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Abstract  

     One of the quasi-Newton update formulae, namely the Davidon-Fletcher-Powell 

method, is crucial for resolving nonlinear programming optimization problems. In 

order to achieve a Newton-like condition that depends on the function values and 

gradient vectors at each iteration, we construct an alternative positive-definite Hessian 

approximation in this study. The essential theorems are established to study algorithm 

convergence. The proposed approach is then tested on well-known test problems and 

then compared to the standard DFP method. The numerical outcomes demonstrate the 

effectiveness of the newly developed method.  

 

Keywords: Quasi-Newton Methods, Nonlinear optimization, Unconstrained 

optimization, DFP update.  

 

1. Introduction 

     Nonlinear programming is an important method since so many objects in our                                    

environment do not act linearly.  A drug's efficacy needs not double just because the dosage is 

doubled. A project may not be finished twice as quickly because twice as many individuals are 

working on it. In research and engineering, nonlinear models are often used. Nonlinear models 

may also be used in commercial applications, notwithstanding their rarity, such as the 

administration of investment portfolios. In this situation, the objective may be to choose an 

investment mix that maximizes return while minimizing risk. The model's nonlinearity results 

from the consideration of risk. 

 

     The most known class of problems in optimization takes the form: 

 

min 𝑓(𝑥), 𝑥 ∈ ℝn,                                                                   (1) 

 

      where 𝑓(𝑥) is twice continuously differentiable. To solve the unconstrained optimization 

problem (1), several methods have been proposed such as Newton's methods [1]–[3], quasi-

Newton methods [4], [5], trust-region methods [6], [7], and conjugate gradient methods [8], [9]. 

One of Newton's method [1] benefits is that it can only discover a solution rapidly and correctly 

if the function 𝑓(𝑥) is quadratic. However, if the function is not quadratic, the  method has 

flaws as it may fail, especially if the Hessian 𝐻(𝑥) of the objective function being minimized 
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is not positive definite or if the starting point 𝑥0 is not close to the solution to a sufficient degree. 

Newton's method computational cost dramatically increases with the increasing number of 

variables of the function 𝑓(𝑥). To eliminate the difficulties mentioned above, quasi-Newton 

methods are a better option. [4]–[6], [10], [11] and such methods differ from each other through 

the alternative update formulas developed to approximate the Hessian matrix (or its inverse). 

These methods compute successive iterates using the following formula: 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘,      𝑠𝑘 = 𝛼𝑘𝑑𝑘,           𝑘 ≥ 0,                                         (2) 

 

where a step size 𝛼𝑘 > 0  is exactly defined as [1]: 

𝛼𝑘 = −
𝑔𝑘

𝑇𝑑𝑘

𝑑𝑘
𝑇Q 𝑑𝑘

                                                                       (3) 

     for quadratic functions with a positive definite matrix 𝑄,  𝑔𝑘 = 𝑔(𝑥𝑘) is the gradient of 𝑓 

(x) at 𝑥𝑘, and 𝑑𝑘 is the search direction computed by quasi- Newton methods using [7]–[9]: 

 

𝐵𝑘𝑑𝑘 = −𝑔𝑘,    𝑘 ≥ 0 ,                                                             (4) 

 

     where 𝐵𝑘 approximates the Hessian matrix 𝐻𝑘. For non-quadratic functions, 𝛼𝑘 is computed 

using some line search algorithm that satisfies certain criteria to be stated later. Quasi-Newton 

updates generally satisfy the relation: 

𝐵𝑘+1𝑠𝑘 = 𝑦𝑘,           (5) 

 

 for   𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘  and     𝑠𝑘  as in (2).  One of the early updating formulae is due to 

Davidon, Fletcher and Powell (DFP) [12] and is given by: 

 

𝐵𝑘+1
𝐷𝐹𝑃 = (𝐼 −

𝑦𝑘𝑠𝑘
𝑇

𝑦𝑘
𝑇𝑠𝑘

) 𝐵𝑘 (𝐼 −
𝑠𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

) +
𝑦𝑘𝑦𝑘

𝑇

𝑠𝑘
𝑇𝑦𝑘

. 

 

     A crucial part of employing the quasi-Newton approach is the update formula, which creates 

a matrix 𝐵𝑘+1 from the existing matrix 𝐵𝑘 using the data available at the kth iteration. The 

numerical behavior of the approaches is influenced by this formula. It is intended that the 

matrices that are subsequently constructed would come as near as they can to the real Hessian. 

In the literature, there are a number of well-known updates of B k that meet the traditional 

Secant equation (1), but numerically, none of them have been able to match the well-known 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula which is described as follows [11], [13], 

[14]: 

𝐵𝑘+1
𝐵𝐹𝐺𝑆 = 𝐵𝑘 +

𝑦𝑘 𝑦𝑘
𝑇

𝑦𝑘
𝑇𝑠𝑘

−
𝐵𝑘 𝑠𝑘𝑠𝑘

𝑇𝐵𝑘
𝑇

𝑠𝑘
𝑇𝐵𝑘𝑠𝑘

. 

 

     The BFGS update formula is the most successful of all the quasi-Newton approaches, 

according to reported numerical results. The method converges finitely in a maximum of n 

iterations on quadratic functions if and only if  𝑦𝑘
𝑇𝑠𝑘 > 0, for 𝑦𝑘 and 𝑠𝑘 as in (5).  Convergence 

is still a problem for generic functions even though global and superlinear convergence is 

demonstrated for convex functions [9], [13]. Demonstrate that the conventional BFGS method 

might not converge on generic functions even with precise line search. When dealing with non-

convex functions, the standard BFGS approach may fail when the accurate line search is being 

employed as illustrated in [14] with the aid of an example. 
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     In many optimization algorithms, scholars often use the Wolfe-Powell (WP) line search 

technique to find step length, see [1], [15]. The Wolfe-Powell (WP) line search technique is 

determined by:  

                      𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘, 

  𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘 ≤ 𝜎𝑔𝑘
𝑇𝑑𝑘 ,                                                               (6) 

where 10   . The above discussion motivates us to seek an improved optimization 

algorithm that may obtain better numerical performance. 

 

     In this paper, we suggest a new quasi-Newton method which is a variant of the DFP formula. 

This is derived in Section 2. The convergence analysis of the method follows in Section 3. 

Numerical test results are presented in section 4. The conclusions follow in Section 5. 

 

 2. Development of a New Matrix with an Alternative Update to the Hessian Matrix 

    Zengxin et al. [16] presented a variant update of the BFGS formula as follows: 

                        𝐵𝑘+1 = 𝐵𝑘 +
𝑦𝑘

𝑚∗ 𝑦𝑘
𝑚∗𝑇

𝑠𝑘
𝑇𝑦𝑘

𝑚∗ −
𝐵𝑘 𝑠𝑘𝑠𝑘

𝑇𝐵𝑘
𝑇

𝑠𝑘
𝑇𝐵𝑘𝑠𝑘

, 

yk
m∗ = 𝑦𝑘 +

𝜌𝑘

‖𝑠𝑘‖2 . 𝑠𝑘,     𝜌𝑘 = 2(𝑓𝑘 − 𝑓𝑘+1) + (𝑔𝑘 + 𝑔𝑘+1)𝑇𝑠𝑘 .                      (7) 

Since the matrix 𝐵𝑘+1 approximates the true Hessian matrix 𝐻𝑘+1 for which the following 

holds: 

 

𝑠𝑘
𝑇𝐻𝑘+1𝑠𝑘 = 𝑦𝑘

𝑇𝑠𝑘 + 2(𝑓𝑘 − 𝑓𝑘+1) + (𝑔𝑘 + 𝑔𝑘+1)𝑇𝑠𝑘,                                                 (8) 
1

𝑛
𝑠𝑘

𝑇𝐻𝑘+1𝑠𝑘 =
1

𝑛
𝑦𝑘

𝑇𝑠𝑘 +
2

𝑛
(𝑓𝑘 − 𝑓𝑘+1) +

1

𝑛
(𝑔𝑘 + 𝑔𝑘+1)𝑇𝑠𝑘,    𝑛 > 0,                           (9) 

 

and 

𝑠𝑘
𝑇𝐻𝑘+1𝑠𝑘 =

1

𝑛
𝑦𝑘

𝑇𝑠𝑘 +
2

𝑛
(𝑓𝑘 − 𝑓𝑘+1) +

1

𝑛
(𝑔𝑘 + 𝑔𝑘+1)𝑇𝑠𝑘 + (

𝑛−1

𝑛
) 𝑠𝑘

𝑇𝐻𝑘+1𝑠𝑘.             (10A) 

 

Substituting (3) and (10) in (9), we get: 

 

𝑠𝑘
𝑇𝐻𝑘+1𝑠𝑘 =

1

𝑛
𝑦𝑘

𝑇𝑠𝑘 +
2

𝑛
(𝑓𝑘 − 𝑓𝑘+1) +

1

𝑛
𝑔𝑘+1

𝑇 𝑠𝑘 + (
2−𝑛

𝑛
) 𝑔𝑘

𝑇𝑠𝑘.                       (10B) 

 

Since  𝐵𝑘+1 approximates the Hessian matrix 𝐻𝑘+1, (11) can be replaced with: 

𝑠𝑘
𝑇𝐵𝑘+1𝑠𝑘 =

1

𝑛
𝑦𝑘

𝑇𝑠𝑘 +
2

𝑛
(𝑓𝑘 − 𝑓𝑘+1) +

1

𝑛
𝑔𝑘+1

𝑇 𝑠𝑘 + (
2 − 𝑛

𝑛
) 𝑔𝑘

𝑇𝑠𝑘. 

 

According to the quasi- Newton condition (5), the following formula then follows from the 

above expression for 𝑠𝑘
𝑇𝐵𝑘+1𝑠𝑘: 

𝐴𝑘 =
1

𝑛
𝑦𝑘 +

2
𝑛

(𝑓𝑘 − 𝑓𝑘+1) +
1
𝑛

𝑔𝑘+1
𝑇 𝑠𝑘 + (

2 − 𝑛
𝑛

) 𝑔𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

𝑦𝑘,     𝑠𝑘
𝑇𝑦𝑘 ≠ 0 .        (11) 

 

We use the proposed formula 𝐴𝑘 to develop the following DFP-variant and thus we get a new 

update matrix as follows: 

 

𝑀𝑘+1
𝐻𝐴𝑆𝐷𝐹𝑃 = (𝐼 −

𝑦𝑘𝑠𝑘
𝑇

𝑦𝑘
𝑇𝑠𝑘

) 𝑀𝑘 (𝐼 −
𝑠𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

) +
𝑦𝑘𝑦𝑘

𝑇

𝑠𝑘
𝑇𝐴𝑘

   .                                                       (12) 

   

 Based on the above discussion, we describe the algorithmic outline of the proposed method as 

follows: 
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The IHMSDFP algorithm 

Step 0: 𝑥0 ∈ ℝn, 𝑀0 = 𝐼𝑛∗𝑛, 𝜀 > 0, set 𝑘 = 0. 
Step 1: if ‖𝑔(𝑥𝑘)‖ ≤ 𝜀  then stop, otherwise go to step2. 

Step 2: Compute 𝑑𝑘𝑀𝑘 = −𝑔𝑘. 
Step 3: Compute the step size 𝛼𝑘 along direction 𝑑𝑘   so that the Wolf-Powell conditions (6) 

are satisfied.  

Step 4: Let 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, if ‖𝑔𝑘+1‖ ≤ 𝜀 then stop. 

Step 5: set 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘,  𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘. 

Step 6: find  𝐴𝑘 from (11). 

Step 7: update 𝑀𝑘+1 by the formula(12). 

Step 8: set k = k+1, go to step2. 

 

Theorem 2.1.  

   The IHMSDFP method presented with the search direction and the step length satisfies the 

Wolf-Powell conditions  (6), then 𝑀𝑘+1
𝐻𝐴𝑆𝐷𝐹𝑃generates positive definite updates, for all 𝑘 ≥ 0, 

provided the following condition is fulfilled: 

 

𝑠𝑘
𝑇𝐴𝑘 > 0        , ∀𝑛, 𝑘 > 0 .                                                         (13) 

Proof: 

𝑠𝑘
𝑇𝐴𝑘 =

1

𝑛
𝑦𝑘

𝑇𝑠𝑘 +
2

𝑛
(𝑓𝑘 − 𝑓𝑘+1) +

1

𝑛
𝑔𝑘+1

𝑇 𝑠𝑘 + (
2−𝑛

𝑛
) 𝑔𝑘

𝑇𝑠𝑘                                 (14) 

                        =
1

𝑛
(𝑔𝑘+1 − 𝑔𝑘)𝑇𝑠𝑘 +

2

𝑛
(𝑓𝑘 − 𝑓𝑘+1) +

1

𝑛
𝑔𝑘+1

𝑇 𝑠𝑘 + (
2 − 𝑛

𝑛
) 𝑔𝑘

𝑇𝑠𝑘 ,           

which yields: 

              𝑠𝑘
𝑇𝐴𝑘 =

2

𝑛
(𝑓𝑘 − 𝑓𝑘+1) +

2

𝑛
𝑔𝑘+1

𝑇 𝑠𝑘 + (
1−𝑛

𝑛
) 𝑔𝑘

𝑇𝑠𝑘.                                               (15) 

From (12) and (13), it follows that 𝑓𝑘 − 𝑓𝑘+1 ≥ −𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 = −𝛿𝑔𝑘

𝑇𝑠𝑘, when substituted in 

(15) yields: 

                     𝑠𝑘
𝑇𝐴𝑘 ≥ −

2

𝑛
𝛿𝑔𝑘

𝑇𝑠𝑘 +
2

𝑛
𝜎𝑔𝑘

𝑇𝑠𝑘 + (
1−𝑛

𝑛
) 𝑔𝑘

𝑇𝑠𝑘 = 𝑐𝑔𝑘
𝑇𝑠𝑘                          (16) 

where 𝑐 =
−2𝛿+2𝜎+1−𝑛

𝑛
< 0. But we also have: 

𝑠𝑘
𝑇𝐴𝑘 ≥ 𝑐𝑔𝑘

𝑇𝑠𝑘 > 0.                                                           

Hence, the proof is complete. 

 

     In the next section, we show that our method is globally convergent even without convexity 

assumptions on the objective function. 

 

 3. CONVERGENCE ANALYSIS 

     Throughout this section, we assume that the gradient is not equal to zero for all k ≥ 1, 

otherwise a stationary point is found. In order to proceed with the convergence analysis, the 

following basic assumptions on the objective function are considered. 

 

Assumptions  

i.The level set Ψ = {𝑥 ∈ ℝn| 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded. 

ii.The gradient vector satisfies the Lipchitz condition [2] and is continuous on the neighborhood 

N of the group Ψ, and there is a constant L> 0 such that: 

      ‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ for all 𝑥 and 𝑦 from  𝑁, there exist constants 𝑢, 𝑏 ≥ 0  such 

that  ‖𝑔𝑘‖ ≤ 𝑢, for all 𝑥, and ‖𝑥‖ ≤ 𝑏. Since  kf  is a declining series, it is clear that the series 

 kx  generated by a new Algorithm is found in Ψ, and there exists a constant 
*f  such that: 
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*lim ff k

k
=

→
                                                   (17) 

See [17], [18]. 

Theorem 3.1. 

   Let {𝑥𝑘} be generated by the new method, and the following inequality holds: 

 

                 ‖𝐵𝑘𝑠𝑘‖ ≤ 𝑚1‖𝑠𝑘‖,   𝑠𝑘
𝑇𝐵𝑘𝑠𝑘 ≥ 𝑚2‖𝑠𝑘‖2,      𝑚1 > 0 , 𝑚2 > 0  ,              (18)   

then the following holds 

lim
𝑘→∞

inf‖𝑔𝑘‖ = 0.                                                      (19) 

Proof: 

Since 𝐵𝑘𝑑𝑘 = −𝑔𝑘, we have: 

                              ‖𝐵𝑘𝑑𝑘‖ ≤ 𝑚1‖𝑑𝑘‖,   𝑑𝑘
𝑇𝐵𝑘𝑑𝑘 ≥ 𝑚2‖𝑑𝑘‖2,                      (20)   

 

By using (6) and assumption (ii), we have: 

                     
2

1 )()1( kkk

T

kkk

T

k dLdggdg  −−− +
,                                  (21)   

This implies that: 

                 

            
~

22

)1()1()1(
k

k

kk

T

k

k

k

T

k

k
L

m

dL

dBd

dL

dg



 =

−


−
=

−−
                       (22)   

 

on the other hand, from (17), we obtain: 

                            *

111

1

1

1

1 )(lim)(lim)( ffffffff k
N

k

kk
N

k

kk −=−=−=− +
→



=

+
→



=

+  .                           (23) 

which yields: 

                 ,)(
1

1 +−


=

+

k

kk ff                                                         (24) 

Using (16), we get: 

                 +−


=1k

k

T

kk dg                                                         (25) 

which ensure: 

                 0lim =−
→

k

T

kk
k

dg                                                         (26) 

this together with (22) leads to: 

                                                0limlim =−=
→→

k

T

k
k

kk

T

k
k

dgdBd                                       (27) 

Which along with (20) yields (19). 

 

4. Numerical results and discussions 

     The numerical experimental findings on 48 test functions discussed in [18] are provided in 

this section. We compare and contrast the two approaches, DFP and IHMSDFP. The stopping 

condition is set to ‖𝑔𝑘‖ ≤ 10−6 for all methods. A list of the test functions is presented in Table 

1.  All the problems are solved utilizing MATLAB on a Intel (R) Core TM i3-4005U (1.70GHz) 

CPU, with 4 GB RAM. In some cases, the computation was terminated due to the failure of the 

line search to find an acceptable step size and thus those were considered failures. Numerical 

results are compared in terms of the number of evaluations of the function (NF) and the number 

of iterations. Figures 1 and 2 are performance profiles created with a performance profile tool 

developed by Dolan and More (see  [19]–[20]). Table 2 reports the numerical results. 
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Table 1: A list of test functions 

P.NO FUNCTION 𝒙𝟎 

1 Extended Trigonometric [0.2,0.2] 

2 Extended Rosenbrock [-1.2,1] 

3 Extended White & Holst [-1.2,1] 

4 Extended Beale [1,0.8] 

6 Extended Penalty [1,2] 

7 Perturbed Quadratic [0.5,0.5] 

8 Raydan 1 [1,1] 

9 Raydan 2 [1,1] 

10 Diagonal 2 [1,0.5] 

11 Diagonal 3 [1,1] 

12 Hager [1,1] 

13 Generalized Tridiagonal 1 [2,2] 

14 Extended TET [0.1,0.1] 

15 Diagonal 4 [1,1] 

16 Diagonal 5 [1.1,1.1] 

17 Extended Himmelblau [1,1] 

18 Generalized PSC1 [3,0.1] 

19 Extended PSC1 [3,0.1] 

20 Full Hessian FH1 [0.01,0.01] 

21 Full Hessian FH2 [0.01,0.01] 

22 Extended BD1 [0.1,0.1] 

23 Extended Cliff [0,−1] 

24 Perturbed quadratic diagonal [0.5,0.5 

25 Extended Wood [−3,−1,−3,−1] 

26 Quadratic QF1 [1,1] 

27 Extended quadratic penalty QP1 [1,1] 

28 Quadratic QF2 [0.5,0.5] 

29 Extended Tridiagonal 2 [1,1] 

30 FLETCHCR [0,0] 

31 ARGLINB [1,1] 

32 Partial Perturbed Quadratic [0.5,0.5] 

33 Broyden Tridiagonal [−1,−1] 

34 Almost Perturbed Quadratic [0.5,0.5] 

35 Perturbed Tridiagonal Quadratic [0.5,0.5] 

36 Staircase 1 [1,1] 

37 Staircase 2 [4,4] 

38 LIARWHD [4,4] 

39 POWER [1,1] 

40 ENGVAL1 [2,2] 

41 EDENSCH [0,0] 

42 CUBE [−1.2,1] 

43 NONSCOMP [3,3] 

44 QUARTC [2,2] 

45 SINQUAD [0.1,0.1] 

46 COSINE [1,1] 

47 SINE [1,1] 

48 Generalized Quartic [1,1] 
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Table 2: test results 
IHMSDFP DFP P.No 

norm f NF IT norm f NF IT  

1.3125e-12 1.3093e-24 24 7 4.72e-08 2.65428e-16 33 8 P1 

4.8622e-09 2.5091e-19 66 21 F F F F P2 

5.5971e-09 1.0356e-20 45 14 F F F F P3 

1.8316e-08 3.4371e-18 30 9 5.71e-06 3.15035e-13 78 24 P4 

0 0.1472 24 7 1.55e-05 0.14722 87 28 P5 

3.6666e-13 8.2874e-25 15 4 3.1e-07 2.59322e-14 21 6 P6 

0 0.3 15 4 5.81e-07 0.3 39 12 P7 

0 2 6 2 0 2 6 2 P8 

0 1.8466 15 4 1.15e-06 1.84657 30 9 P9 

0 1.6877 15 4 4.47e-08 1.68773 30 9 P10 

0 1.9241 15 4 4.47e-08 1.92408 21 6 P11 

3.3263e-07 1.6560e-14 39 12 2.74e-06 2.02173e-12 75 24 P12 

0 2.5593 15 4 6.26e-07 2.55927 45 13 P13 

4.4551e-10 7.8236e-22 12 3 4.57e-05 4.51506e-10 21 5 P14 

0 1.3863 6 2 2.98e-08 1.38629 18 5 P15 

6.3672e-07 2.4966e-15 21 6 F F F F P16 

0 1 15 4 0.000105 1 144 47 P17 

0 0.7732 18 5 2.38e-05 0.773199 114 37 P18 

7.5226e-07 1.0291e-13 51 16 9.57e-07 6.56476e-10 51 13 P19 

1.1110e-09 1.2836e-19 15 4 9.39e-06 1.78114e-11 36 11 P20 

5.6579e-12 0 9 2 1.83e-09 2.35923e-16 27 5 P21 

F F F F F F F F P22 

5.4698e-10 1.5463e-19 12 3 2.36e-08 1.38121e-15 30 6 P23 

3.7932e-07 1.2454e-16 81 26 F F F F P24 

0 -0.25 18 5 6.93e-07 -0.25 21 6 P25 

0 1.1250 21 6 4.72e-06 1.1250 27 7 P26 

0 -1.0562 15 4 7.67e-07 -1.0562 30 7 P27 

0 0.3897 6 2 1.86e-08 0.3897 15 3 P28 

2.8467e-10 6.4794e-24 12 3 0.000171 2.06283e-11 18 4 P29 

5.7528e-07 2.7079e-10 6 2 9.67e-05 2.77382e-07 42 12 P30 

1.5662e-10 3.0643e-21 15 4 2.48e-07 5.99569e-15 15 3 P31 

2.9279e-11 3.6895e-23 18 5 6.87e-06 6.5969e-13 36 11 P32 

3.6666e-13 8.2874e-25 15 4 3.1e-07 2.59322e-14 21 6 P33 

1.0054e-12 0 9 2 1.49e-08 0 9 2 P34 

1.7749e-09 3.0161e-19 15 4 2.72e-06 9.17158e-13 30 9 P35 

1.1363e-10 2.2232e-21 15 4 1.62e-08 2.53319e-16 21 6 P36 

3.4298e-11 1.7510e-23 39 12 0.000258 1.40912e-09 81 26 P37 

5.0504e-11 1.8782e-22 15 4 1.53e-06 1.69318e-13 24 7 P38 

0 5.5604e-11 21 6 6.24e-05 2.05565e-10 63 20 P39 

0 16 12 3 3.58e-06 16 57 18 P40 

5.5971e-09 1.0356e-20 45 14   F F P41 

5.1030e-11 3.8181e-28 12 3 1.13e-06 2.95023e-16 21 6 P42 

3.9745e-12 1.2492e-16 6 2 0 0 6 2 P43 

3.1180e-07 3.0856e-15 42 13 3.01e-06 1.20636e-09 138 39 P44 

0 -1 9 2 2.24e-08 -1 24 5 P45 

0 -1 9 2 2.24e-08 -1 24 5 P46 

6.2954e-11 9.6051e-22 21 6 3.88e-06 5.75437e-12 33 10 P47 

0 0.7732 18 5 2.38e-05 0.773199 114 37 P48 
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Figure 1: Performance profile relative to the number of iterations for DFP, IHMSDFP 

 
Figure 2: Performance profile relative to number of evaluations of the function for DFP, 

IHMSDFP 

 

Figures 1 and 2 clearly show that the IHMSDFP approach is superior to the standard DFP 

method. It is more efficient in terms of the number of iterations and number of evaluations 

where our method solved 98 % of the tested problems, in comparison with the 87% rate for the 

DFP formula.   

 

5. Conclusions 

     In this study, we modify quasi-Newtonian techniques by updating DFP and proposing a new 

approach called HASDFP, in which the new matrices used to approximate the Hessian matrix 

are always positive-defined and satisfied the Newton-like requirement. Moreover, a key feature 

of our proposed approaches is global convergence with inexact line search. For a set of 

unconstrained optimization problems, numerical comparisons are done between our suggested 

approach and the DFP method. The computational tests reveal that our novel approach is both 

efficient and effective, outperforming the HASDFP. As a potential future project, using search 

direction vector evolution, the hybridization of conjugate gradient techniques with Hessian 

matrix approximations HASDFP is worth investigating. It is also worth examining the impact 
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of other approaches for determining the step length on the convergence of our suggested 

method.  
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