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Abstract  

    In this paper further properties of the fuzzy complete a-fuzzy normed algebra have 

been introduced.  Then we found the relation between the maximal ideals of fuzzy 

complete a-fuzzy normed algebra and the associated multiplicative linear function 

space. In this direction we proved that if ℓ is character on Z then kerℓ is a maximal 

ideal in Z. After this we introduce the notion structure of the a-fuzzy normed algebra 

then we prove that the structure, st(Z) is ω∗-fuzzy closed subset of fb(Z, ℂ) when  (Z, 

𝑛𝑍 , ⊛, ⊙) is a commutative fuzzy complete a-fuzzy normed algebra with identity e.  

 

Keywords: Character of a-fuzzy normed algebra, Structure of a-fuzzy normed 

algebra, ω∗ −fuzzy topology on afb(Z, ℂ), Fuzzy Tychonoff Theorem, fuzzy Gelfand 

transform. 

 

 التام ضبابيا أ-للفضاء الجبري القياسي الضبابي إضافيةخواص 
 

 جهاد رمضان خضر* , رشا خضر عباس
ية, الجامعة التكنولوجية, العراق فرع الرياضيات, قسم العلوم التطبيق  

 

  الخلاصة 
  نا جد بعد ذلك و . التام ضبابيا تم تقديمها   أ -للفضاء الجبري القياسي الضبابي  إضافيةهذا البحث خواص  في        

والتام ضبابيا وفضاء الدوال الخطية الضربية    أ-الجبري القياسي الضبابي  للإفضاءبين المثاليات العظمى  العلاقة  
  أعظم هو مثالي    kerℓعندئذ    Zعلى الفضاء    character  هو     ℓكان    إذاالمرتبطة. وفي هذا الاتجاه برهنا  

 -∗ωهو     st(Z)بعد ذلك برهنا    أ -الضبابي  للفضاء الجبري القياسي  structureبعد ذلك تم تقديم مفهوم    .Zفي  
وفضاء جبري    إبدالي    (⊙ ,⊛ , Z, 𝑛𝑍)عندما يكون الفضاء     fb(Z, ℂ)مغلق ضبابي جزئي في الفضاء  

 . eوتام ضبابيا يحتوي على عنصر محايد   أ-قياسي ضبابي
 

1. Introduction 

     In this paper we continue the previous study of fuzzy complete a-fuzzy normed algebra. We 

prove here the other important properties of fuzzy complete a-fuzzy normed algebra. The 

organization of this paper is as follows: we divided this research into four sections; the 

introduction will be in section one, after that in section two important properties of fuzzy length 

space and a-fuzzy normed space are recalled. Furthermore, basic important properties of a-

fuzzy normed algebra that will be needed later can be found in section three. Moreover, further 

properties of fuzzy complete a-fuzzy normed algebra have been proved  as a main results in the 

same section. Finally, in section four we highlight the conclusion for this research.     
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2. Preliminaries about a-fuzzy normed algebra 

Definition 2.1 [1]: 

     Let ⊛:I × I →I be a binary operation function, then it is said to be continuous t-conorm (or 

simply t-conorm) if it satisfies the following conditions:  

(i) p ⊛ q= q ⊛ p; 

(ii) p ⊛ [q ⊚ w] = [p ⊛ q] ⊛ w; 

(iii) ⊛ is continuous function; 

(iv)p ⊛ 0 = 0; 

(v) (p ⊛ z) ≥ (q ⊛ w) whenever p ≥ q and z ≥ w. 

For all p, q, z, w ∈ I = [0, 1]. 

 

Definition 2.2: 

      If 𝐿ℂ :ℂ →I is a fuzzy set, and ⊛ is a t-conorm, then 𝐿ℂ is a-fuzzy length on ℂ if 

(i)0< 𝐿ℂ(𝜎) ≤1; 

(ii) 𝐿ℂ (𝜎)=0 if and only if 𝜎=0; 

(iii) 𝐿ℂ(𝜎𝜏) ≤ 𝐿ℂ(𝜎).𝐿ℂ(𝜏) ; 

(iv) 𝐿ℂ(𝜎 + 𝜏) ≤ 𝐿ℂ(𝜎) ⊛ 𝐿ℂ(𝜏). 

For all 𝜎, 𝜏 ∈ ℂ. The (ℂ, 𝐿ℂ, ⊛) is a-fuzzy length space. 

 

Remark 2.3: 

We will take ⊛ to be 𝜇 ⊛ 𝜎= 𝜇+ 𝜎 − 𝜇 𝜎, for all 𝜇, 𝜎 ∈ I = [0, 1]. 

 

Example 2.4: 

If 𝐿|.|(𝛼) = 
|𝛼|

1+|𝛼|
 for all 𝛼  ∈  ℂ ,where | . | is length value on ℂ Then (ℂ, 𝐿|.|, ⊛ ) is a-fuzzy 

length space.  

 

Definition 2.5 [3]: 

If (ℂ, 𝐿ℂ, ⊛ ) is a-fuzzy length space, Z is a vector space over ℂ, and ⊛ is a t-conorm and 𝑛𝑍: 

Z→I is a fuzzy set. Then 𝑛𝑍 is a-fuzzy norm on Z if 

(i)0< 𝑛𝑍(z) ≤ 1; 

(ii) 𝑛𝑍(z) =0 ⟺ z=0; 

(iii) 𝑛𝑍(𝜇z) ≤ 𝐿ℂ(𝜇) n(z) for all 0≠ 𝜇 ∈ ℂ; 

(iv) 𝑛𝑍(z + y) ≤ 𝑛𝑍(z) ⊛ 𝑛𝑍(y). 

 

For all z, y ∈ Z. Then (Z, 𝑛𝑍, ⊛) is a-fuzzy normed space (or simply a-FNS). 

 

Definition 2.7 [3]: 

If (𝑧𝑘) is a sequence in Z, then (𝑧𝑘) is fuzzy converges to the limit z as k → ∞, if for all 𝜇 ∈ 

(0,1), we can find N ∈ ℕ when  𝑛𝑍(zk −z) < 𝜇,  for all k≥N, if (Z, 𝑛𝑍 , ⊛) is a-FNS.  

If (𝑧𝑘)  is a fuzzy converges to z we write lim
k→∞

zk=z, or zk →z, or lim
k→∞

𝑛𝑍(zk − z)=0. 

 

Definition 2.8 [3]: 

If (𝑧𝑘) is a sequence in Z, then (𝑧𝑘) is fuzzy Cauchy sequence in Z if for all 𝜇 ∈ (0, 1), we can 

find N ∈ ℕ when 𝑛𝑍(zk − zm) < s, for all k, m ≥N, if (Z, 𝑛𝑍, ⊛) is a-FNS.  

 

 

 

 



Abbas and Kider                                           Iraqi Journal of Science, 2024, Vol. 65, No.1, pp: 320- 331 

322 

Definition 2.9 [3]: 

If for any (𝑧𝑘) fuzzy Cauchy in Z, there is z∈Z such that zk →z, then the a-FNS (Z, 𝑛𝑍, ⊛) is a 

fuzzy complete 

 

Corollary 2.10 [3]: 

The a-fuzzy length space (ℂ, 𝐿ℂ, ⊛) is a fuzzy complete. 

 

Theorem 2.11 [4]: 

     When (Z, nZ, ⊛) and (W, nW, ⊛) are two a-FNS.  Then the operator H : Z→W is a fuzzy  

continuous at z∈Z if and only if whenever (zk) is a fuzzy converges to z∈Z then (H(zk)) is a 

fuzzy converges to H(z) ∈ W.    

 

Definition 2.12 [4]: 

     When (Z, 𝑛𝑍, ⊛) and (Y, 𝑛𝑌, ⊛) are two a-FNS then the operator S : Z→Y is  a fuzzy 

bounded if there is 𝜇 ∈(0, 1) with 𝑛𝑌[S(z)] < 𝜇𝑛𝑍(z), for all z∈Z.  

 

Notation [4]: 

If (Z, 𝑛𝑍, ⊛) and (Y, 𝑛𝑌, ⊛) are two a-FNS then afb (Z, Y) = {S:Z→Y, S is a fuzzy bounded 

operator}.  

 

Theorem 2.13 [4]: 

Define  𝒏𝐚𝐟𝐛(𝐙,𝐘)(S) = 𝐬𝐮𝐩𝐳∈𝐃(𝐒)𝐧𝐘(𝐒𝐳), for all S∈ afb(Z, Y).Then (afb(Z, Y), 𝑛afb(Z,Y), ⊛) is 

a-FNS. If (Z, 𝑛𝑍, ⊛) and (Y, 𝑛𝑌, ⊛) are two a-FNS. 

 

Theorem 2.14 [4]: 

The space afb(Z, Y) is a fuzzy complete if Y is a fuzzy complete when (Z, 𝑛𝑍, ⊛) and (Y, 𝑛𝑌, 

⊛) are two a-FNS. 

 

Definition 2.15 [4]:  

A linear functional h from a-FNS (Z, 𝑛𝑍, ⊛) into the a-fuzzy length space (ℂ, 𝐿ℂ, ⊛) is fuzzy  

bounded if there is 𝛿 ∈ (0, 1) with 𝐿ℂ[h(u)] <  𝛿. 𝑛𝑈(u) for any u ∈D(h). Furthermore, the a-

fuzzy norm of h is 𝑛afb(Z,ℂ)(h) = sup𝐮∈𝐃(𝐡)Lℂ(hu), for all h∈ afb(Z, ℝ )  and 

 𝐿ℂ[h(u)] <  𝑛afb(Z,ℝ)(h). 𝑛𝑍(u) for any u ∈D(h). 

 

Definition 2.16 [4]: 

Let (Z, 𝑛𝑧, ⊛) be a-FNS. Then afb(Z, ℂ) = { h:Z→ ℂ: h is fuzzy bounded  and linear } forms 

a-fuzzy normed space  with a-fuzzy norm defined by 𝒏𝐚𝐟𝐛(𝐙,ℂ)(h) = 𝐬𝐮𝐩𝐮∈𝐃(𝐡)𝐋ℂ(𝐡𝐮)  which 

is called the fuzzy dual space of Z.  

 

Theorem 2.17 [4]: 

If (Z, 𝑛𝑍, ⊛) is a-FNS then fuzzy dual space afb(Z, ℂ) is a fuzzy complete. 

 

Definition 2.18 [4]: 

 
𝑍

𝐷
 ={z+D: z∈Z} is a 𝕂-space with the operations ; (v+D) +(z+D) = (v+z) +D and 𝛼(z+D) = 

(𝛼z)+D. If Z is a vector space over the field 𝕂 and D is a closed subspace of  Z. 

 

Definition 2.19 [5]: 

     Define a-fuzzy norm for the quotient space  
Z

D
  by q[u+D]=𝑖𝑛𝑓𝑑∈𝐷𝑛𝑈[z+d] for all z+D ∈

Z

D
. 
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When (Z, 𝑛𝑍 , ⊛) be a-FNS and D⊂Z is a fuzzy closed in Z. 

 

Theorem 2.20 [5]:                                                              

      The quotient space ( 
Z

D
 , q, ⊛) is a-FNS if (Z, 𝑛𝑍 , ⊛) is a-FNS and D⊂Z is a fuzzy closed 

in Z. 

Remark 2.21 [5]: 

If (Z, 𝑛𝑍 , ⊛) is a-FNS and D⊂Z is a fuzzy closed in Z. Then 

(1)𝜋:Z → 
Z

D
 is a natural operator defined by 𝜋[z]=z+D; 

(2)q(z+D) ≤ 𝑛𝑍(z).  

 

Theorem 2.22 [5]: 

If ( 
Z

D
 , q, ⊛) is a fuzzy complete then (Z, 𝑛𝑍 , ⊚) is a fuzzy complete when (Z, 𝑛𝑍 , ⊛) be a-

FNS and D⊂Z is a fuzzy closed in Z. 

 

 Theorem 2.23 [5]: 

If (Z, 𝑛𝑍 , ⊛) is a fuzzy complete then ( 
Z

D
 , q, ⊚) is a fuzzy complete when (Z, 𝑛𝑍 , ⊛) is a-

FNS and D⊂Z is a fuzzy closed in Z. 

 

Definition 2.24 [1]: 

Let ⊙:I × I →I be a binary operation function then ⊚ is said to be continuous t-norm (or simply 

t-norm) if it satisfies the following conditions:   

(i)p ⊙ q= q ⊙ p; 

(ii) p ⊙ [q ⊙ w] = [p ⊙ q] ⊙ w; 

(iii) ⊙ is continuous function; 

(iv)p ⊙ 1 = p; 

(v) (p ⊙ z) ≤ (q ⊙ w) whenever p ≤ q and z ≥ w. 

For all p, q, z, w ∈ I = [0, 1]. 

 

Definition 2.25 [6]: 

The space (Z, nZ, ⊛, ⊙) is called a-fuzzy normed algebra space (or simply a- 

FNAS) if 

(1) (Z, +, .) is an algebra space over the field 𝕂, where  𝕂=ℝ or 𝕂=ℂ; 

(2) (Z, 𝑛𝑍, ⊛) is a-FNS, with  ⊛ is a t­conorm;  

(3) ⊙ is a t­norm; 

(4)𝑛𝑍(p.q)≤ 𝑛𝑍(p) ⊙ 𝑛𝑍(q), for all p, q ∈Z. 

 

Remark 2.26: 

In this paper we take; 

(1)𝜎 ⊙ 𝜏=𝜎. 𝜏, for all 𝜎, 𝜏 ∈[0, 1]. 

(2)𝛾 ⊛ δ=𝛾+ δ − γδ, for all 𝛾, δ ∈[0, 1]. 

 

Definition 2.29 [6]: 

The space (Z, nZ, ⊛, ⊙) is a fuzzy complete a-FNA if (Z, nZ, ⊛) is a fuzzy complete a-FNS.  

Then (Z, nZ, ⊛, ⊙) is a commutative fuzzy complete a-FNA. 

 

Lemma 2.31 [6]: 

If (Z, nZ, ⊛, ⊙) is a-FNA, then multiplication is a fuzzy continuous function. 
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Theorem 2.32 [6]: 

An a-FNA (Z, nZ, ⊛, ⊙) without identity can be embedded into a-FNA, Ze having the identity 

𝑒, also Z is considered as an ideal in Ze.  

                                    

Proposition 2.33 [6]: 

The space (Ze , nZe
, ⊛, ⊙) is a fuzzy complete ⟺ (Z, nZ, ⊛, ⊙)  is a fuzzy complete. 

 

Theorem 2.34 [6]: 

Every a-FNA can be embedded as a closed subalgebra of afb(Z, Z). 

 

Proposition 2.35 [6]: 

If (Z, nZ, ⊛, ⊙) is a fuzzy complete a-FNA and z∈Z, then (e−z) is invertible, the series 

∑ zk∞
k=0   is fuzzy converges, and ∑ zk∞

k=0 = (𝑒 − 𝑧)−1. 

 

Theorem 2.36 [6]: 

      The space (
Z

D
, q,  ⊛, ⊙)  is a fuzzy complete a-FNA if (Z, 𝑛𝑍 , ⊛, ⊙) is a fuzzy complete 

a-FNA and D is a fuzzy closed ideal in Z. Also 
Z

D
 has an identity if Z has an identity.  As well 

as the identity of 
Z

D
 has a fuzzy norm equal to 1. 

 

Remark 2.37 [6]: 

If (Z, 𝑛𝑍 , ⊛, ⊙) is a fuzzy complete, then for any a≠ 0, a−1 exists and  a−1 ∈Z. 

 

Proposition 2.38 [6]: 

If (Z, 𝑛𝑍 , ⊛, ⊙) is a fuzzy complete a-FNA, then T(z)=z−1 is fuzzy continuous mapping. 

 

Lemma 2.39 [6]: 

     Let (Z, 𝑛𝑍 , ⊛, ⊙) be a fuzzy complete having an identity 𝑒. If  z−1 and u−1 exists in Z then 

(zu)−1 and (uz)−1 are exist in Z. 

 

Proposition 2.40 [6]: 

      Let (Z, 𝑛𝑍 , ⊛, ⊙) be a fuzzy complete a-FNA having an identity e. If z, u ∈ Z where  

 (e −  zu) −1 exists. If d=(e −  zu) −1 then (e −  uz) −1 =e + udz.   

 

Definition 2.41 [6]: 

     Let 𝒜={𝐴𝑗:j∈J} be a family of subsets of a space Z. The family 𝒜 is centered if for any 

finite number of sets 𝐴1, 𝐴2, …,𝐴𝑘 ∈ 𝒜 we have ∩𝑗=1
𝑘 𝐴𝑗 ≠ ∅. 

 

Definition 2.42 [6]: 

     Let Z be a non-empty set.  A collection T of a subset of Z is said to be a fuzzy topology on 

Z if  

(i)Z ∈ T and 𝜑 ∈ T; 

(ii)If A1, A2,…., An ∈ T then ∩i=1
n Ai ∈ T; 

(iii)If {Aj: jJ}∈ T then  ∪jJ Aj ∈ T. 

Then (Z, T) is called a fuzzy topological space. 

 

Theorem 2.43: 

If Z is a fuzzy topological space then the following statement are equivalent: 

(1) Z is a fuzzy compact; 
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(2) For any centred family 𝒜 of a fuzzy closed subset of Z we have ∩𝐴∈𝒜≠ ∅. 

 

Proof: (2)⟹(1) 

     Let 𝒜={𝐴𝑗:j∈J} be a fuzzy open cover of Z. We need to show that  𝒜 has a finite subcover. 

 For j∈J, define 𝐺𝑗=Z− 𝐴𝑗this gives a family 𝒢=={𝐺𝑗:j∈J} of fuzzy closed sets in Z. We have 

∩j∈J 𝐺𝑗= ∩j∈J[Z− 𝐴𝑗] = Z−[∪j∈J 𝐴𝑗]=Z−Z=∅, since Z=∪j∈J 𝐴𝑗.This implies that  𝒢 is not 

centered family, so there exists 𝐺1, 𝐺2, …,𝐺𝑘 ∈  𝒢 such that  ∩𝑗=1
𝑘 𝐺𝑗= ∅. This gives,  ∅=∩𝑗=1

𝑘  

𝐺𝑗= ∩𝑗=1
𝑘  [Z− 𝐴𝑗] = Z−[∪𝑗=1

𝑘  𝐴𝑗]. Therefore, Z=∪𝑗=1
𝑘  𝐴𝑗 and so Z is a fuzzy compact since 

{𝐴𝑗: j=1,2, …, k} is a finite subcover of 𝒜. 

(1)⟹(2) Follows from a similar argument. 

 

Fuzzy Tychonoff Theorem 2.44: 

If {𝑍𝑗: j∈J} is a family of fuzzy topological spaces and 𝑍𝑗 is a fuzzy compact ∀ j∈J, then the 

product space Πj∈J𝑍𝑗  is a fuzzy compact. 

 

Proof: 

     Let Z=Πj∈J𝑍𝑗 where 𝑍𝑗 is a fuzzy compact ∀ j∈J. Let 𝒜 be a centred family of fuzzy closed 

subset of Z. We will show that there exists z = (𝑧𝑗), j∈J ∈Z such that z ∈ ∩𝐴∈𝒜 A. Let D denote 

the set consisting of all centred families ℱ[ not necessarily fuzzy closed] of subset of Z such 

that 𝒜 ⊆ ℱ. The set D is partially ordered set by ⊆ .  

 

     We will show that every chain in D has an upper bound. Indeed, if {ℱ𝑗: j∈J} is A chain in D 

then take ℱ= ∪j∈J ℱ𝑗. Since ℱ is centred family and ℱ𝑗 ⊆ ℱ for all j∈J thus ℱ is an upper bound 

of {ℱ𝑗: j∈J}. Now by Zorn’s Lemma we obtain that the set D contains a maximal element ℳ. 

We will show that there exists z ∈Z such that z∈ ∩𝑀∈ℳ 𝑀̅. Since 𝒜 ⊆ ℳ and 𝒜 contains of 

fuzzy closed sets we have, ∩𝑀∈ℳ 𝑀̅ ⊆ ∩𝐴∈𝒜 A. Therefore, it will follow that z∈ ∩𝐴∈𝒜 A and  

∩𝐴∈𝒜 A ≠ ∅. 

 

     Construction of the element z proceed as follows. For j∈J let 𝑝𝑗:Z→ 𝑍𝑗be the projection onto 

the jth coordinate. Now for each j∈J the family {𝑝𝑗(𝑀)̅̅ ̅̅ ̅̅ ̅̅ : 𝑀 ∈ ℳ} is centred family of fuzzy 

closed subsets of 𝑍𝑗, so by the fuzzy compactness of 𝑍𝑗 there exists 𝑧𝑗 ∈ 𝑍𝑗such that  𝑧𝑗 ∈ ∩𝑀∈ℳ 

𝑝𝑗(𝑀)̅̅ ̅̅ ̅̅ ̅̅ . We set z = (𝑧𝑗), j∈J. 

 

     In order to see that z∈ ∩𝑀∈ℳ 𝑀̅ notice that ℳ the following property: 

If B⊆Z and B∩M≠ ∅ for all M ∈ ℳthen B ∈ ℳ ……..(∗) 

 

     Indeed if ℳ′=ℳ ∪ {B} then ℳ′ ∈D, so by maximality of ℳwe must have ℳ=ℳ′. For 

j∈J let 𝑈𝑗 ⊆ 𝑍𝑗be a fuzzy open neighborhood of  𝑧𝑗. Since 𝑧𝑗 ∈ 𝑝𝑗(𝑀)̅̅ ̅̅ ̅̅ ̅̅  for all 𝑀 ∈ ℳ, thus 𝑈𝑗 

∩ 𝑝𝑗(𝑀)  ≠ ∅ for all 𝑀 ∈ ℳ.  

 

     Equivalently 𝑝𝑗
−1(𝑈𝑗)∩ M≠ ∅ for all 𝑀 ∈ ℳ. By property ∗ we obtain that 𝑝−1(𝑈𝑗) ∈ ℳ 

for all j∈J. Since ℳis a centred family we obtain 

𝑝−1(𝑈1) ∩ 𝑝−1(𝑈2) ∩…∩ 𝑝−1(𝑈𝑘) ∩ M ≠ ∅, for all 𝑀 ∈ ℳ …….(∗∗) 

Now the sets of the form, 𝑝−1(𝑈1) ∩ 𝑝−1(𝑈2) ∩…∩ 𝑝−1(𝑈𝑘) are precisely the fuzzy open 

neighbourhood of z that belong to the basis of the product fuzzy topology on Z, and thus any 

fuzzy open neighbourhood of Z contains a neighbourhood of this type. Therefore, using (∗∗) 

we obtain that if 𝑀 ∈ ℳ then for any fuzzy open neighbourhood U of z we have M∩U ≠ ∅. 
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This means that for any 𝑀 ∈ ℳ we have z∈ 𝑀̅, and hence z ∈ ∩𝑀∈ℳ 𝑀̅. 

 

3.Further properties of fuzzy complete a-fuzzy normed algebra 

Definition 3.1: 

    An ideal 𝒥 in an algebra (Z, +, .) is maximal if 𝒥 ⊂Z (that is 𝒥 ≠Z), and if there is an ideal 

𝒯 with  𝒥 ⊂ 𝒯 then 𝒯 =Z.   

 

Proposition 3.2: 

Every maximal ideal 𝒥 in Z where (Z, 𝑛𝑍 ,⊛, ⊙) is fuzzy complete a-fuzzy normed algebra  

with  an identity e, is fuzzy closed. 

 

Proof: 

If 𝒥 be a maximal ideal in Z, then 𝒥 must does not contains any invertible element, otherwise  

𝒥=Z. This implies that 𝒥 ⊆Z− 𝒢(Z). But 𝒢(Z) is fuzzy open so Z− 𝒢(Z) is fuzzy closed, hence 

𝒥 ⊆ 𝒥̅ ⊆ Z− 𝒢(Z). As special case, 𝒥 ≠ Z. Since  𝒥 ⊆ 𝒥̅  so  𝒥̅=𝒥 but 𝒥 is maximal ideal. 

Hence 𝒥 is a fuzzy closed.  

  

Proposition 3.3: 

If (Z, 𝑛𝑍 ,⊛, ⊙) is a fuzzy complete a-FNA, then every homomorphism 𝜃:Z→ ℂ, is fuzzy 

continuous  

 

Proof: 

       The case when 𝜃=0 then it is fuzzy continuous. Let 𝜃 ≠0 and Z has an identity e. Now ∀ 

u∈Z, 𝜃(u)= 𝜃(u.e) = 𝜃(u). 𝜃(e), and so 𝜃(e)=1. If u∈Z with 𝜃(u)≠0, then b=u− 𝜃(u).e ∈ ker 𝜃 

and so b is not invertible [or 1= 𝜃(b𝑏−1)=𝜃(b). 𝜃(𝑏−1) which is not correct ]. Therefore, 𝜃(u) ∈ 

𝜎𝑍(u) and this implies that 𝐿ℂ[𝜃(u)] ≤ 𝑛𝑍(u). This inequality stall true when 𝜃(u)=0 and hence 

𝜑 is fuzzy continuous on Z. [ if (zk) be a sequence in Z converge to z∈Z that is lim
𝑘→∞

𝑛𝑍 (𝑧𝑘 −

𝑧)=0, then lim
𝑘→∞

𝐿ℂ [𝜃(𝑧𝑘) − 𝜃(𝑧)] = 0 that is 𝜃(𝑧𝑘) → 𝜃(𝑧)]. 

If Z does not have an identity, we consider 𝑍𝑒 instead. Define 𝜃′: 𝑍𝑒 → ℂ by:  𝜃′[(u, 𝛼)] = 𝜃(u) 

+ 𝛼 for all (u, 𝛼) ∈ 𝑍𝑒. Then 𝜑′ is a homomorphism is clear and therefore by the first part of 

the prove, 𝜃′ is fuzzy continuous on 𝑍𝑒. specially, its restriction to Z in 𝑍𝑒 is fuzzy continuous 

i.e.,   𝜃 is a fuzzy continuous.   

 

Definition 3.4: 

     A homomorphism 𝓀:Z→ ℂ where (Z, 𝑛𝑍 ,⊛, ⊙) is a fuzzy complete a-FNA is called a 

character. Character is fuzzy continuous by Proposition 3.3. 

 

Theorem 3.5: 

If 𝒽 is a character on Z, then ker 𝒽 is a maximal ideal in Z, and every maximal ideal has this 

form for some unique character, when (Z, 𝑛𝑍 ,⊛, ⊙) is a commutative fuzzy complete a-FNA 

with identity e. 

 

Proof:  

If 𝒽:Z→ ℂ is a character and 𝒥=ker ℓ, it is clear that 𝒥 ≠Z because 𝓀 =0. If z ∉ 𝒥 then for any 

u ∈ Z is represented by u=z
𝒽(𝑢)

𝓀(𝑧)
 + [u− z

𝓀(𝑢)

𝓀(𝑧)
] since [u− z

𝓀(𝑢)

𝓀(𝑧)
]  ∈ ker 𝓀=𝒥, we see that Z= ℂz + 

𝒥 and therefore 𝒥 is a maximal ideal. This implies that 𝒥 is fuzzy closed and hence 
𝑍

𝐽
 is fuzzy 
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complete a-FNA. Now we will show that the maximality of 𝒥 implies that every non-zero 

element of  
𝑍

𝐽
 is invertible. To prove this, let (z + 𝒥)≠0 and (z +  𝒥)−1 does not exists. 

Thus 𝒥 ⊂ (𝒥 +zZ) ⊂ Z [ e∉ (𝒥 + z) because  (z +  𝒥)−1 ∉  
𝑍

𝐽
 ]. But this is not true since 𝒥 is 

maximal by our assumption. This implies that every element of 
𝑍

𝐽
 is 𝜆(e + j) for 𝜆 ∈  ℂ.  

If 𝜃: 
𝑍

𝐽
 →  ℂ represent this isomorphism, and if 𝜋:Z→ 

𝑍

𝐽
  is the canonical projection.  

Then 𝜃 ∘ 𝜋: Z → ℂ is a homomorphism with ker 𝜃=𝒥; 

𝜃 ∘ 𝜋(p.q) = 𝜃[𝜋(p.q)] = 𝜃[(p.q) + 𝒥] = 𝜃[(p + 𝒥)(q + 𝒥)] = [ 𝜃(p + 𝒥)].[ 𝜃(q + 𝒥)] 

                 = 𝜃 ∘ 𝜋(p). 𝜃 ∘ 𝜋(q). 

Also, 𝜃 ∘ 𝜋(p) = 0 ⟺ 𝜋(p) = 0 ⟺ p∈ 𝒥. 
 

     Hence there is a correspondence between maximal ideals 𝒥 and the characters 𝒽 with 

ker 𝒽=𝒥. 

 

     This correspondence is one-to-one because 𝓀 is uniquely determined by its Kernel. If  𝒽 

and ℓ are two character with ker𝓀= kerℓ then for any w∈Z, ( w − 𝓀(w)e) ∈ ker 𝓀= kerℓ and 

thus 𝓀(w)= ℓ(w) because ℓ(e)=1. 

 

Theorem 3.6: 

     Every commutative fuzzy complete a-FNA (Z, 𝑛𝑍 , ⊛, ⊙) with an identity 𝑒 has at least 

one character. 

 

Proof: 

      If 𝑢−1 exists for all u∈ Z then Z≅ ℂ and the isomorphism 𝜇: Z→ ℂ is a character. On the 

other hand, if ∃ x∈Z such that 𝑢−1 does not exists then xZ ⊂ 𝒥 where 𝒥 is a maximal proper 

ideal, by Zorn’s lemma the set 𝒯={𝒥 ⊂ ℒ: ℒ is  ideal } is partially ordered by ⊆, thus ∪ℒ∈𝒯 ℒ 

is an ideal and 𝒥 ⊂ ∪ℒ∈𝒯 ℒ Since e ∉ ∪ℒ∈𝒯 ℒ. By Zorn’s Lemma states that there exists a 

maximal 𝒦 with ⊂ 𝒦. But 𝒥=ker 𝒽 where 𝒽 is a character on Z. 

If Z is not commutative, then we may does not find a character at all on the a-FNA.. 

 

Example 3.7 

 If Z=𝑀𝑘(ℂ) where k>1, then assume that 𝐸𝑖𝑗  = (𝑒𝑖𝑗) ∈ 𝑀𝑘(ℂ) where 𝑒𝑖𝑗 = 0, except for the ij-

position is equal to 1. Now let 𝓀 is a character on Z, then for i≠j, 𝐸𝑖𝑗
2 =0 which imply that 

𝓀(𝐸𝑖𝑗)=0. But 𝐸𝑖𝑖= 𝐸𝑖𝑗. 𝐸𝑗𝑖, when i≠j, and this imply that  𝓀(𝐸𝑖𝑖)=0 for j=1, 2, …, k. 

Hence,  𝓀(I)= 𝓀(𝐸11) + 𝓀(𝐸22) + … + 𝓀(𝐸𝑘𝑘)=0. But this is not true. 

Thus Z=𝑀𝑘(ℂ) with k>1, does not has a characters. 

 

Definition 3.8: 

If (Z, 𝑛𝑍 , ⊛, ⊙) is a fuzzy complete a-FNA has an identity e. Then {𝓀: 𝓀 is a characters of 

Z} is called structure of Z and is denoted by st(Z). 

 

Definition 3.9: 

(1)The ω∗ −fuzzy topology on afb(Z, ℂ) is generated by N(q, A, 𝜀)={g∈ afb(Z, ℂ): 𝐿ℂ[g(a)-

q(a)]≤ 𝜀, for all a∈A},  where q ∈ afb(Z, ℂ), and A ⊂Z is finite.  

(2)The a set E in afb(Z, ℂ) is fuzzy open in ω∗ −fuzzy topology ⟺ ∀ ϑ ∈ E, ∃ N(𝜗, A, 𝜀) ⊆E. 
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Proposition 3.10: 

If (Z, 𝑛𝑍 , ⊛, ⊙) is a fuzzy complete a-FNA having an identity e then  ω∗ −fuzzy topology on 

afb(Z, ℂ) is a Hausdorff space. 

 

Proof: 

If h1, h2 ∈ afb(Z, ℂ)  with h1 ≠ h2 then there exist a∈Z such that h1(a)≠ h2(a). Let 𝐿ℂ[h1(a) −
h2(a)] = r, for some 0 < 𝑟 < 1, then ∀ r < ro < 1, ∃ r1 satisfying r1 ⊛ r1 < ro.  

Now consider N[h1 , {a}, r1) and N(h2, {a}, r1). Clearly, N[h1 , {a}, r1) ∩ N(h2, {a}, r1)= ∅ 

if there exists y∈ N[h1 , {a}, r1) ∩ N(h2, {a}, r1)  then  

r=𝐿ℂ[h1(a) − h2(a)] 

  ≤ 𝐿ℂ[h1(a) − y(a)] ⊛ 𝐿ℂ[h2(a) − y(a)] 

 ≤ r1 ⊛ r1 <r.  

But this is not true. Hence the proof is complete. 

 

Proposition 3.11: 

If (Z, 𝑛𝑍 , ⊛, ⊙) is a fuzzy complete a-FNA having identity e then st(Z) is ω∗-fuzzy closed 

subset of afb(Z, ℂ).  

 

Proof: 

If (ℎ𝑘) is a sequence in st(Z) converging to h∈ fb(Z, ℂ), then hk(z)→h(z) for each  z∈ Z.  

Now for any x, y∈Z we have  

h(xy)= lim
k→∞

hk(xy)= lim
k→∞

hk(x). lim
k→∞

hk(y)= h(x).h(y)  

It follows that h∈ st(Z). Hence st(Z) is a fuzzy closed.  

In the next result we prove fuzzy Banach-Alaougl𝑢’s Theorem: 

 

Theorem 3.12  

If (Z, 𝑛𝑍 , ⊛) is a fuzzy complete a-FNS, then the fuzzy closed unit ball 𝐵𝑎𝑓𝑏(𝑍,ℂ)={h∈afb(Z, 

ℂ): 𝑛afb(Z,ℂ)(h)≤1} of afb(Z, ℂ ) is a ω∗ −fuzzy compact. 

 

Proof:  

Let z∈Z, define 𝐷𝑧={𝛼 ∈ ℂ: 𝐿ℂ(𝛼)≤ 𝑛𝑍(z)}⊂ ℂ. Then 𝐷𝑧 is a fuzzy compact which implies 

D=Π𝑧∈𝑍𝐷𝑧 is a fuzzy compact in the product fuzzy topology by fuzzy Tychonoff Theorem 2.44. 

Let 𝐵𝑑 denotes the fuzzy closed unit ball 𝐵𝑎𝑓𝑏(𝑍,ℂ). 

 Define 𝜃: 𝐵𝑑 →D by 𝜃(𝜂)=(𝜂(𝑢))𝑢∈𝑍 ∀ 𝜂 ∈ 𝐵𝑑.We will prove that 𝜃 is one-to-one and fuzzy 

continuous. It is clear that 𝜃 is Linear.  If 𝜃(𝜂)=0 then (𝜂(𝑢))𝑢∈𝑍= (0) which implies that 𝜂(u)=0 

∀ u∈Z. Hence, 𝜂=0 and from this we obtain  𝜂 is one-to-one. 

To prove 𝜃 is a fuzzy continuous, now if (𝜂𝑘) ⊂ 𝐵𝑑 satisfying 𝜂𝑘 →ω∗
𝜂. Then 𝜂𝑘(u)→ 𝜂(u) ∀ 

u∈Z. Consequently, 𝜃(𝜂𝑘)= (𝜂𝑘(𝑢))𝑢∈𝑍 → (𝜂(𝑢))𝑢∈𝑍= 𝜃(𝜂). Hence, 𝜃 is a fuzzy continuous. 

If  𝜃(𝐵𝑑) is a fuzzy closed subset of D and D being fuzzy compact, then 𝜃(𝐵𝑑) is fuzzy compact. 

Thus our next step is to prove 𝜃(𝐵𝑑) is a fuzzy closed. If 𝜎 = (𝜎𝑧)∈D and 𝜎 ∈ 𝜃(𝐵𝑑)̅̅ ̅̅ ̅̅ ̅̅  then define 

𝜂:Z→ ℂ by 𝜂(u)= 𝜎𝑢 ∀ u∈Z. The map 𝜂 is linear, if x, y∈Z and 𝛼, 𝛽 ∈ ℂ then ∀ k∈ ℕ, choose 

𝜂𝑘 ∈ 𝐵𝑑 thus 

𝜂(𝛼x+𝛽y) = lim
𝑘→∞

𝜂𝑘(  𝛼x+𝛽y) =𝛼 lim
𝑘→∞

𝜂𝑘( x) + 𝛽 lim
𝑘→∞

𝜂𝑘( y) 

                 = 𝛼f(x)+𝛽f(y) [ since 𝜂𝑘 is linear]. 

Thus 𝜂 is linear. Since 𝐿ℂ(𝜎𝑢) ≤ 𝑛𝑍(u), so 𝜂 ∈ 𝐵𝑑.  Now by the definition of 𝜂, we see that 𝜎= 

𝜃(𝜂) ∈ 𝐵𝑑. Hence, 𝜃(𝐵𝑑) is a fuzzy closed. But 𝐵𝑑 and 𝜃(𝐵𝑑) are homeomorphic, so 𝐵𝑑 must 

be fuzzy compact. 
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Proposition 3.13: 

If (Z, 𝑛𝑍 , ⊛, ⊙) is a fuzzy complete a-FNA having an identity e then st(Z) is a ω∗ −fuzzy 

closed of 𝐵𝑎𝑓𝑏(𝑍,ℂ)={h∈afb(Z, ℂ): 𝑛afb(Z,ℂ)(h)≤1} and hence is a fuzzy compact. 

Proof: 

Suppose that (ℓ𝑘) be a sequence in st(Z) which is fuzzy converge to 𝜃 ∈afb(Z, ℂ). Then ℓ𝑘(z)→ 

𝜃(z) ∀ z∈Z. Since ∀ x, y ∈Z, 𝜃(xy)= lim
𝑘→∞

ℓ𝑘(𝑥𝑦)= lim
𝑘→∞

ℓ𝑘(𝑥). lim
𝑘→∞

ℓ𝑘(𝑦)= 𝜃(x). 𝜃(y) so, we 

conclude that 𝜃 ∈st(Z). Here 𝜃 ≠0 since 𝜃(I)=1. Thus st(Z) is a  ω∗ −fuzzy closed. Therefore, 

st(Z) is a fuzzy compact because it is a fuzzy closed subset of a fuzzy compact set. 

 

Theorem 3.14: 

If (Z, 𝑛𝑍 , ⊛, ⊙) is a commutative fuzzy complete a-FNA having an identity 𝑒, then for each 

z∈Z and h∈ st(Z) we define Ψz:st(Z)→ ℂ by Ψz(h)=h(z). Then the range of the function Ψz on 

st(Z) satisfies R(Ψz)=𝜎𝑍(z). Furthermore, the map Ψ is homomorphisum, Ψ:Z→C(st(Z)) and 

𝑛𝑎𝑓𝑏(𝑠𝑡(𝑍),ℂ) (Ψz) ≤  𝑛𝑍(z) for all z∈Z. The map Ψ is called Gelfand transform. 

 

Proof: 

If u∈Z and h∈st(Z) then h(x)∈ 𝜎𝑍(x) that is Ψu(h) ∈  𝜎𝑍(u) and so the range of Ψu satisfies the 

inclusion R(Ψu) ⊆ 𝜎𝑍(u). 

Let 𝛼 ∈ 𝜎𝑍(u), so (u − 𝛼e) −1 does not exists and (u−𝛼e) ∉ 𝒥 where 𝒥 is some maximal ideal, 

say [Since (u−𝛼e) ∈ Z(x−𝛼e) ⊂ 𝒥]. 

If 𝒽 ∈ st(Z) with ker𝒽=𝒥 then (x−𝛼e) ∈ 𝒥 which implies that 𝒽(u)= 𝛼. Thus Ψu(𝒽)= 𝒽(u)= 𝛼 

and so R(Ψu)= 𝜎𝑍(u). But Ψ is a homomorphism; 

 Ψzy(h) = h(zy) = h(z).h(y) = Ψz(h).Ψy(h) ∀ z, y ∈Z, h∈st(Z) and so Ψzy= Ψz.Ψy. 

Similarly, we can show that Ψαz+βy= 𝛼Ψz + 𝛽Ψy(h), thus Ψz is linear. 

To prove that Ψu ∈ C(st(Z)), if Ω is a fuzzy open set in ℂ we will prove that Ψu
−1(Ω) is a fuzzy 

open in st(Z). When Ψx
−1(Ω)=∅, the proof is end. If Ψu

−1(Ω)≠ ∅. Assume that ℊ ∈ Ψu
−1(Ω). 

So ∃ 𝛿 ∈ Ω such that Ψu(ℊ)= 𝛿. Since Ω is a fuzzy open in ℂ, ∃ 0< 𝜀 <1 with 𝑁𝜀(𝛿)={𝛼 ∈  ℂ: 

𝐿ℂ(𝛼 − 𝛿) < 𝜀}⊂ Ω. If V=N(ℊ:{u}, 𝜀)={𝜔 ∈st(Z): 𝐿ℂ(𝜔(u)− ℊ(u))< 𝜀}. 

Then  𝜔(u)= Ψu(𝜔) ∈ Ω, ∀ 𝜔 ∈V, so ℊ ∈V⊆ Ψu
−1(Ω). Hence, Ψu

−1(Ω) is a fuzzy open in st(Z) 

and therefore Ψu:st(Z)→  ℂ is a fuzzy continuous thus Ψu(.)∈ C(st(Z)). 

 

       On other hand, we can introduce another prove for the fuzzy continuity of Ψx by using 

sequences. If ℊ𝑘 → ℊ in st(Z) then Ψu(ℊ𝑘) →  Ψu(ℊ)= ℊ(u), hence  Ψx is a fuzzy continuous. 

Now, R(Ψu)=𝜎 𝑍(u) ⊆ { 𝛼 ∈ ℂ: 𝐿ℂ(𝛼)≤ 𝑛𝑍(u)} and thus 𝐿ℂ(Ψu(ℊ))≤ 𝑛𝑍(u), ∀ ℊ ∈st(Z). Hence, 

𝑛𝑎𝑓𝑏(𝑠𝑡(𝑍),ℂ)(Ψu) ≤ 𝑛𝑍(u), ∀ u∈Z. 

 

Theorem 2.3.15: 

If (Z, 𝑛𝑍 , ⊛, ⊙) is a commutative fuzzy complete a-FNA having an identity 𝑒 and Z=uZ, that 

is, the set of polynomials in z is fuzzy dense in Z. Then the map Ψu:st(Z)→  𝜎 𝑍(u) ⊂ ℂ is a 

homeomorphism. 

 

Proof: 

      Since Ψu is fuzzy continuous function on st(Z) satisfying R(Ψu) = 𝜎 𝑍(u) i.e., Ψu:st(Z)→
 𝜎 𝑍(u) is a fuzzy continuous and onto. But st(Z) and 𝜎 𝑍(u) are fuzzy compact Hausdorff spaces, 

thus it remains only to prove that Ψu is injective. Now if  Ψu(ℓ1) = Ψz(ℓ2), so that ℓ1(u)= ℓ2(u), 

by using the multiplicatively of ℓ1 and ℓ2 we see that for given k∈ ℕ and 𝑐0, 𝑐1, …, 𝑐𝑘 in ℂ, 

ℓ1(∑ 𝑐𝑗𝑢𝑘𝑘
𝑗=0 ) = ℓ2(∑ 𝑐𝑗𝑢𝑘𝑘

𝑗=0 ). Since  ℓ1 and ℓ2 are fuzzy continuous and u generates Z, it 

follows that ℓ1 = ℓ2. 
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Example 2.3.16: 

      Let Z= {(
𝛼 𝛽
0 𝛼

): 𝛼, 𝛽 ∈ ℂ} be a subalgebra of 𝑀2(ℂ). Then (
𝛼 𝛽
0 𝛼

)=𝛼I + 𝛽q, where 

q=(
0 1
0 0

). We note that 𝑞2=0. 

Evidently, Z is two-dimensional commutative fuzzy complete a-fuzzy normed algebra with 

identity I. We shall compute the spectrum 𝜎𝑍(x) for x= (
𝛼 𝛽
0 𝛼

). Indeed, for 𝜆 ∈  ℂ, 

x− 𝜆I=(
𝛼 − 𝜆 𝛽

0 𝛼 − 𝜆
) is invertible in 𝑀2(ℂ) ⟺ if 𝛼 ≠ 𝜆. If 𝛼 ≠ 𝜆, then, in fact 

(x −  𝜆I)−1 =(
(𝛼 − 𝜆)−1 −𝛽(𝛼 − 𝜆)−1

0 (𝛼 − 𝜆)−1 ), which belongs to Z. Hence, 𝜎𝑍(x)= 𝜎𝑍(𝛼I + 

𝛽q)={𝛼}.In particular𝜎𝑍(q)= 𝜎𝑍(𝛽q) ={0}, but q≠0. If 𝒽 is a character of Z then  

𝒽(uv)= 𝒽(u) 𝒽(v) implies 𝒽(𝑞2)= 𝒽(q) 𝒽(q). But 𝑞2=0 and so 𝒽(q)=0. Since 𝒽(I)=1, we find 

that 𝒽(𝛼I + 𝛽q) = 𝛼 for any 𝛼, 𝛽 ∈  ℂ. Thus, there is just one character on Z so st(Z) = { 𝒽}, 

where 𝒽 is given uniquely by the action 𝒽(I)=1 and 𝒽(q)=0. 

The fuzzy Gelfand transform is the map z ⟼ Ψ𝑧, (𝛼I + 𝛽q) ⟼ 𝛼Ψ𝐼+𝛽 Ψ𝑞. But  Ψ𝐼=1 and 

Ψ𝑞(𝒽)= 𝒽(q)=0 so that Ψ𝑞=0 and we have Ψ(𝛼I + 𝛽q)= 𝛼 for any 𝛼, 𝛽 ∈  ℂ. 

The transform Ψ𝑞 has kernel { 𝛽q: 𝛽 ∈  ℂ}, so Ψ𝑞 is not an isomorphism. The algebra Z has 

exactly one maximal ideal, namely, the Kernel of 𝒽. As Z is an algebra with identity generated 

by q and so st(Z)≅ 𝜎𝑍(q), throw  Ψ𝑧:st(Z) → 𝜎𝑍(q), 𝒽 ⟼ Ψ𝑞(𝒽)=0. 

Thus, the two sets st(Z) and 𝜎𝑍(q) are singleton sets. 

 

     On the other hand, we can calculate the spectrum of x∈Z using R(Ψ𝑥)= 𝜎𝑍(x). For  

x= (
𝛼 𝛽
0 𝛼

) we have, 𝜎𝑍(x)={ Ψ𝑥(𝒽)} = { 𝒽(x)}={ 𝒽(𝛼I + 𝛽q)}={𝛼 𝒽(I) + 𝛽 𝒽(q)}={𝛼} 

Since 𝓀(q)=0. 

 

4. Conclusions 

     In [6] we proved some properties of fuzzy complete a-fuzzy normed algebra. In this paper 

we recall the definition of a-fuzzy normed algebra in order to prove other properties of fuzzy 

complete a-fuzzy normed algebra. 
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