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Abstract

In this paper further properties of the fuzzy complete a-fuzzy normed algebra have
been introduced. Then we found the relation between the maximal ideals of fuzzy
complete a-fuzzy normed algebra and the associated multiplicative linear function
space. In this direction we proved that if £ is character on Z then ker# is a maximal
ideal in Z. After this we introduce the notion structure of the a-fuzzy normed algebra
then we prove that the structure, st(Z) is w*-fuzzy closed subset of fb(Z, C) when (Z,
ny , ®, ©) isa commutative fuzzy complete a-fuzzy normed algebra with identity e.

Keywords: Character of a-fuzzy normed algebra, Structure of a-fuzzy normed
algebra, w* —fuzzy topology on afb(Z, C), Fuzzy Tychonoff Theorem, fuzzy Gelfand
transform.
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1. Introduction

In this paper we continue the previous study of fuzzy complete a-fuzzy normed algebra. We
prove here the other important properties of fuzzy complete a-fuzzy normed algebra. The
organization of this paper is as follows: we divided this research into four sections; the
introduction will be in section one, after that in section two important properties of fuzzy length
space and a-fuzzy normed space are recalled. Furthermore, basic important properties of a-
fuzzy normed algebra that will be needed later can be found in section three. Moreover, further
properties of fuzzy complete a-fuzzy normed algebra have been proved as a main results in the
same section. Finally, in section four we highlight the conclusion for this research.
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2. Preliminaries about a-fuzzy normed algebra
Definition 2.1 [1]:
Let ®:1 X | =1 be a binary operation function, then it is said to be continuous t-conorm (or
simply t-conorm) if it satisfies the following conditions:
Hp®o=q®p;
(Np®OOW=[P®qgqeow,
(iii) ® is continuous function;
(ivip ® 0=0;
(V) (p ® 2) = (g ® w) wheneverp>qgand z > w.
Forallp,q,z, wel=][0,1].

Definition 2.2:
If Lc :C —1is afuzzy set, and ® is a t-conorm, then L is a-fuzzy length on C if
()0< L¢(o) <1;
(ii) L¢ (0)=0 if and only if o=0;
(iii) Le(ot) < Le(0).Le(T) 5
(V) Le(o + 7) < Le(0) ® Le(D).
Forall o, T € C. The (C, Lc, ®) is a-fuzzy length space.

Remark 2.3:
We will take ® tobe u ® o=u+o —u o, forall u, o €1=[0, 1].

Example 2.4:
If Lj(a) = 1%' for all @ € C ,where | .| is length value on C Then (C, L, ® ) is a-fuzzy
length space.

Definition 2.5 [3]:

If (C, Lc, ® ) is a-fuzzy length space, Z is a vector space over C, and ® is a t-conorm and n:
Z-l is a fuzzy set. Then n, is a-fuzzy norm on Z if

(N0< ny(2) < 1;

(ii) n4(2) =0 & z=0;

(iii) nz(uz) < L¢(u) n(z) for all 0+ u € C;

(V) nz(z +y) < nz(2) ® ng(y).

Forall z,y € Z. Then (Z, n;, ®) is a-fuzzy normed space (or simply a-FNS).

Definition 2.7 [3]:

If (z,) is a sequence in Z, then (z;) is fuzzy converges to the limit z as k — oo, if for all u €
(0,2), we can find N € N when ny(zy —z) < u, forall k=N, if (Z,n, , ®) is a-FNS.

If (z;) is afuzzy converges to z we write 1113)10 71k=Z, Of Zx —Z, or 111_{2) nz(zx — z)=0.

Definition 2.8 [3]:

If (z;) is a sequence in Z, then (z;) is fuzzy Cauchy sequence in Z if for all u € (0, 1), we can
find N € N when n;(zx — z,) <5, forall k, m >N, if (Z, n;, ®) is a-FNS.
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Definition 2.9 [3]:
If for any (z;,) fuzzy Cauchy in Z, there is z€Z such that z;, —z, then the a-FNS (Z, n;, ®) isa
fuzzy complete

Corollary 2.10 [3]:
The a-fuzzy length space (C, L¢, ®) is a fuzzy complete.

Theorem 2.11 [4]:

When (Z, nz, ®) and (W, ny, ®) are two a-FNS. Then the operator H : Z—W is a fuzzy
continuous at zeZ if and only if whenever (zy) is a fuzzy converges to zeZ then (H(zy)) is a
fuzzy converges to H(z) € W.

Definition 2.12 [4]:
When (Z, nz, ®) and (Y, ny, ®) are two a-FNS then the operator S : Z-Y is a fuzzy
bounded if there is u €(0, 1) with ny[S(2)] < un,(z2), for all zeZ.

Notation [4]:
If (Z, ny, ®) and (Y, ny, ®) are two a-FNS then afb (Z, Y) = {S:Z-Y, S is a fuzzy bounded
operator}.

Theorem 2.13 [4]:
Define muz,y)(S) = sup,eps)ny(Sz), for all S€ afb(Z, Y).Then (afb(Z, Y), namzy), ®) is
a-FNS. If (Z, nz, ®) and (Y, ny, ®) are two a-FNS.

Theorem 2.14 [4]:
The space afb(Z, Y) is a fuzzy complete if Y is a fuzzy complete when (Z, n,, ®) and (Y, ny,
®) are two a-FNS.

Definition 2.15 [4]:

A linear functional h from a-FNS (Z, n;, ®) into the a-fuzzy length space (C, L¢, ®) is fuzzy
bounded if there is § € (0, 1) with L¢[h(u)] < &. ny(u) for any u €D(h). Furthermore, the a-
fuzzy norm of h'is n,¢,(z,¢)(h) = supyepm)Lc(hu), for all he afb(Z, R') and

Lc[h(U)] < mamz k) (h). nz(u) for any u €D(h).

Definition 2.16 [4]:

Let (Z, n,, ®) be a-FNS. Then afb(Z, C) = { h:Z— C: h is fuzzy bounded and linear } forms
a-fuzzy normed space with a-fuzzy norm defined by n,¢,z,c)(h) = supyepm)Lc(hu) which
is called the fuzzy dual space of Z.

Theorem 2.17 [4]:
If (Z, n;, ®) is a-FNS then fuzzy dual space afb(Z, C) is a fuzzy complete.

Definition 2.18 [4]:
%={Z+DZ zeZ} is a K-space with the operations ; (v+D) +(z+D) = (v+z) +D and a(z+D) =
(az)+D. If Z is a vector space over the field IK and D is a closed subspace of Z.

Definition 2.19 [5]:
Define a-fuzzy norm for the quotient space g by g[u+D]=inf cpny[z+d] for all z+D € %.
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When (Z, n; , ®) be a-FNS and DcZ is a fuzzy closed in Z.

Theorem 2.20 [5]:
The quotient space (% , 0, ®)isa-FNSif (Z, n; , ®) isa-FNS and DcZ is a fuzzy closed
in Z.
Remark 2.21 [5]:
If (Z, n;, ®)isa-FNS and DcZ is a fuzzy closed in Z. Then
Q)m:Zz - % is a natural operator defined by n[z]=z+D,;
(2)a(z+D) < n4(2).

Theorem 2.22 [5]:
If (% , 0, ®) is a fuzzy complete then (Z, n, , @) is a fuzzy complete when (Z, n, , ®) be a-
FNS and DcZ is a fuzzy closed in Z.

Theorem 2.23 [5]:
If (Z, n, , ®) is a fuzzy complete then (% , 0, @) is a fuzzy complete when (Z, n, , ®) is a-
FNS and DcZ is a fuzzy closed in Z.

Definition 2.24 [1]:

Let O:1 x I -1 be a binary operation function then (@ is said to be continuous t-norm (or simply
t-norm) if it satisfies the following conditions:

MpOa=q0Op;

(MpO[AOW=[POqOw,

(iii) © is continuous function;

(VIpO 1=p;

(V) (p © 2) < (g © w) wheneverp < qgandz=>w.

Forallp,q,z,wel=][0,1].

Definition 2.25 [6]:

The space (Z, nz, ®, ©) is called a-fuzzy normed algebra space (or simply a-
FNAS) if

(1) (Z, +, .) is an algebra space over the field K, where K=R or K=C;

(2) (Z, nz, ®) is a-FNS, with ® is a t-conorm;

(3) © isat-norm;

(4nz(p.a)< nz(p) O nz(q), forall p, g €Z.

Remark 2.26:

In this paper we take;

(Do © t=0.7, for all g, T €[0, 1].

(2)y ® 8=y+ 8 —v8, forall y, § €[0, 1].

Definition 2.29 [6]:
The space (Z, ny, ®, ©) is a fuzzy complete a-FNA if (Z, nz, ®) is a fuzzy complete a-FNS.
Then (Z, nz, ®, ©) is a commutative fuzzy complete a-FNA.

Lemma 2.31 [6]:
If (Z, n7, ®, ©) is a-FNA, then multiplication is a fuzzy continuous function.

323



Abbas and Kider Iraqi Journal of Science, 2024, Vol. 65, No.1, pp: 320- 331

Theorem 2.32 [6]:
An a-FNA (Z, nz, ®, ©) without identity can be embedded into a-FNA, Z. having the identity
e, also Z is considered as an ideal in Z..

Proposition 2.33 [6]:
The space (Z, , nz_, ®, ©) is a fuzzy complete & (Z, nz, ®, ©) is a fuzzy complete.

Theorem 2.34 [6]:
Every a-FNA can be embedded as a closed subalgebra of afb(Z, Z).

Proposition 2.35 [6]:
If (Z, nz, ®, ©) is a fuzzy complete a-FNA and z€Z, then (e—z) is invertible, the series
Y, zK is fuzzy converges, and Y5>, z8= (e — z) 1.

Theorem 2.36 [6]:
The space (g, g, ®, ©) isafuzzy complete a-FNA if (Z, n; , ®, ©) is a fuzzy complete

a-FNA and D is a fuzzy closed ideal in Z. Also % has an identity if Z has an identity. As well
as the identity of % has a fuzzy norm equal to 1.

Remark 2.37 [6]:
If (Z, n; , ®, ©) is a fuzzy complete, then for any a# 0, a~* exists and a~ €Z.

Proposition 2.38 [6]:
If (Z,n;, ®, ©) is afuzzy complete a-FNA, then T(z)=z"1 is fuzzy continuous mapping.

Lemma 2.39 [6]:
Let (Z, n; , ®, ©) be a fuzzy complete having an identity e. If z=1 and u™? exists in Z then
(zu)~! and (uz)~?! are exist in Z.

Proposition 2.40 [6]:
Let (Z, n; , ®, ©) be a fuzzy complete a-FNA having an identity e. If z, u € Z where
(e — zu) ~1exists. If d=(e — zu) ~! then (e — uz) ~! =e + udz.

Definition 2.41 [6]:
Let A={4;:j€J} be a family of subsets of a space Z. The family A is centered if for any
finite number of sets 4;, Ay, ....Ay € A we have N_; 4; # 0.
Definition 2.42 [6]:
Let Z be a non-empty set. A collection T of a subset of Z is said to be a fuzzy topology on
Zif
()ZeTand g €T,
(iDIf Ay, A,,..., A, €ETthenniL; A, ET;
(iii)If {A;: jeJ}e T then U A ET.
Then (Z, T) is called a fuzzy topological space.

Theorem 2.43:

If Z is a fuzzy topological space then the following statement are equivalent:
(1) Z is a fuzzy compact;
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(2) For any centred family A of a fuzzy closed subset of Z we have N ¢4 # 0.

Proof: (2)=(1)

Let A={A;:j€J} be a fuzzy open cover of Z. We need to show that A has a finite subcover.
For j€J, define G;=Z— A;this gives a family G=={G;:j€J} of fuzzy closed sets in Z. We have
Nijg; Gi= NiglZ— Aj] = Z—[Vjey Aj]=Z—Z=0, since Z=Uj¢; A;. This implies that G is not
centered family, so there exists G,, G,, ...,G, € G such that n]’-;l Gj= @. This gives, ®=n]’-‘=1
Gi= Ny [Z— Aj] = Z—[U[L, A;]. Therefore, Z=U_, A; and so Z is a fuzzy compact since
{4;:J=1,2, ..., k} is a finite subcover of A.
(1)=(2) Follows from a similar argument.

Fuzzy Tychonoff Theorem 2.44:
If {Z;: jeJ} is a family of fuzzy topological spaces and Z; is a fuzzy compact v j€J, then the
product space I1;;Z; is a fuzzy compact.

Proof:
Let Z=Ilj¢;Z; where Z; is a fuzzy compact V jeJ. Let A be a centred family of fuzzy closed

subset of Z. We will show that there exists z = (z;), J€J €Z such that z € N4 4, A. Let D denote

the set consisting of all centred families F[ not necessarily fuzzy closed] of subset of Z such
that A € F. The set D is partially ordered set by < .

We will show that every chain in D has an upper bound. Indeed, if {F;: j€J} is A chainin D
then take F= Uj¢; F;. Since F is centred family and F; < F for all j€J thus F is an upper bound
of {F;: jeJ}. Now by Zorn's Lemma we obtain that the set D contains a maximal element M.

We will show that there exists z €Z such that z€ Ny M. Since A € M and A contains of
fuzzy closed sets we have, Nyear M S Nyeq A. Therefore, it will follow that z€ Nye 4 A and

Construction of the element z proceed as follows. For j€] let p;:Z— Z;be the projection onto
the jth coordinate. Now for each jeJ the family {m: M € M1} is centred family of fuzzy
closed subsets of Z;, so by the fuzzy compactness of Z; there exists z; € Z;such that z; € Nyexr
p,(M). We set z = (z;), jeJ.

In order to see that z€ Nyepe M notice that M the following property:
If B€Z and BNM= @ forall M € MthenBe M ........ (*)

Indeed if M'=M U {B} then M’ €D, so by maximality of M'we must have M'=M". For
J€J let U; < Z;be a fuzzy open neighborhood of z;. Since z; € p,(M) for all M € M, thus U;
Np;(M) # ¢ forall M € M.

Equivalently pj_l(Uj)ﬂ M= @ for all M € M. By property * we obtain that p‘l(Uj) EM
for all jeJ. Since Mis a centred family we obtain
p YU) Nnp Y U) n..np (U ) NM =@, forallM e M ... (*x)
Now the sets of the form, p~1(U;) n p~1(U,) Nn...np~1(U,) are precisely the fuzzy open
neighbourhood of z that belong to the basis of the product fuzzy topology on Z, and thus any
fuzzy open neighbourhood of Z contains a neighbourhood of this type. Therefore, using (xx)
we obtain that if M € M then for any fuzzy open neighbourhood U of z we have MNU # @.
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This means that for any M € M we have z€ M, and hence z € Nyear M.

3.Further properties of fuzzy complete a-fuzzy normed algebra
Definition 3.1:

An ideal J in an algebra (Z, +, .) is maximal if J cZ (that is J #Z), and if there is an ideal
T with J c T thenT =Z.

Proposition 3.2:
Every maximal ideal J in Z where (Z, n; ,®, ©) is fuzzy complete a-fuzzy normed algebra
with an identity e, is fuzzy closed.

Proof:

If J be a maximal ideal in Z, then J must does not contains any invertible element, otherwise
J=Z. This implies that J €Z— G(Z). But G(Z) is fuzzy open so Z— G(Z) is fuzzy closed, hence
Jc JczZ-G(2). As special case, J = Z. Since J < J so J=J but J is maximal ideal.
Hence J is a fuzzy closed.

Proposition 3.3:
If (Z, n; ,®, ©) is a fuzzy complete a-FNA, then every homomorphism 6:Z— C, is fuzzy
continuous

Proof:

The case when 6=0 then it is fuzzy continuous. Let 8 #0 and Z has an identity e. Now Vv
UEZ, O(u)=6(u.e) = (u). 8(e), and so 8(e)=1. If ueZ with 6(u)=+0, then b=u— 8(u).e € ker 6
and so b is not invertible [or 1= 8(bb~1)=0(b). 8(b~1) which is not correct ]. Therefore, 8(u) €
a(u) and this implies that Lc[6(u)] < nz(u). This inequality stall true when 8(u)=0 and hence
@ is fuzzy continuous on Z. [ if (zx) be a sequence in Z converge to zeZ that is I}l_r)glo ny (z —

2)=0, then Ilim Lc[0(z,) — 6(2)] =0thatis 8(z) - 6(2)].
If Z does not have an identity, we consider Z, instead. Define 8': Z, — C by: 8'[(u, )] = 6(u)
+ a for all (u, a) € Z,. Then ¢’ is a homomorphism is clear and therefore by the first part of

the prove, 8’ is fuzzy continuous on Z,. specially, its restriction to Z in Z, is fuzzy continuous
i.e., @ isafuzzy continuous.

Definition 3.4:
A homomorphism #£:Z— C where (Z, n; ,®, ©) is a fuzzy complete a-FNA is called a
character. Character is fuzzy continuous by Proposition 3.3.

Theorem 3.5:
If 4 is a character on Z, then ker 4 is a maximal ideal in Z, and every maximal ideal has this
form for some unique character, when (Z, n; ,®, (©) is a commutative fuzzy complete a-FNA
with identity e.

Proof:

If 4:Z— Cis acharacter and J=ker ¢, it is clear that J #Z because £ =0. If z ¢ J then for any
. __ AW Ry _ W - -

u € Zis represented by u—z—k(z) +[u z—k(z)] since [u— z n (Z)] € ker £=7, we see that Z= Cz +

J and therefore J is a maximal ideal. This implies that J is fuzzy closed and hence ? is fuzzy

326



Abbas and Kider Iraqi Journal of Science, 2024, Vol. 65, No.1, pp: 320- 331

complete a-FNA. Now we will show that the maximality of J implies that every non-zero
element of %is invertible. To prove this, let (z+ J)#0 and (z + J)~ does not exists.

Thus J c (J +zZ) c Z [ e¢ (J + z) because (z + J) ' ¢ ;]. But this is not true since J is
maximal by our assumption. This implies that every element of§ isA(e+]j) for1 € C.

If 6: ? — C represent this isomorphism, and if m:Z— ; is the canonical projection.

Then 6 o m: Z — C is a homomorphism with ker 8=7;

8 o m(p.q) = O[m(p.q)] = OL(p.a) + 1 =0[(p+ )@+ NI =[6(p + IN].[ 6(a + J)]
=0 o1(p). 6 o m(q).

Also, 6 o t(p) =0 & n(p) =0 < pe J.

Hence there is a correspondence between maximal ideals J and the characters £ with
ker A=].

This correspondence is one-to-one because £ is uniquely determined by its Kernel. If 4
and ¢ are two character with ker/£= ker¢ then for any weZ, (w — #(w)e) € ker £= ker¢ and
thus %(w)= £(w) because ¢(e)=1.

Theorem 3.6:
Every commutative fuzzy complete a-FNA (Z, n; , ®, ©) with an identity e has at least
one character.

Proof:

If u~1 exists for all ue Z then Z= C and the isomorphism u: Z— C is a character. On the
other hand, if 3 X€Z such that u~! does not exists then xZ c J where J is a maximal proper
ideal, by Zorn’s lemma the set 7={J < L: L is ideal } is partially ordered by <, thus U e £
is an ideal and J © Uger £ Since e € Uger L. By Zorn's Lemma states that there exists a
maximal K with c K. But J=ker £ where 4 is a character on Z.

If Z is not commutative, then we may does not find a character at all on the a-FNA..

Example 3.7

If Z=M, (C) where k>1, then assume that E;; = (e;;) € M, (C) where e;; = 0, except for the ij-
position is equal to 1. Now let £ is a character on Z, then for i#j, Eizj:O which imply that
#(E;;)=0. But E;= E};. Ej;, when i=j, and this imply that £(E;)=0 for j=1, 2, ..., k.

Hence, %(1)= £(E1;) + #(E,2) + ... + £(Ey,)=0. But this is not true.
Thus Z=M, (C) with k>1, does not has a characters.

Definition 3.8:
If (Z, n; , ®, ©) is a fuzzy complete a-FNA has an identity e. Then {#: % is a characters of
Z} is called structure of Z and is denoted by st(Z).

Definition 3.9:

(1)The w* —fuzzy topology on afb(Z, C) is generated by N(q, A, €)={ge€ afb(Z, C): Lc[g(a)-
q(a)]< e, for all acA}, where g € afb(Z, C), and A cZ is finite.

(2)The a set E in afb(Z, C) is fuzzy open in w* —fuzzy topology & V9 € E, 3 N(9, A, ¢) CE.
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Proposition 3.10:
If (Z,n; , ®, ©) is afuzzy complete a-FNA having an identity e then w* —fuzzy topology on
afb(Z, C) is a Hausdorff space.

Proof:
If hy, h, €afb(Z, C) withh; # h, then there exist a€Z such that h, (a)# h,(a). Let Lc[h;(a) —
h,(a)]=r,forsome 0 <r < 1,thenVr<r, <1, 3 r; satisfyingr; ®r; <r,.
Now consider N[h, , {a}, r;) and N(h,, {a}, r;). Clearly, N[h, , {a}, r;) N N(h,, {a}, r;)= 0
if there exists ye N[h; , {a}, r;) n N(h,, {a}, r;) then
r=L¢[hy (@) — hy(a)]
< Le[hy (@) —y(a)] ® Lelhz(a) —y(a)]
<r; ®r; <r.
But this is not true. Hence the proof is complete.

Proposition 3.11:
If (Z, n, , ®, ©) is a fuzzy complete a-FNA having identity e then st(Z) is w*-fuzzy closed
subset of afb(Z, C).

Proof:

If (hy) is a sequence in st(Z) converging to he fb(Z, C), then hy(z)—h(z) for each ze Z.
Now for any x, yeZ we have

hxy)=lim hy(xy)= lim hy(x). lim hy(y)=h(x).h(y)

It follows that he st(Z). Hence st(Z) is a fuzzy closed.

In the next result we prove fuzzy Banach-Alaouglu's Theorem:

Theorem 3.12
If (Z, nz , ®) is a fuzzy complete a-FNS, then the fuzzy closed unit ball B, ¢,z ¢y={h€afb(Z,

C): Namz,c)(h)<1} of afb(Z, C) is a w™ —fuzzy compact.

Proof:

Let zeZ, define D,={a € C: L¢(a)< nz(2)}< C. Then D, is a fuzzy compact which implies
D=Il,c,D, is a fuzzy compact in the product fuzzy topology by fuzzy Tychonoff Theorem 2.44.
Let B¢ denotes the fuzzy closed unit ball B, ¢y ).

Define 8: B¢ -D by 8(1n)=(n(w))yez ¥ 1 € B*.We will prove that 8 is one-to-one and fuzzy
continuous. Itis clear that 6 is Linear. If 8(n)=0 then (n(u)),ez= (0) which implies that n(u)=0
V UeZ. Hence, n=0 and from this we obtain 7 is one-to-one.

To prove 6 is a fuzzy continuous, now if () c B¢ satisfying n, =" 1. Then 5, (u)- n(u) v
ueZ. Consequently, 8(n,)= (M (W) uez = (M(W))yez= 0(n). Hence, 6 is a fuzzy continuous.

If 6(BY)is afuzzy closed subset of D and D being fuzzy compact, then 8(B?) is fuzzy compact.
Thus our next step is to prove 8(B%) is a fuzzy closed. If ¢ = (0,)€D and ¢ € §(B%) then define
n:Z— C by n(u)= o, ¥ UEZ. The map n is linear, if X, yéZ and «, € C then V ke N, choose
Nk € B4 thus
n(ax+py) =lim n,.( ax+py) =a lim 1, (x) + § lim 7, (y)

= af(xX)+p1(y) [ since n; is linear].
Thus 7 is linear. Since L¢(a,) < nyz(u), son € B4 Now by the definition of 1, we see that o=
0(n) € B%. Hence, 8(B?) is a fuzzy closed. But B¢ and 6(B%) are homeomorphic, so B¢ must
be fuzzy compact.
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Proposition 3.13:

If (Z, n; , ®, ©) is a fuzzy complete a-FNA having an identity e then st(Z) is a w* —fuzzy
closed of B, fp(z,cy={h€afb(Z, C): namz,c)(h)<1} and hence is a fuzzy compact.

Proof:

Suppose that (¢;) be a sequence in st(Z) which is fuzzy converge to 8 €afb(Z, C). Then £, (z)—
0(z) V zEZ. Since V X, y €Z, 6(xy):]11m i (xy)= ’lim £ (x). zlim £, (y)=6(x). 6(y) so, we

conclude that 8 est(Z). Here 8 +0 since 8(l)=1. Thus st(Z) isa w* —fuzzy closed. Therefore,
st(Z) is a fuzzy compact because it is a fuzzy closed subset of a fuzzy compact set.

Theorem 3.14:

If (Z, n; , ®, ©) is a commutative fuzzy complete a-FNA having an identity e, then for each
zeZ and he st(Z) we define W¥,:st(Z)— C by W, (h)=h(z). Then the range of the function ¥, on
st(Z) satisfies R(W,)=0,(z). Furthermore, the map ¥ is homomorphisum, ¥:Z—C(st(Z)) and
Nasp(stz),c) (P2) < nz(z) for all z€Z. The map W is called Gelfand transform.

Proof:

If ueZ and hest(Z) then h(x)€ a,(x) that is W, (h) € o,(u) and so the range of ¥, satisfies the
inclusion R(¥,) € a(u).

Let a € o4(u), so (u — ae) ~* does not exists and (U—ae) & J where J is some maximal ideal,
say [Since (u—ae) € Z(x—ae) c J].

If 2 € st(Z) with ker/=7 then (x—ae) € J which implies that A(u)= a. Thus ¥, (#4)= A(u)= a
and so R(¥,)= a,(u). But ¥ is a homomorphism;

W,y (h) = h(zy) = h(z).h(y) = ¥, (h).Wy(h) V 2, y €Z, hest(Z) and so ¥, = V,. ¥,

Similarly, we can show that W, ,g,= a'¥, + Wy (h), thus ¥, is linear.

To prove that ¥, € C(st(2)), if Q) is a fuzzy open set in C we will prove that ¥, "(Q) is a fuzzy
open in st(Z). When W, ~1(Q)=@, the proof is end. If ¥,~1(Q)# @. Assume that g € ¥, *(Q).
So 3 § € Q such that W, (¢)= 6. Since Q is a fuzzy open in C, 3 0< ¢ <1 with N.(6)={a € C:
Le(a — 6) < e3c Q. If V=N(g:{u}, e)={w €st(Z2): L¢(w(u)— g(u))< €}.

Then w(u)=¥,(w) € Q, V w €V, s0 g EVS ¥, *(Q). Hence, ¥, () is a fuzzy open in st(2)
and therefore W, :st(Z)— C is a fuzzy continuous thus W, (.)€ C(st(2)).

On other hand, we can introduce another prove for the fuzzy continuity of W, by using
sequences. If g, — g in st(Z) then W, (gx) = Yu(g)=g(u), hence W, is a fuzzy continuous.
Now, R(W,)=0;(u) € { a € C: L¢(a)< nz(u)} and thus Lc(W,(¢))< nz(u), V ¢ €st(Z). Hence,
nafb(st(Z),(C)(lpu) < TlZ(U), V ueZ.

Theorem 2.3.15:
If (Z,n; , ®, ©) is a commutative fuzzy complete a-FNA having an identity e and Z=uZ, that
is, the set of polynomials in z is fuzzy dense in Z. Then the map W,:st(Z2)— o,(u) c Cisa
homeomorphism.

Proof:

Since ¥, is fuzzy continuous function on st(Z) satisfying R(¥,) = o ;(u) i.e., ¥,:st(2)—
o »(u) is a fuzzy continuous and onto. But st(Z) and o ;(u) are fuzzy compact Hausdorff spaces,
thus it remains only to prove that W, is injective. Now if W, (#,) = ¥,(¥,), so that £, (u)=4,(u),
by using the multiplicatively of £, and ¢, we see that for given ke N and c, ¢y, ..., ¢, in C,
{’1(23?:0 cjuk) = {’Z(Zfzo cjuk). Since ¢, and ¥, are fuzzy continuous and u generates Z, it
follows that £, = £,.
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Example 2.3.16:

Let Z= {(g g): a, B € C} be a subalgebra of M,(C). Then (a

B\-
0 a)—al + Bq, where

(0 1 2_
q-(o 0).We note that g==0.

Evidently, Z is two-dimensional commutative fuzzy complete a-fuzzy normed algebra with

identity 1. We shall compute the spectrum o,(x) for x= (g ﬁ) Indeed, for A € C,

X— /’LI:(a 8 A . 6 /1) is invertible in M,(C) & if a # A. If « # A, then, in fact
_ -1 _ _ -1
(x— A1 :<(a 0/1) fa(a_ /1)/1_)1 ) which belongs to Z. Hence, ¢;(X)=ad;(al +

Ba)={a}.In particulara;(q)=0,(8q) ={0}, but g#0. If A is a character of Z then
A(uv)= A(u) A(v) implies £A(q?)= 4(q) £(q). But g=0 and so 4(q)=0. Since 4(1)=1, we find
that A(al + Bq) = a for any a, B € C. Thus, there is just one character on Z so st(Z) = { 4},
where 4 is given uniquely by the action 4(1)=1 and 4(q)=0.

The fuzzy Gelfand transform is the map z — ¥,, (al + pq) — a¥;+f ¥,. But ¥,=1 and
¥, (#)=#(q)=0 so that ¥,=0 and we have ¥, + pq)= @ forany a, g € C.

The transform ¥, has kernel { fq: p € C}, so ¥, is not an isomorphism. The algebra Z has
exactly one maximal ideal, namely, the Kernel of 4. As Z is an algebra with identity generated
by g and so st(Z)= az(q), throw W¥,:st(Z) - 0(q), A4 — ¥, (4)=0.

Thus, the two sets st(Z) and o(q) are singleton sets.

On the other hand, we can calculate the spectrum of xeZ using R(¥,)= a(x). For

x= (& ) we have, o,00={ W(A)} = { A(0}={ Alal + B}={e A() + B A(Q)}={a}

a
Since £(q)=0.

4. Conclusions

In [6] we proved some properties of fuzzy complete a-fuzzy normed algebra. In this paper
we recall the definition of a-fuzzy normed algebra in order to prove other properties of fuzzy
complete a-fuzzy normed algebra.
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