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Abstract  

     Path planning is a challenging navigation problem that can be handled using 

multi-objective methods. This paper presents a three-stage multi-objective path-

planning method. The first stage is to locate the best or near-best solution path and 

avoid detected obstacles using a hybrid of the red fox–gray wolf optimizer (RFO–

GWO), which finds a route from the start position to the target position. In the 

second step, a mutation operation using an evolutionary algorithm is utilized to 

enhance the length, integrity, and smoothness of the route generated by the RFO–

GWO algorithm. The final step of the suggested method is refined further using a 

multiphase technique. By integrating the real sizes of the mobile robots and the size 

of the barriers and phrasing the issue as a traveling object in the available area, the 

suggested path-planning method resembles the actual world. The simulation results 

indicate that this strategy creates the most viable path even in complicated 

surroundings, overcoming the disadvantages of traditional approaches. Furthermore, 

when compared to prior path-planning methods, the simulation’s outcomes indicate 

that the suggested RFO–GWO method is effective in terms of the route, and the 

strategy is extremely competitive. The results showed a significant improvement, 

where the total percentage convergence time (in seconds) for RFO–GWO for the 

three maps was 15%, 12%, and 10%, respectively, whereas it was 35%, 41%, and 

43% seconds in GWO and 34%, 35%, and 37% seconds in RFO. There was also a 

significant improvement in the number of nodes for RFO-GWO (2%, 3%, and 2%) 

compared to GWO nodes (64%, 65%, and 62%), and RFO nodes (32%, 30%, and 

35%)  for the same three maps. Subsequently, the smoothness of the path formed by 

the recommended approach was enhanced using the evolutionary algorithm (EA), 

where the total percentage length of the path in the worst scenario for GWO was 

28% and for RFO was 26% in units, but after improvement with the RFO-GWO 

with EA, it became 22% in units. 
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الثعلب الأحمر المحسنة و الذئب  خوارزمية  عمالالمسار للروبوت المحمول المستقل باستتخطيط 
 الرمادي

 
 فتوح حسون كطافة1*, صلاح الدراجي2

 1 قسم علوم الحاسوب،  كلية علوم الحاسوب وتكنولوجيا المعلومات، جامعة البصرة،   البصرة، العراق 
 2 قسم علوم الحاسوب،  كلية التربية للعلوم الصرفة،  جامعة البصرة،  البصرة،   العراق 

 

  الخلاصة 
طرق متعددة الأهداف. تقدم هذه الورقة    عمالة صعب التعامل معها باستييعد تخطيط المسار مشكلة ملاح      

طريقة تخطيط مسار متعددة الأهداف من ثلاث مراحل. تتمثل المرحلة الأولى في تحديد أفضل أو أقرب مسار  
باست المكتشفة  العوائق  وتجنب  الأحمر    عمالللحل  الثعلب  ن  مُحس ِّ من  )   -مزيج  الرمادي   – RFOالذئب 

GWOعملية طفرة   عمال (، والذي يجد طريقًا من موضع البداية إلى موضع الهدف. في الخطوة الثانية، يتم است
. تم  RFO-GWOبخوارزمية تطورية لتعزيز طول وسلامة وسلاسة المسار الذي تم إنشاؤه بواسطة خوارزمية  

باست أكبر  بشكل  المقترحة  الطريقة  من  الأخيرة  الخطوة  دمج    عمالتنقيح  خلال  من  الأطوار.  متعددة  تقنية 
الحقيقية للروبوتات المتنقلة وحجم الحواجز وصياغة المشكلة ككائن متنقل في المنطقة المتاحة، فإن    الأحجام 

طريقة تخطيط المسار المقترحة تشبه العالم الفعلي. تشير نتائج المحاكاة إلى أن هذه الإستراتيجية تخلق أفضل  
عند   ذلك،  على  علاوة  التقليدية.  الأساليب  عيوب  على  متغلبًا  معقد،  محيط  في  حتى  للتطبيق  قابل  مسار 

المقترحة فعالة    RFO-GWOمقارنتها بأساليب تخطيط المسار السابقة، تشير نتائج المحاكاة إلى أن طريقة  
كبيرًا،   تحسنًا  النتائج  أظهرت  حيث  للغاية،  تنافسية  والاستراتيجية  المسار،  حيث  المئوية  و من  النسبة  تقارب 

) للخ  RFO-GWOكان وقت  و الإجمالية   الثلاث  بينما كان  10٪، و  12٪،  15رائط  التوالي،  على  ثوانٍ   )٪
. كان هناك  RFO٪( في ثوانٍ في  37٪ و 35٪( و 34، وكان )  GWO٪( بالثواني في ٪43 ، ٪41 ، 35) 

٪،  GWO (64 ،٪65٪( مقارنة بعقد 2٪، و 3٪، 2كان )  RFO-GWOأيضًا تحسن كبير في عدد العقد لـ 
٪( لنفس الخرائط الثلاث. بعد ذلك، تم تحسين نعومة المسار  35٪ و  30  ٪( و32) RFO٪(، وعقد  62و  

باست المقترح  النهج  شكله  )   عمالالذي  التطورية  لطول  EAالخوارزمية  الإجمالية  المئوية  النسبة  كانت  حيث   ،)
٪( في الوحدات، ولكن بعد التحسين  26كانت )   RFO٪( وبالنسبة لـ  28) GWOالمسار في أسوأ سيناريو لـ  

 .٪( في الوحدات 22، أصبحت )   EAمع  RFO-GWOمع 
 

1. Introduction 

     Scientists have recently focused their attention on the development of robotics using 

artificial intelligence to achieve the autonomy of mobile robots. Autonomous mobile robots 

can be seen in many fields such as space, industry, transportation, and definition, as well as 

other social areas, and their use is increasing day by day [1]. Motion planning became 

autonomous and programmable as digital electronics and computer technology advanced, as 

did their compatibility using artificial intelligence (AI) methodologies [2]. Mobile robot 

navigation is mostly determined by its intelligence. Path planning is the most efficient and 

crucially intelligent component of these capabilities. Path planning is the process of 

determining the optimum, collision-free route from one location to another. Based on the 

nature of the environment, it may be classified into two types: static path planning, in which 

barriers do not change position over time, and dynamic path planning, in which the location 

and orientation of obstacles change over time. [3], [4].  

 

     These are further divided into offline and online methods based on the mobile robot's 

information level. The mobile robots have entire information about the situation when offline 

path planning. Over the past four decades, mobile robot navigation has become a growing 
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field. Several traditional and AI strategies have been used to address this issue [5]–[7]. A 

mobile robot's path planning is divided into three major tasks. This includes understanding the 

environment, determining one's current location, and finally taking the appropriate steps and 

incorporating the gathered information to complete tasks [8], [9].  

     The primary challenges for autonomous mobile robot path planning are complexity, 

flexibility, and effective path choosing, which assures effective and collision-free paths by 

bypassing scenarios such as dead ends. LaValle [10] illustrates a compelling reason to discuss 

path planning methods. It is an intriguing subject for machines to handle a variety of tasks 

that humans typically find difficult to solve. This also necessitates the creation and 

development of a methodical and strong algorithm for path planning and achievement.  

 

     Navigation research dates back to the 1960s, and several techniques, including cell 

decomposition [11], roadmap techniques [12], and the potential field [13], have been 

proposed. The major weaknesses of these techniques are their ineffectiveness because of high 

operational costs and their inexactness as a result of the increased risk of being caught in a 

local optimal solution. Implementing different heuristic techniques, such as bio-inspired 

neural systems and genetic methods, can solve the drawbacks of these algorithms [14]. 

Rapidly satisfying answers are among the most important focuses of these heuristic 

techniques, which are especially suitable for solving NP-complete problems. 

The contribution of this research is the development of a new path-planning method in three 

phases. 

1. The A phase creates an obstacle-free path using a combination of two inspired algorithms: 

the RFO and GWO. A path is produced to achieve the goal of the multi-objective tasks 

described in this paper.  

2. The B phase adds mutation operations via an evolutionary algorithm (EA) to make a path 

semi-smooth. 

3. In the C phase, the RFO–GWO algorithm is enhanced by a multiphase technique that 

transforms the resulting path of sharp zigzags into a smoother path due to the reduction of 

zigzags. 

 

     The rest of this paper is organized as follows: Section 2 highlights numerous research 

approaches. Section 3 introduces population-based optimization as well as the approaches 

developed in this work for mobile robot path planning. Section 4 describes the proposed 

method. Section 5 presents a series of simulation findings to demonstrate the usefulness of the 

suggested technique compared to earlier efforts. Section 6 discusses the findings, and Section 

7 contains the conclusions and recommendations. 

 

2. Related works 

     There are three sorts of existing path planning techniques: classical algorithms, heuristic 

algorithms, and meta-heuristic algorithms [14]. The road map technique (RM), cell 

decomposition technique (CD), rapidly exploring random tree (RRT) technique, and potential 

field technique (PF) are examples of classical methodologies. Heuristic approaches include 

the D algorithm, Dijkstra's algorithm, and the A* search algorithm. algorithm (GA), an 

artificial neural network (ANN), whose modified forms are commonly employed to discover 

the optimal length of path for mobile robot path planning in several situations [15], and 

Particle Swarm Optimization (PSO) are examples of evolutionary algorithms. All of these 

algorithms and methods are widely employed for mobile robot navigation. The research in 

[16]–[18] used particle swarm optimization (PSO) for mobile robot navigation from the start 

position to the target position while bypassing barriers on the robot’s route. 
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     Numerous meta-heuristic techniques, such as nature-inspired algorithms, have also been 

employed to handle multi-objective navigation issues for mobile robots. Several prior studies 

have used examples of natural behaviors in this group. The research in [19]–[22] used Ant 

Colony Optimization (ACO) to address path planning issues in complicated settings. In [23], 

an enhanced version of ACO (IACO) is presented to achieve quicker convergence times and 

avoid trapping in a local optimum. The IACO gave the best path when compared with other 

algorithms, nevertheless; it has a low convergence speed . 

 

     Several publications have also used bio-inspired methodologies to address different 

aspects of path planning strategies. [24]–[31], a Whale Optimization Algorithm (WOA), 

applied in fixed situations to meet prerequisites for the optimization length of path and 

smoothing path [32], and in [33], [34], proposed a technique that relies on the Cuckoo 

Optimization Algorithm for planning the robot's path in a moving situation. The simulation 

findings indicate that the method finds a barrier-free and short path under a variety of 

environmental situations. 

 

     In [35], a proposal for an obstacle avoidance Robot is an autonomous robotic vehicle that 

notices barriers on its route via its detectors, avoids them, and draws a conclusion that relies 

on the internal code put into it. 

 

     To improve robot route optimization methods, hybridized meta-heuristic methods were 

also used. The goal of combining numerous metaheuristic approaches is to integrate their 

benefits to create a superior algorithm. The genetic algorithm with particle swarm 

optimization (GA-PSO) and Multi-Objective Bare Bones Using Particle Swarm Optimization 

with Differential Evolution are two hybridized ways for designing a path for a robot 

(MOBBPSO) [36], [37]. Previous studies had the constraint of seeing the mobile robot as a 

single particle. Some of these strategies were created in order to find the shortest route while 

avoiding immovable obstacles. Other research focuses on avoiding moving barriers while 

choosing the quickest path without taking the road's smoothness into account. Furthermore, 

despite the simplicity with which some of the prior research's grid-based techniques might be 

implemented, they have various shortcomings, including the imperfect performance of the 

obstruction, where even if the barrier covers just a tiny part of the cell, the full cell is 

designated for that barrier. In dynamic contexts, this wastes space and hinders adaptability. 

Faiza et al. [38] suggested a strategy based on a hybridized Gray Wolf optimizer with the 

particle swarm optimization method. The approach was based on an obstacle detection and 

avoidance method. The strategy used evolutionary mutation operations to tackle path integrity 

and smooth it down even more for an autonomous mobile robot. Several experiments were 

run in various situations to verify the probability of the suggested approach, and it was 

discovered that the method provides more viable paths with shorter distances.  

 

     Połap and Woźniak [39] presented the Red Fox Optimizer (RFO), a novel metaheuristic 

optimization technique. The RFO algorithm is dependent on red fox population behavior and 

inspired by red fox natural behaviors, such as foraging, hunting, and population growth while 

escaping hunters. This approach has lately been utilized to tackle a large number of 

optimization issues [40], [41]. The RFO method was used to solve the path planning problem 

of the autonomous mobile robot in [42]. The significance of this method is in using RFO to 

solve the navigational problems of autonomous mobile robots using polynomial logistic 

regression to reduce the fluctuations of the resulting path and produce a semi-smooth path.  

RFO was integrated with deep long- and short-term memory (LSTM) in a neural network 

(deep LSTM-RFO) technique for DR classification. Priya et al. [43] proposed integrating and 
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employing RFO to improve the performance of deep LSTM during classification. Polap et al. 

[44] developed a federated learning hybrid combining artificial intelligence training and a 

meta-heuristic, with the Red Fox Optimization algorithm acting as a representation of the 

meta-heuristic. 

     The Gray Wolf Optimization (GWO) algorithm, introduced by Mirjalili in 2014, mimics 

gray wolf hunting tactics and social leadership [45]. For tackling robot route planning 

difficulties, the GWO method [46] was suggested Click or tap here to enter text.to discover 

the best route from the start location to the goal location while bypassing barriers. In this 

work, the gray wolf optimization (GWO) approach is utilized as an obstacle avoidance 

instrument, in which an RFO is connected to it to implement target-seeking behavior, and 

evolutionary mutation operators are added to address route integrity and smooth it more for an 

autonomous mobile robot. 

 

3. Population-based optimization  

     Meta-heuristic algorithms have proved excellent at dealing with optimization problems 

involving complicated rules, and they have been commonly used in several mobile robot path 

planning challenges. In a decentralized self-organizing system, population-based meta-

heuristic (PMH) algorithms demonstrate collectively intelligent behavior. The system is made 

up of numerous individuals, and intelligent behavior is shown through interactions between 

homogenous individuals or through the environment. There is no main controller in the entire 

population, and individuals update themselves by communicating according to basic norms; 

therefore, this interaction leads to global-level intelligence. There are many instances of 

intelligent behavior in nature, including ants, birds, and fish, and several common PMH 

algorithms are utilized in mobile robot path planning situations as they are all population-

based and repetition-based algorithms that are inspired by nature or society. Their distinctions 

lie not only in the process of behavior inspiration but also in the method of exploitation or 

exploration. This study employs two such algorithms. 

 

3.1 Red fox optimization algorithm 

     Dawid Poap and Marcin Woniaki proposed the red fox algorithm for optimization 

purposes in 2021 [39]. The RFO is a mathematical depiction of red fox behavior that includes 

foraging, hunting, and population growth while fleeing from hunters. The model employs a 

replication mechanism and local and global optimization techniques. The RFO algorithm is a 

brand-new meta-heuristic optimization tool inspired by red fox hunting methods. Individuals 

with well-defined territories and nomads make up the red fox population. According to the 

alpha couple’s structure, each herd shares a specific territory, but if young animals obtain 

possession of another region, they may quit the herd; otherwise, the hunting area is passed 

from parents to their children. When the fox discovers that its prey is close, its territorial hunt 

is depicted as a global search. The fox wanders across its environment to get as close to the 

victim as possible before staging an assault. A local search is shown as a territorial traversal 

to get as close to the prey as possible before attacking it, so the RFO algorithm replicates a 

solution area reconnaissance to perform a worldwide search when the fox detects nearby prey 

while foraging. 

 

     The RFO algorithm, like other meta-heuristics, comprises exploitation and exploration. 

Exploration is characterized by the fox’s choice of prey in faraway regions, whereas 

exploitation is defined by the fox's desire to get close to the prey whenever it is feasible to 

attack it. The following describes RFO initialization: 
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     In each cycle, the population of individuals includes a set of foxes that is described by a 

point 𝑥̅ = [𝑥0, 𝑥1, … , 𝑥𝑛−1] with 𝒏 coordinates. To distinguish a fox 𝑥𝑖 in iteration 𝒕, use the 

notation ( 𝑥 𝑗
𝑖 )𝑡, where 𝒊 is the fox’s number in the population and 𝒋 is the coordinate 

depending on the size of the solution space. To achieve the best values for the criterion 

function, assume that foxes roam across the solution region using the supplied equations. 

Each fox in a herd must perform a critical role for the entire family to survive. Individuals in 

the herd will migrate to distant places to seek new territory if the habitat is empty of food. 

They share the knowledge they gain from this investigation with their family to help them 

survive and thrive. It is forecast that each individual will explore the surrounding locations 

based on their overall fitness, and the recommended strategy assumes that the best individual 

travels to the most fascinating areas and teaches this knowledge to their family. As a 

consequence, the population is sorted first by the fitness term, then the squares of each 

individual's Euclidean distance are computed (𝑥̅𝑏𝑒𝑠𝑡
 )

𝑡, and population members are pointed 

toward the best individual as follows: 

𝑑((𝑥̅𝑖)𝑡, (𝑥̅𝑏𝑒𝑠𝑡
 )

𝑡) =  √‖(𝑥̅𝑖)𝑡 − (𝑥̅𝑏𝑒𝑠𝑡
 )𝑡‖,                                        (1) 

and point population members toward the best individual. 

 (𝑥̅𝑖)𝑡=(𝑥̅𝑖)𝑡 + 𝛼𝑠𝑖𝑔𝑛((𝑥̅𝑏𝑒𝑠𝑡
 )

𝑡 − (𝑥̅𝑖)𝑡),                                                                        
  (2) 

where α ∈  (0, d((𝑥̅𝑖)𝑡, (𝑥̅𝑏𝑒𝑠𝑡
 )

𝑡 )⟩ represents a single, iterative adjustment of a randomly 

chosen scaling hyperparameter for the whole population. Individuals stay in the optimal 

location if the fitness of the most recent location is the best; otherwise, they return to their 

previous place. These operations explain the planned global search performed for each RFO 

iteration. 

 

3.2 Gray wolf optimizer algorithm 

     The GWO algorithm was suggested by Mir Jalili in 2014. It mimics the hunting technique 

and communal management of gray wolves [45]. Gray wolves are classified into four tiers in 

this algorithm based on their social hierarchy: alpha, beta, delta, and omega. An alpha wolf is 

the pack leader, and omega wolves are gray wolves at the lowest level. Scouts, guards, elders, 

hunters, and caretakers make up this group. The gray wolf hunting strategy is an intriguing 

method within the GWO algorithm, in addition to the social leader mechanism. 

 

     Another fascinating social activity of gray wolves is that they hunt in groups. First, the 

gray wolves locate the prey and circle around it under the command of the alpha wolf. The 

mathematical model of the gray wolf hunting strategy assumes that alpha, beta, and delta 

wolves provide greater information about prospective foraging positions. As a result, the top 

three optimal solutions (alpha, beta, and delta) are used to change the wolves’ placements in 

the GWO algorithm. There are no omega wolves in the GWO code [45]. The following is an 

arithmetic model of the gray wolf hunting technique: 

 

𝐷⃗⃗ 𝛼 = |𝐶 𝛼 .  𝑋 𝛼 − 𝑋 𝑖|                                               (3) 

𝐷⃗⃗ 𝛽 = |𝐶 𝛽 .  𝑋 𝛽 − 𝑋 𝑖 |                                              (4) 

𝐷⃗⃗ 𝛿 = |𝐶 𝛿  .  𝑋 𝛿 − 𝑋 𝑖|                                                    (5) 

𝑈⃗⃗ 𝛼 = 𝑋 𝛼 −  𝐴 𝛼 𝐷⃗⃗ 𝛼                                                           (6) 

𝑈⃗⃗ 𝛽 = 𝑋 𝛽 −  𝐴 𝛽 𝐷⃗⃗ 𝛽                                                       (7) 

𝑈⃗⃗ 𝛿 = 𝑋 𝛿 −  𝐴 𝛿  𝐷⃗⃗ 𝛿                                                           (8) 

𝑋 𝑖 =
(𝑈⃗⃗ 𝛼 + 𝑈⃗⃗ 𝛽 + 𝑈⃗⃗ 𝛿)

3
⁄                                           (9) 
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     where 𝐷⃗⃗ 𝛼, 𝐷⃗⃗ 𝛽 , 𝐷⃗⃗ 𝛿  denotes the distance vector between the prey and the wolf (alpha, beta, 

delta), 𝑋 𝛼, 𝑋 𝛽 , 𝑋 𝛿 denotes the location vector of the prey, 𝑋 𝑖 denotes the position vector of the 

gray wolf at 𝑖𝑡ℎ iteration, 𝐶 𝛼, 𝐶 𝛽 , 𝐶 𝛿 𝐴 𝛼, 𝐴 𝛽,𝐴 𝛿 denotes the coefficient vectors of alpha, beta, 

and delta wolves, and 𝑈⃗⃗ 𝛼, 𝑈⃗⃗ 𝛽 , 𝑈⃗⃗ 𝛿 denotes the trial vector for the alpha, beta, and delta wolves. 

The coefficient vectors for the alpha, beta, and delta wolves are as follows: 

𝐴 𝛼 = 2𝑎 𝑟 𝛼1 − 𝑎                                                            (10) 

𝐶 𝛼 = 2𝑟 𝛼2                                                               (11) 

𝐴 𝛽 = 2𝑎 𝑟 𝛽1 − 𝑎                                                            (12) 

𝐶 𝛽 = 2𝑟 𝛽2                                                                      (13) 

𝐴 𝛿 = 2𝑎 𝑟 𝛿1 − 𝑎                                                            (14) 

𝐶 𝛿 = 2𝑟 𝛿2                                                                      (15) 

 

     where 𝑎  denotes the vector that was linearly dropped from 2 to 0 throughout the 

optimization, 𝑟 𝛼1, 𝑟 𝛽1, 𝑟 𝛿1denotes the first random vector in [0,1], and 𝑟 𝛼2, 𝑟 𝛽2, 𝑟 𝛿2denotes the 

second random vector in [0,1]. Figure 1 depicts the hunting process of the gray wolf group, 

where group members adjust their places based on the alpha, beta, and delta wolves and prey. 

The gray wolves take their victim and end the hunt by attacking it. This condition is described 

as a decreasing 𝑎  vector in the mathematical model shown below: 

 

       𝑎  = 2 − 
2 .𝐼𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡
                                                    (16) 

 

 
Figure 1: The hunting technique of gray wolves [46] 

 

4. Proposed method 

     The suggested method for autonomous mobile robot path planning is described in this 

section and is based on hybridized population optimization and path-smoothing techniques. 

 

4.1 Hybrid RFO–GWO algorithm 

     To improve overall effectiveness, the best aspects of several optimization methods are 

blended to generate a hybrid optimization method. The major task here is to create a suitable 

path that will assist the robot in determining its path from the beginning point to the target 

location. The proposed research technique is a mixture or hybridization of RFO [39] and 
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GWO [45]. The path-planning issue is recast as a minimization problem. The RFO algorithm 

takes the shortest route from the fox to the target. The GWO algorithm allows the fox to move 

around its surroundings while effectively avoiding obstacles. Consider the robot environment 

in Figure 2, which clearly depicts the robot’s beginning position and objective point. The 

black line represents the robot’s path to the goal. While the fox moves around the 

environment, if the point generated by reallocating equation (2) in the RFO algorithm 

generates a line segment that connects to a previous node and goes through a barrier, the node 

is considered infeasible, or if the place is smaller than one meter from the border of any 

barriers, the fox should avoid moving there, and the GWO algorithm initializes around the 

fox’s current location to bypass the barriers on the path. The GWO algorithm will determine 

the ideal next location for the robot to move to avoid colliding with barriers on the way to its 

destination. Each step taken by the robot is determined by the distance between its optimum 

location and the goal and the barriers in its environment. 

 

 
Figure 2: RFO-GWO path planning 

 

     Initially, the RFO algorithm is initialized by generating a population around the starting 

point. The population is then evaluated by the fitness function, and a definition of the fitness 

function is necessary. This is computed for every individual in the population, where the 

fitness function is determined by the Euclidean distance between each member and the target 

location according to the following equation: 

 

𝑑((𝑥̅𝑖)𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡) =  √‖(𝑥̅𝑖)𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡‖     

  

 

     The best individual is selected depending on the values of the fitness function. The 

individual with the lowest value is the greatest member of the population, as the fitness 

function is a minimization function. Then, valid positions found by the RFO–GWO algorithm 

are added to an empty list called the location history. The first operation is to move the fox to 

the new valid position using the reallocation equation (2) that determines a new location for 

the fox. A new location toward the objective is produced at random depending on the location 
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of the best individual in the population. To reduce the time spent on reaching the goal, the 

distance between the current location of the individual and the location of the goal relies on 

choosing the random value α where α ∈  (0, d((𝑥̅𝑖)𝑡, (𝑥̅𝑡𝑎𝑟𝑔𝑒𝑡
 )

𝑡 )⟩. If the new location is 

greater than the previous location, i.e., closer to the target, and the new location generates a 

line segment that connects to a former node but does not pass an obstruction, or if this 

location is more than 20 cm from the border of any barriers, it is safe for the fox to step 

toward it. This node is considered executable and is added to the location history list; 

otherwise, the new position is infeasible.  

 

     The GWO algorithm is initialized around the current location of the fox to bypass the 

barrier in the path, as shown in algorithm (1). The current location of the fox and the current 

obstacle are given to the GWO algorithm. The wolf’s population is generated around the 

current location of the fox. The population is evaluated by calculating the distance between 

each member and the current obstacle. The fitness function is a maximization function, where 

the furthest from the obstacle is the best. The three best locations, i.e., the three locations 

furthest from the obstacle, are chosen as alpha, beta, and delta. The 𝑎 vector is calculated for 

each GWO iteration, and a coefficient vector is generated for each individual by equations 

10–15. The distance vector and trial vectors are calculated by equations (3–5) and (6–8), 

respectively; then, the new location that is furthest from the obstacle is calculated based on 

equation (9). If the wolf’s new location is better than the fox’s current location, the new 

location is valid. The GWO algorithm returns the new location to the RFO algorithm, so the 

fox moves to this location, which is then added to the location history list; otherwise, the fox’s 

current location is returned, meaning that the fox will remain in its current location for this 

iteration, as shown in algorithm (2). 

Algorithm 1: Hybrid RFO-GWO path planning algorithm 

          Input: start_ position, target_position, obstacles 

Output: path  

Setup: T is maximum iteration; n is the size of population. 

1. Generate population consisting of 𝑛 foxes around start position 

2. Create empty list named Location_history for each fox 

3.  𝑡 ∶= 0 

4. Define scaling parameter   𝛼 

5. while 𝑡 ≤ 𝑇 do 

6. Sort population based on the fitness function Eq. (17) 

7. Select (𝑥𝑏𝑒𝑠𝑡)𝑡 
8. foreach foxi in the current population do 

9. Calculate the new position of individuals according to Eq. (2) 

10. if the new location is valid then 

11. if the new position is better than previous position 

12. then 

13.         add new_position to Location_history list of foxi 

14.         Current_position = new_position 

15. else 

16.          Calculate the new_position of individuals by GWO 

17.          add new_position to Location_history list of foxi 

18.          Current_position = new_position 

19. endif 

20. else 

21.      Calculate the new_position of individuals by GWO 

22.      add new_position to Location_history list of foxi 
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23.        Current_position = new_position 

24. endif 

25. if current_position = target_position then 

26.   return the Location_history list 

27. endif 

28. end for 

29. Update fitness of each fox 

30. t++ 

31. end while 

Stop 

 

Algorithm 2: GWO obstacle avoidance algorithm 

 Input: current position of foxi, obstaclej 

 Output: path  

 Setup: 

     T is maximum iteration, C is coefficient vectors, D is distance vectors. 

  Generate population consisting of m gray wolves around current position of foxi 

  Determine the cost of gray wolves depend on distance between current location and 

obstaclej 

  Keep the better three gray wolf that have maximum cost as alpha, beta, and delta  

respectively 

  t: =0 

 while (t < T) 

   Decrease using Eq. (16) 

   foreach wolf 

     Create the C for alpha, beta, delta 

     Determine the D using Eqs. (3-5) 

     Calculate the trial vectors using Eqs. (6-8) 

     Calculate the position of gray wolf using Eq. (9) 

     If new position is valid then 

           if the new location is preferable to the current location of foxi then 

         return new position 

       else 

         return current position of foxi 

           endif 

    else 

        return current position of foxi 

    endif 

 end for 

   increase iteration one 

end while 

Stop 

 

4.2 Optimize the path using an evolutionary algorithm 

     This involves enhancing EA-based motion planning to improve the smoothness of the 

length of the path. In 1999, Fogel [47] proposed the EA as an improvement to the genetic 

algorithm (GA) because of its pliability in resolution performance. The GA is concerned with 

genotypes, whereas the EA is concerned with phenotypic fields. As EA lacks a crossover 

operation, the evolution method is carried out via mutation operations. 
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     The first population for numerous paths may be built using a valid reference path, i.e., a 

list of nodes. As illustrated in Figure 3, route P is connected with a list of M vertices: 𝑃 =
 𝑉1(𝑥, 𝑦), . . . , 𝑉𝑀(𝑥, 𝑦). The target position of an autonomous mobile robot is indicated by the 

figure’s last vertex. Path planning aims to enhance the most recent route created by the RFO–

GWO algorithm. 

 

 
Figure 3: Optimization of path planning to achieve the desired position, a path is connected 

with diverse vertices 

 

     The evolutionary process materializes through mutation. A mutation operator is commonly 

implemented for an obstacle-free route, and every path within the population develops a new 

path via the use of mutation operators [7]. This paper introduces a mutation operator called 

Erase. The work performed by this operator is explained below, and a graphic depiction is 

presented in Figure 4 [48]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A graphic illustration of the processes of an EA 

 

     To refine this further, a multiphase technique is used to find a feasible resolution to the 

problem of zigzagging on the path by breaking the problem into a sequence of sub-problems 
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that can be solved individually. Initially, the EA is applied along the path. In the next stage, 

the resulting path is divided into a number of segments that are equal to or less than a specific 

value. If the distance between points P1 and P2 is greater than the specific value, the P1 and 

P2 segments are divided into equal segments along the path. In the next step, the EA is 

applied again.  

 

5. Simulation results 

     The suggested method was evaluated by comparing the RFO and GWO. Simulations were 

performed using the Python environment, and every simulation was validated. The trials were 

simulated on a laptop running Ubuntu 20 and powered by an Intel(R) Core (TM) i7-11800H 

processor operating at 2.30 GHz with 8 GB of memory. Using three environments crowded 

with different obstacles, the size of each environment was 17,000 * 17,000 cm. Each 

algorithm was run 100 times in the same three environments. Table 1 presents a list of the 

algorithm's parameters that were used in the simulation. Fifteen individuals were initialized as 

a population within the solution space to perform the search. Table 2 displays the 

performance results. The path length, number of iterations, number of nodes, and 

consumption time were the criteria used to analyze performance. In the following paragraphs, 

the findings from the application of these algorithms will be discussed. 

 

Table 1: Supposed parameter values 
Character Depiction Value 

N Size of population of RFO 10 

t Iterations 2000 

r Random value [0,3] 

M population size 

Of GWO 

7 

it Iterations 500 

 

Table 2: Analysis and comparison of the simulated results 
Methods Map-1 

After 100 runs, the 

average time was 

taken (sec) 

Average cost 

taken after 100 runs 

Average nodes 

taken after 100 

runs 

Average path 

length(unit) for 

100 runs 

GWO 0.99 210 298 52,908 

RFO 0.955 181.65 150 51,698 

RFO-GWO 0.43 24 8.54 44,907 

MP RFO-GWO-

EA 

0.43 24 9.81 43,122 

Methods Map-2 

After 100 runs, the 

average time was 

taken (sec) 

Average cost 

taken after 100 runs 

Average nodes 

taken after 100 

runs 

Average path 

length(unit) for 

100 runs 

GWO 2.3 162 174 48,548 

RFO 1.952 105.49 80 44,513 

RFO-GWO 0.67 15 6.77 39,589 

MP RFO-GWO-

EA 

0.67 15 8 38,126 

Methods Map-3 

After 100 runs, the Average cost Average nodes Average path 
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average time was 

taken (sec)) 

taken after 100 runs taken after 100 

runs 

length(unit) for 

100 runs 

GWO 6.30 216 359 47,976 

RFO 5.39 250 200 47,508 

RFO-GWO 1.46 18 8.26 40,055 

MP RFO-GWO-

EA 

1.46 18 10.32 38,601 

 

     Table 2 provides the simulation findings for the three environments. The time taken by the 

individual who first reached the goal is shown (i.e., the least amount of time taken to produce 

a path free of obstacles and oscillations). It also indicates the cost to produce this path or the 

number of iterations that were consumed to achieve the goal. The cost was clarified in an 

expression of the number of nodes the path passed through to reach the goal, as the generation 

of each node consumed a computation cost. As noted in the results, the more complex the 

environment in terms of obstacles, the greater the time spent to reach the goal. When 

comparing environment A, which was not crowded with obstacles, with crowded environment 

C, it was noted that the convergence speed slowed with the crowding of the barriers in the 

situation. Figures 5 and 6 present an improvement in time and path length after using the 

proposed method. 

 

 
Figure 5: Summary graph of time convergence 
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Figure 6: Summary graph of path length 

 

     The path generated in environment A was the fastest to produce, as it was not crowded 

with obstacles, but it also had the longest path. In environment B, more time was taken to 

generate the path because it was crowded with obstacles, but its path was shorter and had 

fewer nodes. In other words, it was smoother compared to Environment A. In environment C, 

which was the most challenging environment for the algorithm because it was heavily 

crowded with obstacles, it took more time to generate the path, but the length of the path was 

shorter than in environment A. The results were presented after applying the multiphase 

technique and EA to the RFO–GWO algorithm. It was noticed that the number of nodes 

decreased, the path became shorter, and a smoother path was produced. 

 

     The GWO and RFO algorithms were applied to the same three maps to demonstrate the 

performance of the RFO–GWO algorithm. The resulting paths from the algorithms were 

compared in the three environments, and the RFO–GWO algorithm exceeded the GWO 

algorithm in the expressions of time, path length, and cost before the path was optimized 

using the multiphase technique and EA. After applying the multiphase technique and EA, the 

results were also better in terms of the number of nodes and path length. 

 

     Figure 6 compares the obtained results where the robot must begin to travel from the 

bottom-right corner to the destination area through the barrier situations shown in Figure 7. 

The findings reveal that the robot gets to the objective without hitting a wall (obstacle). In 

comparison, the path found using the multiphase RFO–GWO algorithm and EA approach is 

smoother, as seen in Figure 8. 

 

 

 

 

 

 

 

 

                                  (a) (b)                                         (c) 

 

 

 

 

 

 

 

 (d)  (e)  (f) 

 

 

 

 

 

 

 

 

                       (g) (h)  (i) 
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Figure 7: (a–c) RFO algorithm path planning for maps (1–3); (d–f) GWO algorithm path 

planning for maps (1–3); (g–i) path resulting from the hybrid RFO–GWO algorithm for the 

three maps, respectively 

 
 

(a)     (b)     (c) 

Figure 8: Comparison of the three maps between, before, and after using multiphase and the 

EA, where the yellow line is the original path of the RFO–GWO algorithm, the dashed line is 

the path after applying EA, and the green line is the optimized path obtained from the 

proposed multiphase RFO–GWO EA method 

 

     Notice that when comparing the results of the RFO–GWO algorithm with the RFO and 

GWO algorithms, the length of the path and the time spent producing the path became 

significantly less compared to the two algorithms, and the number of iterations and nodes 

decreased significantly. However, when comparing the RFO–GWO algorithm with the 

multiphase RFO–GWO EA method, the path length was reduced. 

 

6. Discussion 

     According to the simulation findings, the suggested multiphase RFO–GWO EA approach 

outperforms existing optimization strategies in terms of finding the shortest path. In 

particular, the combination RFO–GWO algorithm surpasses the RFO in terms of performance 

standards, as every individual in the RFO calls the GWO when they encounter an obstacle, 

which reduces the burden on the RFO. Compared to other path-planning approaches in the 

field, the suggested multiphase RFO–GWO EA method can produce more improvement. 

Table 3 compares our suggested technique to the previously discussed methods based on three 

parameters (cost, time, and path length). 

 

Table 3: Compare Between Methods 
Author Method Low Cost High 

Convergence 

Optimal 

Path 

T. F. Abaas and A. H. 

Shabeeb 2020 

PSO  [18] No Yes Yes 

G. Chen and J. Liu 2019 ACO [21], [22] Yes No Yes 

S. Hosseininejad and C. 

Dadkhah 2019 

COA [34] Yes NO Yes 

Wang et al. 2016 GA-PSO [37] Yes NO Yes 

Zhang et al. 2018 MOBBPSO  [36] NO NO Yes 

F. Hason and S. Al-Darraji 

2022 

RFO [42] NO Yes Yes 
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L. Doğan and U. Yüzgeç 

2018 

GWO [46] NO Yes NO 

Current work EA RFO-GWO Yes Yes Yes 

 

7. Conclusion and Future Work 

     In this research, a hybrid strategy for finding the optimal or semi-optimal solution to the 

path planning issue of the autonomous mobile robot was proposed. This method was applied 

on three maps in order to evaluate the technique in terms of cost and convergence time. To 

improve overall effectiveness, the best aspects of several optimization methods are blended to 

generate a hybrid optimization method. A hybrid method called Red Fox-Gray Wolfe 

Optimizer (RFO-GWO) has been proposed to improve convergence rate along with cost 

improvement (in terms of the number of nodes and the number of iterations) and path length 

improvement.  

 

     RFO was combined with GWO to take advantage of the advantages of both methods to go 

towards the goal with a low convergence time and low cost, where the improvement in the 

results was very noticeable, as the total percentage convergence time for RFO-GWO for the 

three maps was 15%, 12%, and 10% seconds, respectively, as well as the total percentage 

number of nodes for RFO-GWO, as it had 2%, 3%, and 2% nodes for the same three maps, 

and there is also a noticeable improvement in the length of the path. Then the smoothness of 

the path generated by the suggested method was improved using the evolutionary algorithm 

(EA), where the total percentage length of the path in the suggested method RFO-GWO with 

EA became 22% in units.  

 

     The simulation findings showed that the suggested hybridization EA RFO-GWO method 

demonstrated its usefulness in creating an ideal semi-smooth path by reducing the number of 

nodes and successfully navigating to its objective by avoiding static barriers in a 

straightforward and time-saving manner while maintaining the trajectory's smoothness and the 

efficiency of the path, and also outperformed current state-of-the-art solutions. Despite the 

proposed approach’s being proven to be adaptable and the efficiency of path planning, 

reinforcement learning produces superior results. Additionally, the effectiveness of the 

suggested approach is exclusively evaluated using the path planning of a single mobile robot's 

path around fixed barriers. A viable area for future study is to apply the suggested path 

planning method in an elaborate, dynamic situation with several mobile robots and a 

moveable target.  
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