096 30 4.6666 7160 167.3333 

16 100 3 0.00947 6 0.1 39 6.6666 4548 117.6666 

Time 

Avg. 

  0.01018  0.0449 

 

 2.7215  62.18117 

 

     A visual graph depicting the improvement listed in Table 2 is presented in Figures 7 and 8 

for time-wise improvement for ten sets of population size variation for both the 8 queens and 

16 queens problems, respectively. 
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Figure 7: NMRAVNS improvement for 8 queens 

 

     Figure 7 illustrates the improvement NMRAVNS has achieved from a time-wise aspect in 

order to find the best solution compared to the MCA, GA, and PSO algorithms. This figure 

depicts Table 3 in a graphical illustration to focus more on the time elapsed for NMRAVNS 

during its implementation to apply the methodology stages. Considering PSO and GA’s high 

values compared to NMRAVNS and MCA’s low values, that issue presented both PSO and GA 

as outliers. To clearly demonstrate NMRAVNS improvements in charts and to overcome the 

outlier issue, a secondary vertical axis is added to handle the outliers’ values in PSO and GA. 

 

     Two variations of chart types have been used in figure 7 to give more coordination and focus 

related to the primary vertical axis named (MCA & NMRAVNS Time) and the secondary 

vertical axis named (PSO & GA Time). It is clearly obvious that NMRAVNS, labeled with a 

blue clustered column, reached the best solution in a much less plausible time than MCA, 

labeled with an orange clustered column, and both are related to the primary vertical axis on 

the left of figure 7. NMRAVNS also outperforms GA and PSO labels with a dotted black line 

and a dotted green line, respectively, and they are both related to the secondary vertical axis to 

the right of figure 7. Figure 7 depicts the testing for 10 population slots in the 8 queens problem. 

 

     Similarly, a visual chart is depicted in figure 8 for the improvement made and listed in Table 

3, and it compares NMRAVNS to MCA, GA, and PSO as in Figure 7, except this time it is 

tested for the 16 queens problem. The secondary vertical axis is also used to overcome the 

outliers issue discussed in Figure 7, and variations of chart type are also employed to highlight 

the difference and focus more on the different values depicted in the figure. 
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Figure 8 : NMRAVNS improvement for 16 queens 

 

3.3 NMRAVNS vs other algorithms for solving N queens problem 

     The performance and result enhancement of NMRAVNS implementation compared to n-

queens problems via other algorithms is also demonstrated. Searching literature on solving the 

n-queens problem by applying optimization algorithms, Jane and Prasad [21], discussed the n-

queens problem and proposed a new algorithm for finding the set of solutions considering the 

previous findings. A comparison is listed in Table 4 with the newly proposed genetic algorithm 

NPGA [21], which already outperforms SPRSO, Per-PSO, Old-GA, Lijo V.P., and Jasmin T. 

Jose. Our discrete implementation of NMRAVNS outperformed the findings in [21] and their 

NPGA, as evidenced by the NPGA average time of 2.096675, whereas the NMRAVNS average 

time for the same 8, 13, 14, 16, 30, 40, 50, and 100 queens is 0.2719. The induvial time for each 

queen size mentioned earlier is listed in Table 4 along with the findings of NPGA and 

NMRAVNS.  

 

Table 4 : Comparison between NMRAVNS and some algorithms for solving n-queens problem 

Queen 

No. 

NMRAVNS 

Time (sec) 

SRPSO [21] 

Time (sec) 

Per-PSO [21] 

Time (sec) 

Old-GA [21] 

Time (sec) 

NPGA [21] 

Time (sec) 

Lijo V. P. and 

Jasmin T. 

Jose [21] 

8 0.00147 N/A N/A N/A 0.0307 N/A 

13 0.0809 N/A N/A N/A 0.0492 44.14 

14 0.14243 N/A N/A N/A 0.0527 87.56 

16 0.0065 N/A N/A N/A 0.0972 N/A 

30 0.06239 6.59 10.32 17.29 0.342 N/A 

40 0.10911 23.73 34.3 35.66 0.7885 N/A 

50 0.34003 40.12 53.25 54.43 1.0443 N/A 

100 1.43237 N/A N/A N/A 14.3688 N/A 

Time 

Avg. 

0.2719    2.096675  

 

     To calculate the reduced time when employing NMRAVNS versus the proposed algorithm 

by [21], i.e., NPGA, we implement equation (4) to calculate time reduction for the average time 

required for NMRAVNS and NPGA for the n-queens cases as mentioned in Table 4. Using 
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equation (4), a time reduction of 87.03185 seconds was obtained by setting the base time for 

NPGA to 2.09675 seconds and improving the time representing NMRAVNS to 0.2719 seconds.  

Evaluating the reduced time, about 87% of the time has been reduced by applying NMRAVNS 

over NPGA for the same instances of n-queens cases mentioned in Table 4. 

 

4. Conclusion 

     The conclusion for this manuscript is divided into four parts. The first is that using NMRA 

to derive discrete values for the N-queens problem is possible. The second conclusion is 

regarding the high performance NMRAVNS has recorded toward solving this NP-hard 

problem. The discussion and results analysis sections demonstrate that NMRAVNS is 

applicable to solving N-queen’s problems. Furthermore, improvements are highly remarkable 

time- and iteration-wise when compared to the NMRA. Third, a conclusion that NMRAVNS 

outperformed MCA, GA, and PSO for 8 and 16 queen problems is reached. Lastly, NMRAVNS 

findings outperformed previously listed findings via their NPGA and their compared algorithms 

by reducing 87% of the average time required to find the same solutions for 8, 13, 14, 16, 30, 

40, 50, and 100 queen problems. 
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