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Abstract  

     Nanotechnology products such as titanium dioxide nanoparticles (TiO2-NPs) can 

be used for viral infections  because of their unique characteristics. The current study 

aimed to determine the impact of TiO2-NPs on HPV type 1 and 2 infections. The 

characterization of these NPs was performed using dynamic light scattering (DLS), 

field emission scanning electron microscopy (FESEM), high-resolution transmission 

electron microscopy (HRTEM), and X-ray diffraction (XRD). The MTT assay was 

used to determine the toxic impacts of TiO2-NPs on BHK-21 cells. The efficiency of 

TiO2-NPs was performed using several parameters, including TCID50 and RT-PCR 

assays. An indirect immunofluorescence assay (IFA) was performed to estimate the 

inhibitory impact of TiO2-NPs on viral antigen expression, and Acyclovir was used 

as a reference medicine. When the human papilloma type 1 and 2 viruses exposed to 

TiO2-NPs at high doses (100 μg/mL) produced 0.3, 1.1, 2.3, and 3.3 log10 TCID50 

decreases in infective virus load when compared with control viruses (P<0.0001), 

these TiO2-NPs doses were related to 24.9%, 35.1%, 47.2%, 59.5%, and 66.6% 

inhibition percentages that were determined depending on the viral titer as compared 

to virus control. It is concluded that TiO2-NPs have strong potential for the treatment 

of face and labial lesions caused by papillomaviruses 1 and 2 and could be used in 

topical formulations. 
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  الخلاصة 
التيتانيوم  استعمال يمكن         أكسيد  لثاني  النانوية  الجسيمات  مثل  النانو  تقنية  الفيروسية   منتجات  للعدوى 

بخصائصها الفريدة. تهدف الدراسة الحالية إلى تحديد تأثير أكسيد التيتانيوم على عدوى فيروس الورم الحليمي  
النوع   باست2و    1البشري من  النانوية  الجسيمات  إجراء توصيف  تم  المجهر    عمال.  الديناميك،  تشتت الضوء 

الدقة عالي  الانتقالي  الإلكتروني  المجهر  الميداني،  الانبعاث  لمسح  تم   الإلكتروني  السينية.  الأشعة  وانحراف 
ل  MTTاختبار    عمالاست السامة  التأثيرات  النانوية على خلايا  للتحديد  كفاءة   BHK-21جسيمات  تم إجراء   .

باست التيتانيوم  في ذلك فحوصات  العدي  عمالأكسيد  بما  المعلمات،  إجراء  RT-PCRو    TCID50د من  تم   .
لتحفيز التأثير المثبط لأكسيد التيتانيوم على تعبير المستضد الفيروسي،   المناعية غير المباشرة   الكفاءةمقايسة  

التعرض لأكسيد    2و    1الأسيكلوفير كدواء مرجعي. ينتج عن فيروسات الورم الحليمي البشري من النوع    عمالواست
ينخفض في    TCID50  10لوغاريتم   3.3،   2.3،    1.1،   0.3ميكروغرام / مل(    100التيتانيوم جرعة عالية ) 

بنسبة    TiO2-NPs، ارتبطت جرعات   (P <0.0001الفيروسات المعدية عند المقارنة مع فيروسات التحكم ) 
24.9  ،  ٪35.1  ،  ٪47.2  ، و  ٪59.5   ، تحد ٪66.6  تم  والتي  تثبيط،  نسبة  العيار  ٪  على  اعتمادًا  يدها 

علاج آفات الوجه والشفرين الناتجة عن فيروس الورم    عمال الفيروسي مقارنةً بالسيطرة على الفيروسات. يمكن است
 في التركيبات الموضعية. 2و  1الحليمي 

 

1. Introduction 

     Human papillomavirus (HPV) is considered one of the most sexually transmitted diseases 

in the world. It is a small, epitheliotropic, non-enveloped dsDNA virus that infects epithelial 

cells in a wide variety of higher vertebrates and induces cellular proliferation [1, 2]. HPVs have 

been found in more than 199 different types, with approximately half of them infecting the 

genital tract [3]. Some types of HPV have been linked to cervical cancer, while others have 

only been linked to a small number of malignancies in a large number of cases. This has led to 

the designation of high-risk and low-risk HPVs. In addition, these types of skin cancers are 

present in both normal skin and non-melanoma skin cancers [4]. HPV does not spread via toilet 

seats, although certain warts do so through the floor [5]. HPV (1 and 2) are responsible for 

developing common warts in certain infected persons, as shown in our work [6]. Cultivated 

warts on the skin are frequent in youngsters and are caused by HPV (1 and 2), although they 

disappear on their own after a few weeks to many months [6]. A regular occurrence is the 

reoccurrence of a wart infection. During the last decade, nanoscience has been widely employed 

worldwide in various applications [7]. NPs were created to treat infectious disorders and have 

special physical characteristics [8–10]. The main causes of these are the NP scale, which affects 

bioavailability and blood circulation time, and the wide-ranging surface-to-volume proportion. 

Such characteristics make the NPs potentially ideal for research and improving therapeutic 

effects [11–15]. It has been observed that the efficiency of traditional medicines is rapidly 

eroding, particularly in the case of viral infections, owing to the development of resistance, 

which might be related to a quicker adaptation in peripheral protein sequence that results in a 

new-fangled viral strain [16–20]. Because they have shown better and unique characteristics 

than their bulk material counterparts, titanium oxide nanoparticles (TiO2-NPs) have attracted 

considerable attention. These nanoparticles exhibit quantum size effects, which are 

characterized by the fact that materials' chemical and physical characteristics are highly reliant 

on the size of the particles [21–24]. When exposed to nonlethal ultraviolet light less than 385 

nm, TiO2 NPs decompose organic, photocatalytic substances by generating and constant 

liberation of hydroxyl radicals and superoxide ions. TiO2 NPs' antimicrobial effect is related to 

their crystal structure, size, and shape. The mechanism postulated for TiO2 NPs is oxidative 

stress generated by ROS. As a consequence, ROS induce site-specific DNA damage [25]. 

Madhubala et al. exhibited that the cell viability of some human cells treated with TiO2 NPs 

was significantly reduced at higher doses, as observed by the MTT assay. So the low 



Al-Musawi et al.                                        Iraqi Journal of Science, 2024, Vol. 65, No.3, pp: 1320-1330 

1322 

concentration of these NPs didn’t have any toxic effects on the cells [26]. The use of nanometer-

sized TiO2 particles has been shown to increase the antimicrobial activity of TiO2 [27]. The 

study's goal was to create methodologies for estimating the antiviral effects of TiO2-NPs against 

HPV. In this study, for the investigation of the cytotoxic effects of TiO2-NPs on BHK-21 cells, 

the MTT test was utilized. The efficiency of TiO2-NPs was measured using a variety of criteria, 

including the TCID50 and RT-PCR, among others. To assess the preventing effect of TiO2-NPs 

on viral antigen expression, IFA was carried out with Acyclovir serving as a reference 

medication. 

 

2. EXPERIMENTAL WORK 

2.1 Materials 

     TiO2-NPs was given by Merck, Germany. In order to create varying amounts of 

concentration, suspensions of the NPs in Dulbecco's modified Eagle (Shangdong, China) were 

prepared and oltra-sonicated to reduce the aggregation. Acyclovir was given by Sigma (USA), 

added to DMEM, and used as a reference drug against HPV at various levels in this study. 

 

2.2. Characterization of TiO2 NPs 

     DLS (Malvern Instruments Ltd., Malvern, UK), FESEM (Hitachi S-4160, Japan), HRTEM 

(Carl Zeiss AG-Zeiss EM900, Germany), and XRD (SIEMENS-D5000) analysis were utilized 

to evaluate the NP scale morphology and structure. 

 

2.3. Culture of virus and cell: 

     BHK-21 cells were provided by the ATCC. BHK-21 cells were grown in DMEM 

supplemented with 10% fetal bovine serum from Gibco, USA. 1 mM sodium pyruvate, 2 mM 

L-glutamine, 100 IU/mL penicillin, and 100 g/mL streptomycin (Sigma, USA). The cells were 

cultivated at 37 °C in an incubator with 5% CO2 humidity. It was decided to use an existing 

stock of the papillomavirus from Tehran University's Virology Department in Tehran, Iran. The 

viruses were grown in BHK-21 cells and leveled using the tissue culture infectious dose 50% 

(TCID50) technique [28], then stored in vials at 70 °C. 

 

2.4. Cytotoxicity assay: 

     Based on our previous study [16], the MTT assay was used to find out how TiO2-NPs 

affected the health of BHK-21 cells. A total of 100.000 cells/mL of BHK-21 cells were seeded 

on a flat-bottomed microtiter plate 96-well (Nalge Nunc (Naperville, IL)) and incubated at 37°C 

for one day. Each of the three plates was treated with different levels of TiO2-NPs (20–140 

g/mL). Afterwards, incubation of the plate for three hours at 37°C in an atmosphere without 

light after two days of incubation at 37°C with 10 L of MTT reagent (5 mg/mL) (Roche, 

Germany) added to each well It was next necessary to remove the MTT solution. Then, 50 L of 

plain dimethyl sulfoxide (Sigma, USA) was added to each well of the plate and agitated for 10 

minutes at (25%). Finally, reading of the plate was done by the microplate reader at 550 nm 

(Synergy 4, USA), and the rate of cell survival for the used levels was computed concerning 

the normal cells. 

 

2.5. Antiviral activity: 

     BHK-21 cells in confluent monolayers on a 96-well microtiter plate were treated with 100 

TCID50/mL papillomavirus for 60 minutes at 37 °C in a humidified atmosphere containing 5% 

CO2. Afterwards, the viral inocula were removed, and the monolayers were washed several 

times with PBS to eliminate any remaining viruses. Afterwards, the infected cells were treated 

with 100 L of various noncytotoxic doses of TiO2-NPs, then incubated on the plate for two 

days at 37 °C with 5% CO2. Additionally, cell control and viral control were studied. Our 



Al-Musawi et al.                                        Iraqi Journal of Science, 2024, Vol. 65, No.3, pp: 1320-1330 

1323 

experiment was carried out for Acyclovir. After that, the incubation time is specified, treating 

the cells with a single freezing-thawing cycle to release the virus particles connected with the 

cells. Finally, the lysates were collected from the wells and used for the TCID50 and 

quantitative RT-PCR tests, as previously described [11]. 

 

2.6. RT-PCR: 

     DNA extraction of papillomavirus is carried out by the gDNA Extraction Mini Kit (Qiagen, 

UK) by using a pair of primers (5′-GAGAACTGCAATGTTTCAGGACC3-3′ and 5′-

TGTATAGTTGTTTGCAGCTCTGTGC3-3′) on a 65-bp fragment of the L1 region by 

quantitative RT-PCR. The temperature conditions are adapted as [29–30]. RT-PCR was done 

by Rotor-Gene Q (Qiagen, UK). The plasmid includes 65-bp DNA, while the L1 gene is 

represented as a template. Amplification of the segment was then cloned into the pGH vector 

by Generay Biotech (a Shanghai company, China). The stock solution was used as a standard 

solution, which is made from a template (4) μg with dilution buffer (40) μL. The template DNA 

concentration was evaluated by NanoDrop (Fisher, USA), and the total number of DNA copies 

was calculated by the website (http://cels.uri.edu/gsc/cndna.html). The serial dilution of the 

stock solution was tenfold so as to form the curves. Papillomavirus copies were determined as 

standard references. 

 

2.7. Indirect immunofluorescence assay: 

     Sterile glass (Sigma-Aldrich, USA) was used to put into the wells of a 24-well growth plate 

to cultivate BHK-21 cells (Qiagen, UK). For 60 minutes at 37 oC, the cells were treated with 

200 L of a papillomavirus solution containing 100 TCID50/mL papillomavirus solution. It was 

then replaced with ZnO-NPs at the greatest noncytotoxic concentration feasible, and the plate 

was incubated at 37 °C for a day. Controls were employed in this experiment as cell controls 

and virus controls. The cells were treated with papillomavirus antibody after 14 hours of 

incubation, followed by 15 minutes of acetone fixation and 45 min at ambient temperature, 

before the cells were rinsed triplicate in PBS and incubated for forty min at 25 °C with goat 

anti-human IgG conjugated with (FITC) from Sigma-Aldrich (USA). The cells were then 

washed in triplicate in PBS and treated for another 40 minutes at 25 °C (Tokyo, Japan) [21, 31–

33]. 

 

2.8. Statistical analysis: 

     The mean of three different experiments is represented by the data, while the error bars 

represent the SD. GraphPad Prism was used to conduct a one-way analysis of variance and 

Tukey's multiple test for forming significant differences at p-values less than 0.05. 

 

3. RESULTS AND DISCUSSION 

3.1 Characterization 

     The structural and morphological evaluation of TiO2-NPs performed by FE-SEM and TEM 

revealed different particle shapes and sizes, with a spherical shape with a mean size of 50 nm 

(Figure 1). 
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Figure 1: FESEM image of TiO2-NPs (10 kx) (A); TEM image of TiO2-NPs (B). The 

morphological and structural examination of TiO2-NPs showed particle shape and size, with a 

semi-spherical shape with a mean size of 50 nm 

 

3.2. MTT results: 

     The findings demonstrate that when the concentration of TiO2-NPs was increased to 120 

g/mL, the cell viability decreased to 60.03% compared to control cells (Figure 2). The MTT 

test was used to determine the cytotoxic impact of TiO2 nanoparticles on BHK-21 cells that had 

been infected with the papillomavirus. (See Figure 2 for an example.) That demonstrates the 

vitality of BHK-21 cells when exposed to concentrations of 20, 40, 60, 80, 100, and 120 g/mL 

of TiO2-NPs (P = 0.0001), respectively. As a consequence of increasing the TiO2-NPs 

concentration to 120 g/mL, the viability of the cells was reduced to 48.32% compared to the 

control cells. Vertical lines in a graph show the median values of three separate trials. As 

previously reported, antiviral experiments were performed at TiO2 nanoparticle concentrations 

with less than 10% cytotoxic impact [37–40]. 

 

 
Figure 2: toxic effect of TiO2-NPs on BHK-21 cell by MTT techniques showed an increase in 

TiO2-NPs concentration to 120 μg/mL, while the cell viability decreased to 60.03%. The 

vertical lines are the mean values of the three experiments 

 

3.3. Evaluation of antiviral activity 

     When compared to acyclovir, both the viability of BHK-21 cells and the TCID50 test used 

to measure how well TiO2-NPs killed the infectious papilloma titer were higher. Papilloma 
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virus-infected BHK-21 cells were exposed to TiO2 nanoparticles at levels of 20, 40, 80, and 

100 g/mL. Compared to the viral control, the infectious titer of Papillomavirus dropped by 0.3, 

1.1, 2.3, and 3.3 log10 TCID50, respectively (Figure 3) 

 

 
Figure 3: Antiviral activity of TiO2-NPs on Papilloma virus by TCID50 technique as compared 

with Acyclovir. The exposed Papillomavirus of the infected cells with 20, 40, 80, and 100 

μg/mL TiO2-NPs produced 0.3, 1.1, 2.3, and 3.3 log10 TCID50 decreases in the Papillomavirus 

as compared to virus control 

 

3.4. Cytopathic effects: 

     Pathological effects on BHK-21 cells caused by Papillomavirus infection were observed in 

this work, indicating that infected Papillomavirus BHK-21 cells with 100 g/ml of TiO2-NPs 

exhibited the presence of TiO2-NPs in the pathologically affected cells. The creation of syncytia 

and cell rounding are three separate cytopathic effects that occur in the organism's body. 

Infected Vero cells with Molluscum contagiosum were treated with TiO2-NPs, and the 

cytotoxic effects of the infection were minimized. Notably, the TiO2-NP at the highest level 

tested (100 g/ml) was linked with a cytotoxic impact on the BHK-21 cells in the range of 10% 

to 15% cytotoxicity [41–43]. As a result, the morphology of the cells has been changed in 

specific locations compared to the control cells, which is not connected to the papilloma virus-

induced cytopathic effects (Figure 4).  

 

 
Figure 4: TiO2-NPs were used to inhibit the papilloma virus-induced cytopathic effect on BHK-

21 cells in vitro. TiO2-NPs were used to treat papilloma virus-infected cells. (A) cell control; 

(B) viral control; and (C) papilloma virus-infected cells with 100 g/ml of TiO2-NPs  
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3.5. Real Time PCR: 

     RT-PCR was used to analyze the influence of TiO2-NPs on the papilloma viral load. A 127-

bp fragment of the US3 gene of the papillomavirus was amplified using SYBR Green 

Quantitative PCR Master Mix to determine the effect of TiO2-NPs on the papilloma viral load. 

This is seen in Figure 5, which depicts the effect of TiO2-NPs on papilloma viral load as 

assessed by real-time PCR. When applied to Papillomavirus viral load, TiO2-NPs at the levels 

of 20, 40, 60, 80, and 100 g/mL resulted in 24.9%, 35.1%, 47.2%, 59.5%, and 66.6% inhibition 

rates, respectively, which were assessed based on the viral load. 

 

 
Figure 5: shows the effects of TiO2-NPs against the papilloma virus using RT-PCR. TiO2-NPs 

at the 20, 40, 60, 80, and 100 μg/mL concentrations led to 24.9%, 35.1%, 47.2%, 59.5%, and 

66.6% inhibition percentages, which were estimated to depend on the papilloma viral load 

 

3.6. IFA assay: 

     It was decided to use an IFA test to evaluate the inhibitory effects of TiO2-NPs on the 

antigens expressed by the papillomavirus on the surface of the BHK-21 cells. By employing 

the immunofluorescence test, we were able to determine the influence of TiO2-NPs on the 

expression of Molluscum contagiosum antigens on BHK-21 cells in this experiment (IFA). 

According to the results of virus control, cell control, and papilloma-infected cells with 100 

g/mL TiO2-NPs experiments, the level of fluorescence signals in Papilloma virus-infected cells 

with TiO2-NPs was lower than the level of fluorescence signals in the virus-control cells, 

showing that TiO2-NPs had a substantial antiviral effect on the expression of Papillomavirus 

antigens. Green dots in Figure 6C represent viral antigens expressed in distinct cell 

compartments stained with anti-IgG coupled with fluorescein isothiocyanate to visualize viral 

antigen expression (FITC) [44–51]. 

 
Figure 6: Immunofluorescence assay (A): treated infected cells with HPV; (B) and (C): 

intensity of fluorescence signals in papilloma virus-infected cells with TiO2-NPs 
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4. Discussion: 

     Nanoparticles have been extensively investigated for their potential uses in various sectors, 

including medication delivery systems and antibacterial agents [50]. Furthermore, nanoparticles 

have been shown to have broad-spectrum antiviral activity, suggesting that they may have a 

multi-targeting mode of action [51–53]. It has been reported that the antibacterial activity of 

TiO2 nanoparticles against multi-antibiotic-resistant strains of E. coli, P. aeruginosa, S. aureus, 

and P. putida, as well as exposed spores of Bacillus to UV and fluorescent rays, increased with 

an increase in the TiO2-NPs level. The effects of UV were more successful due to the 

appropriate bandgap energy of UV light and the greater hydroxyl radical level on the coated 

film surface. TiO2 showed photocatalytic effects. Therefore, it is used in several applications, 

such as waste water and air purification, as a self-cleaning or antimicrobial agent, or for self-

disinfecting substances [54]. Because of their considerable side effects and the rising 

occurrence of medicine-resistant strains throughout therapy [55], the present antiviral 

medications against HPV are weakening, and the production of new anti-HPV agents is needed. 

Comparing nanoparticles for therapeutics to traditional treatments, there are various benefits, 

including efficiency at lower doses, powerful antiviral action against medicine-resistant viruses, 

cheap cost of manufacturing, and appropriateness for various coating types [56, 57]. According 

to the findings of this research, TiO2 nanoparticles effectively inhibit the activity of 

papillomavirus types 1 and 2. The antiviral activity of TiO2 nanoparticles was investigated using 

HPV types 1 and 2. During the inhibition tests, BHK-21 cells and/or virus solutions were treated 

with TiO2 nanoparticles at various periods to determine the various phases of viral infection 

that may be prevented. The results demonstrated that TiO2 NPs decrease HPV infections by 

blocking the attachment, preventing the virus entrance inside the cells, and preventing the virus 

from spreading among the cells. 

 

5. Conclusions: 

     In summary, according to our findings, we show for the first time that TiO2-NPs are 

associated with significant antiviral potency against HPV. TiO2-NPs appear to possess wide 

anti-HPV efficacy, presenting new pharmaceutical possibilities. The antiviral behavior of 

TiO2-NPs is considered to be described by a number of experimental processes, including the 

TCID50 test, antiviral efficacy, inhibiting the Papilloma virus-induced cytopathic effect, gene 

expression inhibition percentage, and antigen expression. It is concluded that TiO2-NPs have 

strong potential for the treatment of face and labial lesions caused by papillomaviruses 1 and 2 

and could be used in topical formulations. 
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