Iraqi Journal of Science, 2024, Vol. 65, No.1, pp: 320- 331 DOI: 10.24996/ijs.2024.65.1.26

ISSN: 0067-2904

Further properties of the fuzzy complete a-fuzzy normed algebra

Rasha Khudhur Abbas, Jehad R. Kider*

Branch of Mathematics, Department of Applied Sciences, University of Technology-Iraq

Received: 20/11/2022 Accepted: 7/2/2023 Published: 30/1/2024

Abstract

In this paper further properties of the fuzzy complete a-fuzzy normed algebra have been introduced. Then we found the relation between the maximal ideals of fuzzy complete a-fuzzy normed algebra and the associated multiplicative linear function space. In this direction we proved that if ℓ is character on Z then ker ℓ is a maximal ideal in Z. After this we introduce the notion structure of the a-fuzzy normed algebra then we prove that the structure, st(Z) is ω^* -fuzzy closed subset of fb(Z, \mathbb{C}) when (Z, n_Z , (•), (•)) is a commutative fuzzy complete a-fuzzy normed algebra with identity e.

Keywords: Character of a-fuzzy normed algebra, Structure of a-fuzzy normed algebra, ω^* –fuzzy topology on afb(Z, C), Fuzzy Tychonoff Theorem, fuzzy Gelfand transform.

خواص إضافية للفضاء الجبري القياسي الضبابي-أ التام ضبابيا

رشا خضر عباس, جهاد رمضان خضر *

فرع الرياضيات, قسم العلوم التطبيقية, الجامعة التكنولوجية, العراق

الخلاصة

في هذا البحث خواص إضافية للفضاء الجبري القياسي الضبابي – أ التام ضبابيا تم تقديمها. بعد ذلك وجدنا العلاقة بين المثاليات العظمى للإفضاء الجبري القياسي الضبابي – أ والتام ضبابيا وفضاء الدوال الخطية الضربية المرتبطة. وفي هذا الاتجاه برهنا إذا كان f هو character على الفضاء Z عندئذ fهو مثالي أعظم في Z. بعد ذلك تم تقديم مفهوم structure للفضاء الجبري القياسي الضبابي – أ بعد ذلك برهنا (Z, nz , (\odot)) هو (\odot) مغلق ضبابي جزئي في الفضاء (C, C) إبدالي وفضاء جبري قياسي ضبابي – أ وتام ضبابيا يحتوي على عنصر محايد e

1. Introduction

In this paper we continue the previous study of fuzzy complete a-fuzzy normed algebra. We prove here the other important properties of fuzzy complete a-fuzzy normed algebra. The organization of this paper is as follows: we divided this research into four sections; the introduction will be in section one, after that in section two important properties of fuzzy length space and a-fuzzy normed space are recalled. Furthermore, basic important properties of a-fuzzy normed algebra that will be needed later can be found in section three. Moreover, further properties of fuzzy complete a-fuzzy normed algebra have been proved as a main results in the same section. Finally, in section four we highlight the conclusion for this research.

*Email: jehadkider@gmail.com

2. Preliminaries about a-fuzzy normed algebra

Definition 2.1 [1]:

Let $(:I \times I \to I)$ be a binary operation function, then it is said to be continuous t-conorm (or simply t-conorm) if it satisfies the following conditions: (i) p (:q = q (:p);

(i) $p \otimes q - q \otimes p$, (ii) $p \otimes [q \otimes w] = [p \otimes q] \otimes w$; (iii) \otimes is continuous function; (iv) $p \otimes 0 = 0$; (v) $(p \otimes z) \ge (q \otimes w)$ whenever $p \ge q$ and $z \ge w$. For all $p, q, z, w \in I = [0, 1]$.

Definition 2.2:

If $L_{\mathbb{C}} : \mathbb{C} \to I$ is a fuzzy set, and \circledast is a t-conorm, then $L_{\mathbb{C}}$ is **a-fuzzy length on** \mathbb{C} if (i) $0 < L_{\mathbb{C}}(\sigma) \le 1$; (ii) $L_{\mathbb{C}}(\sigma)=0$ if and only if $\sigma=0$; (iii) $L_{\mathbb{C}}(\sigma\tau) \le L_{\mathbb{C}}(\sigma).L_{\mathbb{C}}(\tau)$; (iv) $L_{\mathbb{C}}(\sigma+\tau) \le L_{\mathbb{C}}(\sigma) \circledast L_{\mathbb{C}}(\tau)$. For all $\sigma, \tau \in \mathbb{C}$. The ($\mathbb{C}, L_{\mathbb{C}}, \circledast$) is **a-fuzzy length space**.

Remark 2.3:

We will take \circledast to be $\mu \circledast \sigma = \mu + \sigma - \mu \sigma$, for all $\mu, \sigma \in I = [0, 1]$.

Example 2.4:

If $L_{|.|}(\alpha) = \frac{|\alpha|}{1+|\alpha|}$ for all $\alpha \in \mathbb{C}$, where |.| is length value on \mathbb{C} Then $(\mathbb{C}, L_{|.|}, \circledast)$ is a-fuzzy length space.

Definition 2.5 [3]:

If $(\mathbb{C}, L_{\mathbb{C}}, \circledast)$ is a-fuzzy length space, Z is a vector space over \mathbb{C} , and \circledast is a t-conorm and n_Z : $Z \rightarrow I$ is a fuzzy set. Then n_Z is **a-fuzzy norm on Z** if (i) $0 < n_Z(z) \le 1$; (ii) $n_Z(z) = 0 \Leftrightarrow z = 0$; (iii) $n_Z(\mu z) \le L_{\mathbb{C}}(\mu)$ n(z) for all $0 \ne \mu \in \mathbb{C}$; (iv) $n_Z(z + y) \le n_Z(z) \circledast n_Z(y)$.

For all z, $y \in Z$. Then (Z, n_Z, \circledast) is **a-fuzzy normed space** (or simply a-FNS).

Definition 2.7 [3]:

If (z_k) is a sequence in Z, then (z_k) is fuzzy converges to the limit z as $k \to \infty$, if for all $\mu \in (0,1)$, we can find $N \in \mathbb{N}$ when $n_Z(z_k - z) < \mu$, for all $k \ge N$, if (Z, n_Z, \mathfrak{S}) is a-FNS. If (z_k) is a fuzzy converges to z we write $\lim_{k\to\infty} z_k = z$, or $z_k \to z$, or $\lim_{k\to\infty} n_Z(z_k - z) = 0$.

Definition 2.8 [3]:

If (z_k) is a sequence in Z, then (z_k) is fuzzy Cauchy sequence in Z if for all $\mu \in (0, 1)$, we can find N $\in \mathbb{N}$ when $n_Z(z_k - z_m) < s$, for all k, m $\geq N$, if (Z, n_Z, \circledast) is a-FNS.

Definition 2.9 [3]:

If for any (z_k) fuzzy Cauchy in Z, there is $z \in Z$ such that $z_k \rightarrow z$, then the a-FNS (Z, n_Z, \circledast) is a fuzzy complete

Corollary 2.10 [3]:

The a-fuzzy length space $(\mathbb{C}, L_{\mathbb{C}}, \circledast)$ is a fuzzy complete.

Theorem 2.11 [4]:

When (Z, n_Z, \circledast) and (W, n_W, \circledast) are two a-FNS. Then the operator $H : Z \rightarrow W$ is a fuzzy continuous at $z \in Z$ if and only if whenever (z_k) is a fuzzy converges to $z \in Z$ then $(H(z_k))$ is a fuzzy converges to $H(z) \in W$.

Definition 2.12 [4]:

When (Z, n_Z, \circledast) and (Y, n_Y, \circledast) are two a-FNS then the operator $S : Z \rightarrow Y$ is a **fuzzy bounded** if there is $\mu \in (0, 1)$ with $n_Y[S(z)] < \mu n_Z(z)$, for all $z \in Z$.

Notation [4]:

If (Z, n_Z, \circledast) and (Y, n_Y, \circledast) are two a-FNS then afb $(Z, Y) = \{S: Z \rightarrow Y, S \text{ is a fuzzy bounded operator}\}$.

Theorem 2.13 [4]:

Define $n_{afb(Z,Y)}(S) = \sup_{z \in D(S)} n_Y(Sz)$, for all $S \in afb(Z, Y)$. Then $(afb(Z, Y), n_{afb(Z,Y)}, \circledast)$ is a-FNS. If (Z, n_Z, \circledast) and (Y, n_Y, \circledast) are two a-FNS.

Theorem 2.14 [4]:

The space afb(Z, Y) is a fuzzy complete if Y is a fuzzy complete when (Z, n_Z, \circledast) and (Y, n_Y, \circledast) are two a-FNS.

Definition 2.15 [4]:

A linear functional h from a-FNS (Z, n_Z , \circledast) into the a-fuzzy length space (\mathbb{C} , $L_{\mathbb{C}}$, \circledast) is **fuzzy bounded** if there is $\delta \in (0, 1)$ with $L_{\mathbb{C}}[h(u)] < \delta$. $n_U(u)$ for any $u \in D(h)$. Furthermore, the a-fuzzy norm of h is $n_{afb(Z,\mathbb{C})}(h) = \sup_{u \in D(h)} L_{\mathbb{C}}(hu)$, for all $h \in afb(Z, \mathbb{R})$ and $L_{\mathbb{C}}[h(u)] < n_{afb(Z,\mathbb{R})}(h)$. $n_Z(u)$ for any $u \in D(h)$.

Definition 2.16 [4]:

Let $(\mathbb{Z}, n_z, \circledast)$ be a-FNS. Then $afb(\mathbb{Z}, \mathbb{C}) = \{ h: \mathbb{Z} \to \mathbb{C}: h \text{ is fuzzy bounded and linear } \}$ forms a-fuzzy normed space with a-fuzzy norm defined by $n_{afb(\mathbb{Z},\mathbb{C})}(\mathbf{h}) = \sup_{\mathbf{u}\in \mathbf{D}(\mathbf{h})} \mathbf{L}_{\mathbb{C}}(\mathbf{hu})$ which is called the **fuzzy dual space** of \mathbb{Z} .

Theorem 2.17 [4]:

If $(\mathbb{Z}, n_Z, \circledast)$ is a FNS then fuzzy dual space afb (\mathbb{Z}, \mathbb{C}) is a fuzzy complete.

Definition 2.18 [4]:

 $\frac{z}{D} = \{z+D: z \in Z\}$ is a K-space with the operations; (v+D) + (z+D) = (v+z) + D and $\alpha(z+D) = (\alpha z) + D$. If Z is a vector space over the field K and D is a closed subspace of Z.

Definition 2.19 [5]:

Define a-fuzzy norm for the quotient space $\frac{z}{D}$ by $q[u+D]=inf_{d\in D}n_U[z+d]$ for all $z+D \in \frac{z}{D}$.

When $(\mathbb{Z}, n_Z, \mathfrak{S})$ be a-FNS and $D \subset \mathbb{Z}$ is a fuzzy closed in \mathbb{Z} .

Theorem 2.20 [5]:

The quotient space $(\frac{Z}{D}, q, \circledast)$ is a-FNS if (Z, n_Z, \circledast) is a-FNS and D \subset Z is a fuzzy closed in Z.

Remark 2.21 [5]:

If (Z, n_Z, \circledast) is a-FNS and D⊂Z is a fuzzy closed in Z. Then (1) $\pi: Z \rightarrow \frac{Z}{D}$ is a natural operator defined by $\pi[z]=z+D$; (2)q(z+D) $\leq n_Z(z)$.

Theorem 2.22 [5]:

If $(\frac{Z}{D}, q, \circledast)$ is a fuzzy complete then (Z, n_Z, \odot) is a fuzzy complete when (Z, n_Z, \circledast) be a-FNS and D⊂Z is a fuzzy closed in Z.

Theorem 2.23 [5]:

If (Z, n_Z, \circledast) is a fuzzy complete then $(\frac{Z}{D}, q, \circledcirc)$ is a fuzzy complete when (Z, n_Z, \circledast) is a FNS and D⊂Z is a fuzzy closed in Z.

Definition 2.24 [1]:

Let $\bigcirc: I \times I \rightarrow I$ be a binary operation function then \bigcirc is said to be continuous t-norm (or simply t-norm) if it satisfies the following conditions: (i) $p \bigcirc q = q \bigcirc p$; (ii) $p \bigcirc [q \bigcirc w] = [p \bigcirc q] \bigcirc w$; (iii) \bigcirc is continuous function; (iv) $p \bigcirc 1 = p$;

(v) $(p \odot z) \le (q \odot w)$ whenever $p \le q$ and $z \ge w$. For all p, q, z, $w \in I = [0, 1]$.

Definition 2.25 [6]:

The space $(\mathbb{Z}, n_{\mathbb{Z}}, \circledast)$ is called a-fuzzy normed algebra space (or simply a-FNAS) if (1) $(\mathbb{Z}, +, .)$ is an algebra space over the field \mathbb{K} , where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$; (2) $(\mathbb{Z}, n_{\mathbb{Z}}, \circledast)$ is a-FNS, with \circledast is a t-conorm; (3) \odot is a t-norm; (4) $n_{\mathbb{Z}}(p,q) \le n_{\mathbb{Z}}(p) \odot n_{\mathbb{Z}}(q)$, for all p, $q \in \mathbb{Z}$.

Remark 2.26:

In this paper we take; (1) $\sigma \odot \tau = \sigma. \tau$, for all $\sigma, \tau \in [0, 1]$. (2) $\gamma \circledast \delta = \gamma + \delta - \gamma \delta$, for all $\gamma, \delta \in [0, 1]$.

Definition 2.29 [6]:

The space $(Z, n_Z, \circledast, \odot)$ is a fuzzy complete a-FNA if (Z, n_Z, \circledast) is a fuzzy complete a-FNS. Then $(Z, n_Z, \circledast, \odot)$ is a commutative fuzzy complete a-FNA.

Lemma 2.31 [6]:

If $(Z, n_Z, \circledast, \odot)$ is a-FNA, then multiplication is a fuzzy continuous function.

Theorem 2.32 [6]:

An a-FNA (Z, n_z , \circledast , \odot) without identity can be embedded into a-FNA, Z_e having the identity e, also Z is considered as an ideal in Z_e .

Proposition 2.33 [6]:

The space $(Z_e, n_{Z_e}, \circledast, \odot)$ is a fuzzy complete $\Leftrightarrow (Z, n_Z, \circledast, \odot)$ is a fuzzy complete.

Theorem 2.34 [6]:

Every a-FNA can be embedded as a closed subalgebra of afb(Z, Z).

Proposition 2.35 [6]:

If $(Z, n_Z, \circledast, \odot)$ is a fuzzy complete a-FNA and $z \in Z$, then (e-z) is invertible, the series $\sum_{k=0}^{\infty} z^k$ is fuzzy converges, and $\sum_{k=0}^{\infty} z^k = (e-z)^{-1}$.

Theorem 2.36 [6]:

The space $(\frac{Z}{D}, q, (\circledast), (\odot))$ is a fuzzy complete a-FNA if $(Z, n_Z, (\circledast), (\odot))$ is a fuzzy complete a-FNA and D is a fuzzy closed ideal in Z. Also $\frac{Z}{D}$ has an identity if Z has an identity. As well as the identity of $\frac{Z}{D}$ has a fuzzy norm equal to 1.

Remark 2.37 [6]:

If $(\mathbb{Z}, n_{\mathbb{Z}}, \mathfrak{S}, \mathfrak{O})$ is a fuzzy complete, then for any $a \neq 0$, a^{-1} exists and $a^{-1} \in \mathbb{Z}$.

Proposition 2.38 [6]:

If $(\overline{Z}, n_Z, \mathfrak{S}, \mathfrak{O})$ is a fuzzy complete a-FNA, then $T(z)=z^{-1}$ is fuzzy continuous mapping.

Lemma 2.39 [6]:

Let $(Z, n_Z, \circledast, \odot)$ be a fuzzy complete having an identity *e*. If z^{-1} and u^{-1} exists in Z then $(zu)^{-1}$ and $(uz)^{-1}$ are exist in Z.

Proposition 2.40 [6]:

Let $(Z, n_Z, \circledast, \odot)$ be a fuzzy complete a-FNA having an identity *e*. If $z, u \in Z$ where $(e - zu)^{-1}$ exists. If $d=(e - zu)^{-1}$ then $(e - uz)^{-1} = e + udz$.

Definition 2.41 [6]:

Let $\mathcal{A} = \{A_j: j \in J\}$ be a family of subsets of a space Z. The family \mathcal{A} is **centered** if for any finite number of sets $A_1, A_2, ..., A_k \in \mathcal{A}$ we have $\bigcap_{i=1}^k A_i \neq \emptyset$.

Definition 2.42 [6]:

Let Z be a non-empty set. A collection T of a subset of Z is said to be a **fuzzy topology** on Z if (i)Z \in T and $\varphi \in$ T; (ii)If A₁, A₂,..., A_n \in T then $\cap_{i=1}^{n} A_i \in$ T; (iii)If {A_j: j \in J} \in T then $\cup_{j \in J} A_j \in$ T. Then (Z, T) is called a **fuzzy topological space**.

Theorem 2.43:

If Z is a fuzzy topological space then the following statement are equivalent: (1) Z is a fuzzy compact;

(2) For any centred family \mathcal{A} of a fuzzy closed subset of Z we have $\bigcap_{A \in \mathcal{A}} \neq \emptyset$.

Proof: (2)⇒(1)

Let $\mathcal{A} = \{A_j: j \in J\}$ be a fuzzy open cover of Z. We need to show that \mathcal{A} has a finite subcover. For $j \in J$, define $G_j = Z - A_j$ this gives a family $\mathcal{G} == \{G_j: j \in J\}$ of fuzzy closed sets in Z. We have $\bigcap_{j \in J} G_j = \bigcap_{j \in J} [Z - A_j] = Z - [\bigcup_{j \in J} A_j] = Z - Z = \emptyset$, since $Z = \bigcup_{j \in J} A_j$. This implies that \mathcal{G} is not centered family, so there exists $G_1, G_2, \dots, G_k \in \mathcal{G}$ such that $\bigcap_{j=1}^k G_j = \emptyset$. This gives, $\emptyset = \bigcap_{j=1}^k G_j = \bigcap_{j=1}^k [Z - A_j] = Z - [\bigcup_{j=1}^k A_j]$. Therefore, $Z = \bigcup_{j=1}^k A_j$ and so Z is a fuzzy compact since $\{A_j: j=1, 2, \dots, k\}$ is a finite subcover of \mathcal{A} .

(1) \Rightarrow (2) Follows from a similar argument.

Fuzzy Tychonoff Theorem 2.44:

If $\{Z_j: j \in J\}$ is a family of fuzzy topological spaces and Z_j is a fuzzy compact $\forall j \in J$, then the product space $\prod_{i \in J} Z_j$ is a fuzzy compact.

Proof:

Let $Z=\prod_{j\in J} Z_j$ where Z_j is a fuzzy compact $\forall j\in J$. Let \mathcal{A} be a centred family of fuzzy closed subset of Z. We will show that there exists $z = (z_j)$, $j\in J\in Z$ such that $z \in \bigcap_{A\in\mathcal{A}} A$. Let D denote the set consisting of all centred families $\mathcal{F}[$ not necessarily fuzzy closed] of subset of Z such that $\mathcal{A} \subseteq \mathcal{F}$. The set D is partially ordered set by \subseteq .

We will show that every chain in D has an upper bound. Indeed, if $\{\mathcal{F}_j: j\in J\}$ is A chain in D then take $\mathcal{F} = \bigcup_{j\in J} \mathcal{F}_j$. Since \mathcal{F} is centred family and $\mathcal{F}_j \subseteq \mathcal{F}$ for all $j\in J$ thus \mathcal{F} is an upper bound of $\{\mathcal{F}_j: j\in J\}$. Now by Zorn's Lemma we obtain that the set D contains a maximal element \mathcal{M} . We will show that there exists $z \in Z$ such that $z \in \bigcap_{M \in \mathcal{M}} \overline{M}$. Since $\mathcal{A} \subseteq \mathcal{M}$ and \mathcal{A} contains of fuzzy closed sets we have, $\bigcap_{M \in \mathcal{M}} \overline{M} \subseteq \bigcap_{A \in \mathcal{A}} A$. Therefore, it will follow that $z \in \bigcap_{A \in \mathcal{A}} A$ and $\bigcap_{A \in \mathcal{A}} A \neq \emptyset$.

Construction of the element z proceed as follows. For $j \in J$ let $p_j: Z \to Z_j$ be the projection onto the jth coordinate. Now for each $j \in J$ the family $\{\overline{p_j(M)}: M \in \mathcal{M}\}$ is centred family of fuzzy closed subsets of Z_j , so by the fuzzy compactness of Z_j there exists $z_j \in Z_j$ such that $z_j \in \bigcap_{M \in \mathcal{M}} \overline{p_j(M)}$. We set $z = (z_j), j \in J$.

In order to see that $z \in \bigcap_{M \in \mathcal{M}} \overline{M}$ notice that \mathcal{M} the following property: If $B \subseteq Z$ and $B \cap M \neq \emptyset$ for all $M \in \mathcal{M}$ then $B \in \mathcal{M}$ (*)

Indeed if $\mathcal{M}' = \mathcal{M} \cup \{B\}$ then $\mathcal{M}' \in D$, so by maximality of \mathcal{M} we must have $\mathcal{M} = \mathcal{M}'$. For $j \in J$ let $U_j \subseteq Z_j$ be a fuzzy open neighborhood of z_j . Since $z_j \in \overline{p_j(M)}$ for all $M \in \mathcal{M}$, thus $U_j \cap p_i(M) \neq \emptyset$ for all $M \in \mathcal{M}$.

Equivalently $p_j^{-1}(U_j) \cap M \neq \emptyset$ for all $M \in \mathcal{M}$. By property * we obtain that $p^{-1}(U_j) \in \mathcal{M}$ for all $j \in J$. Since \mathcal{M} is a centred family we obtain

 $p^{-1}(U_1) \cap p^{-1}(U_2) \cap \ldots \cap p^{-1}(U_k) \cap \mathbf{M} \neq \emptyset$, for all $M \in \mathcal{M} \ldots (**)$

Now the sets of the form, $p^{-1}(U_1) \cap p^{-1}(U_2) \cap \ldots \cap p^{-1}(U_k)$ are precisely the fuzzy open neighbourhood of z that belong to the basis of the product fuzzy topology on Z, and thus any fuzzy open neighbourhood of Z contains a neighbourhood of this type. Therefore, using (**) we obtain that if $M \in \mathcal{M}$ then for any fuzzy open neighbourhood U of z we have $M \cap U \neq \emptyset$.

This means that for any $M \in \mathcal{M}$ we have $z \in \overline{M}$, and hence $z \in \bigcap_{M \in \mathcal{M}} \overline{M}$.

3.Further properties of fuzzy complete a-fuzzy normed algebra Definition **3.1**:

An ideal \mathcal{J} in an algebra (Z, +, .) is **maximal** if $\mathcal{J} \subset \mathbb{Z}$ (that is $\mathcal{J} \neq \mathbb{Z}$), and if there is an ideal \mathcal{T} with $\mathcal{J} \subset \mathcal{T}$ then $\mathcal{T} = \mathbb{Z}$.

Proposition 3.2:

Every maximal ideal \mathcal{J} in Z where $(Z, n_Z, \circledast, \odot)$ is fuzzy complete a-fuzzy normed algebra with an identity *e*, is fuzzy closed.

Proof:

If \mathcal{J} be a maximal ideal in Z, then \mathcal{J} must does not contains any invertible element, otherwise $\mathcal{J}=Z$. This implies that $\mathcal{J}\subseteq Z-\mathcal{G}(Z)$. But $\mathcal{G}(Z)$ is fuzzy open so $Z-\mathcal{G}(Z)$ is fuzzy closed, hence $\mathcal{J}\subseteq \overline{\mathcal{J}}\subseteq Z-\mathcal{G}(Z)$. As special case, $\mathcal{J}\neq Z$. Since $\mathcal{J}\subseteq \overline{\mathcal{J}}$ so $\overline{\mathcal{J}}=\mathcal{J}$ but \mathcal{J} is maximal ideal. Hence \mathcal{J} is a fuzzy closed.

Proposition 3.3:

If $(Z, n_Z, \circledast, \odot)$ is a fuzzy complete a-FNA, then every homomorphism $\theta: Z \to \mathbb{C}$, is fuzzy continuous

Proof:

The case when $\theta=0$ then it is fuzzy continuous. Let $\theta \neq 0$ and Z has an identity *e*. Now $\forall u \in \mathbb{Z}$, $\theta(u) = \theta(u.e) = \theta(u)$. $\theta(e)$, and so $\theta(e) = 1$. If $u \in \mathbb{Z}$ with $\theta(u) \neq 0$, then $b=u-\theta(u).e \in \ker \theta$ and so b is not invertible [or $1=\theta(bb^{-1})=\theta(b)$. $\theta(b^{-1})$ which is not correct]. Therefore, $\theta(u) \in \sigma_Z(u)$ and this implies that $L_{\mathbb{C}}[\theta(u)] \leq n_Z(u)$. This inequality stall true when $\theta(u)=0$ and hence φ is fuzzy continuous on Z. [if (z_k) be a sequence in Z converge to $z \in \mathbb{Z}$ that is $\lim_{k \to \infty} n_Z(z_k - z)=0$, then $\lim_{k \to \infty} L_{\mathbb{C}}[\theta(z_k) - \theta(z)] = 0$ that is $\theta(z_k) \to \theta(z)$].

If Z does not have an identity, we consider Z_e instead. Define $\theta': Z_e \to \mathbb{C}$ by: $\theta'[(u, \alpha)] = \theta(u) + \alpha$ for all $(u, \alpha) \in Z_e$. Then φ' is a homomorphism is clear and therefore by the first part of the prove, θ' is fuzzy continuous on Z_e . specially, its restriction to Z in Z_e is fuzzy continuous i.e., θ is a fuzzy continuous.

Definition 3.4:

A homomorphism $\& \mathbb{R}: \mathbb{Z} \to \mathbb{C}$ where $(\mathbb{Z}, n_Z, \circledast, \odot)$ is a fuzzy complete a-FNA is called a **character**. Character is fuzzy continuous by Proposition 3.3.

Theorem 3.5:

If h is a character on Z, then ker h is a maximal ideal in Z, and every maximal ideal has this form for some unique character, when $(Z, n_Z, \circledast, \odot)$ is a commutative fuzzy complete a-FNA with identity *e*.

Proof:

If $\hbar: \mathbb{Z} \to \mathbb{C}$ is a character and $\mathcal{J} = \ker \ell$, it is clear that $\mathcal{J} \neq \mathbb{Z}$ because $\hbar = 0$. If $z \notin \mathcal{J}$ then for any $u \in \mathbb{Z}$ is represented by $u = z \frac{\hbar(u)}{\hbar(z)} + [u - z \frac{\hbar(u)}{\hbar(z)}]$ since $[u - z \frac{\hbar(u)}{\hbar(z)}] \in \ker \hbar = \mathcal{J}$, we see that $\mathbb{Z} = \mathbb{C}z + \mathcal{J}$ and therefore \mathcal{J} is a maximal ideal. This implies that \mathcal{J} is fuzzy closed and hence $\frac{Z}{I}$ is fuzzy

complete a-FNA. Now we will show that the maximality of \mathcal{J} implies that every non-zero element of $\frac{Z}{J}$ is invertible. To prove this, let $(z + \mathcal{J}) \neq 0$ and $(z + \mathcal{J})^{-1}$ does not exists. Thus $\mathcal{J} \subset (\mathcal{J} + zZ) \subset Z$ [$e \notin (\mathcal{J} + z)$ because $(z + \mathcal{J})^{-1} \notin \frac{Z}{J}$]. But this is not true since \mathcal{J} is maximal by our assumption. This implies that every element of $\frac{Z}{J}$ is $\lambda(e + j)$ for $\lambda \in \mathbb{C}$. If $\theta: \frac{Z}{J} \to \mathbb{C}$ represent this isomorphism, and if $\pi: Z \to \frac{Z}{J}$ is the canonical projection. Then $\theta \circ \pi: Z \to \mathbb{C}$ is a homomorphism with ker $\theta = \mathcal{J}$; $\theta \circ \pi(p,q) = \theta[\pi(p,q)] = \theta[(p,q) + \mathcal{J}] = \theta[(p + \mathcal{J})(q + \mathcal{J})] = [\theta(p + \mathcal{J})].[\theta(q + \mathcal{J})] = \theta \circ \pi(p)$. Also, $\theta \circ \pi(p) = 0 \Leftrightarrow \pi(p) = 0 \Leftrightarrow p \in \mathcal{J}$.

Hence there is a correspondence between maximal ideals \mathcal{J} and the characters h with ker $h=\mathcal{J}$.

This correspondence is one-to-one because & is uniquely determined by its Kernel. If & and & are two character with ker&= ker& then for any w \in Z, (w – &(w)e) \in ker&= ker& and thus &(w)= &(w) because &(e)=1.

Theorem 3.6:

Every commutative fuzzy complete a-FNA (Z, n_Z , o, o) with an identity *e* has at least one character.

Proof:

If u^{-1} exists for all $u \in \mathbb{Z}$ then $\mathbb{Z} \cong \mathbb{C}$ and the isomorphism $\mu: \mathbb{Z} \to \mathbb{C}$ is a character. On the other hand, if $\exists x \in \mathbb{Z}$ such that u^{-1} does not exists then $x\mathbb{Z} \subset \mathcal{J}$ where \mathcal{J} is a maximal proper ideal, by Zorn's lemma the set $\mathcal{T} = \{\mathcal{J} \subset \mathcal{L}: \mathcal{L} \text{ is ideal}\}$ is partially ordered by \subseteq , thus $\bigcup_{\mathcal{L} \in \mathcal{T}} \mathcal{L}$ is an ideal and $\mathcal{J} \subset \bigcup_{\mathcal{L} \in \mathcal{T}} \mathcal{L}$ Since $e \notin \bigcup_{\mathcal{L} \in \mathcal{T}} \mathcal{L}$. By Zorn's Lemma states that there exists a maximal \mathcal{K} with $\subset \mathcal{K}$. But \mathcal{J} =ker \hbar where \hbar is a character on \mathbb{Z} .

If Z is not commutative, then we may does not find a character at all on the a-FNA..

Example 3.7

If $Z=M_k(\mathbb{C})$ where k>1, then assume that $E_{ij} = (e_{ij}) \in M_k(\mathbb{C})$ where $e_{ij} = 0$, except for the ijposition is equal to 1. Now let k is a character on Z, then for $i\neq j$, $E_{ij}^2=0$ which imply that $k(E_{ij})=0$. But $E_{ii}=E_{ij}$. E_{ji} , when $i\neq j$, and this imply that $k(E_{ii})=0$ for j=1, 2, ..., k. Hence, $k(I)=k(E_{11})+k(E_{22})+...+k(E_{kk})=0$. But this is not true. Thus $Z=M_k(\mathbb{C})$ with k>1, does not has a characters.

Definition 3.8:

If $(Z, n_Z, \mathfrak{S}, \mathfrak{O})$ is a fuzzy complete a-FNA has an identity *e*. Then $\{k: k \text{ is a characters of } Z\}$ is called **structure** of Z and is denoted by st(Z).

Definition 3.9:

(1)The ω^* -fuzzy topology on afb(Z, \mathbb{C}) is generated by N(q, A, ε)={g \in afb(Z, \mathbb{C}): $L_{\mathbb{C}}[g(a)-q(a)] \leq \varepsilon$, for all $a \in A$ }, where $q \in afb(Z, \mathbb{C})$, and $A \subset Z$ is finite. (2)The a set E in afb(Z, \mathbb{C}) is fuzzy open in ω^* -fuzzy topology $\Leftrightarrow \forall \vartheta \in E, \exists N(\vartheta, A, \varepsilon) \subseteq E$.

Proposition 3.10:

If $(Z, n_Z, \circledast, \odot)$ is a fuzzy complete a-FNA having an identity *e* then ω^* -fuzzy topology on $afb(Z, \mathbb{C})$ is a Hausdorff space.

Proof:

If $h_1, h_2 \in afb(\mathbb{Z}, \mathbb{C})$ with $h_1 \neq h_2$ then there exist $a \in \mathbb{Z}$ such that $h_1(a) \neq h_2(a)$. Let $L_{\mathbb{C}}[h_1(a) - (a)]$ $h_2(a) = r$, for some 0 < r < 1, then $\forall r < r_0 < 1$, $\exists r_1$ satisfying $r_1 \otimes r_1 < r_0$. Now consider N[h₁, {a}, r₁) and N(h₂, {a}, r₁). Clearly, N[h₁, {a}, r₁) \cap N(h₂, {a}, r₁)= Ø if there exists $y \in N[h_1, \{a\}, r_1) \cap N(h_2, \{a\}, r_1)$ then $r = L_{\mathbb{C}}[h_1(a) - h_2(a)]$ $\leq L_{\mathbb{C}}[h_1(a) - y(a)] \otimes L_{\mathbb{C}}[h_2(a) - y(a)]$ \leq r₁ \otimes r₁ <r.

But this is not true. Hence the proof is complete.

Proposition 3.11:

If $(Z, n_Z, \mathfrak{S}, \mathfrak{O})$ is a fuzzy complete a-FNA having identity *e* then st(Z) is ω^* -fuzzy closed subset of $afb(Z, \mathbb{C})$.

Proof:

If (h_k) is a sequence in st(Z) converging to $h \in fb(Z, \mathbb{C})$, then $h_k(z) \rightarrow h(z)$ for each $z \in Z$. Now for any x, $y \in Z$ we have

 $h(xy) = \lim_{k \to \infty} h_k(xy) = \lim_{k \to \infty} h_k(x). \lim_{k \to \infty} h_k(y) = h(x).h(y)$

It follows that $h \in st(Z)$. Hence st(Z) is a fuzzy closed.

In the next result we prove fuzzy Banach-Alaouglu's Theorem:

Theorem 3.12

If (Z, n_Z, \mathfrak{S}) is a fuzzy complete a-FNS, then the fuzzy closed unit ball $B_{afb(Z,\mathbb{C})} = \{h \in afb(Z, \mathbb{C})\}$ \mathbb{C} : $n_{afb(Z,\mathbb{C})}(h) \leq 1$ of $afb(Z,\mathbb{C})$ is a ω^* -fuzzy compact.

Proof:

Let $z \in \mathbb{Z}$, define $D_z = \{ \alpha \in \mathbb{C} : L_{\mathbb{C}}(\alpha) \le n_Z(z) \} \subset \mathbb{C}$. Then D_z is a fuzzy compact which implies $D=\prod_{z\in Z} D_z$ is a fuzzy compact in the product fuzzy topology by fuzzy Tychonoff Theorem 2.44. Let B^d denotes the fuzzy closed unit ball $B_{afb(Z,\mathbb{C})}$.

Define $\theta: B^d \to D$ by $\theta(\eta) = (\eta(u))_{u \in \mathbb{Z}} \forall \eta \in B^d$. We will prove that θ is one-to-one and fuzzy continuous. It is clear that θ is Linear. If $\theta(\eta)=0$ then $(\eta(u))_{u\in\mathbb{Z}}=(0)$ which implies that $\eta(u)=0$ \forall u \in Z. Hence, $\eta = 0$ and from this we obtain η is one-to-one.

To prove θ is a fuzzy continuous, now if $(\eta_k) \subset B^d$ satisfying $\eta_k \to {}^{\omega^*} \eta$. Then $\eta_k(u) \to \eta(u) \forall$ u $\in \mathbb{Z}$. Consequently, $\theta(\eta_k) = (\eta_k(u))_{u \in \mathbb{Z}} \to (\eta(u))_{u \in \mathbb{Z}} = \theta(\eta)$. Hence, θ is a fuzzy continuous.

If $\theta(B^d)$ is a fuzzy closed subset of D and D being fuzzy compact, then $\theta(B^d)$ is fuzzy compact. Thus our next step is to prove $\theta(B^d)$ is a fuzzy closed. If $\sigma = (\sigma_z) \in D$ and $\sigma \in \overline{\theta(B^d)}$ then define $\eta: \mathbb{Z} \to \mathbb{C}$ by $\eta(u) = \sigma_{\eta} \forall u \in \mathbb{Z}$. The map η is linear, if x, $y \in \mathbb{Z}$ and $\alpha, \beta \in \mathbb{C}$ then $\forall k \in \mathbb{N}$, choose $\eta_k \in B^d$ thus

$$\eta(\alpha x + \beta y) = \lim_{k \to \infty} \eta_k(\alpha x + \beta y) = \alpha \lim_{k \to \infty} \eta_k(x) + \beta \lim_{k \to \infty} \eta_k(y)$$

 $= \alpha f(x) + \beta f(y)$ [since η_k is linear].

Thus η is linear. Since $L_{\mathbb{C}}(\sigma_u) \leq n_Z(u)$, so $\eta \in B^d$. Now by the definition of η , we see that $\sigma =$ $\theta(\eta) \in B^d$. Hence, $\theta(B^d)$ is a fuzzy closed. But B^d and $\theta(B^d)$ are homeomorphic, so B^d must be fuzzy compact.

Proposition 3.13:

If $(Z, n_Z, \mathfrak{S}, \mathfrak{O})$ is a fuzzy complete a-FNA having an identity *e* then st(Z) is a ω^* -fuzzy closed of $B_{afb(Z,\mathbb{C})} = \{h \in afb(Z,\mathbb{C}): n_{afb(Z,\mathbb{C})}(h) \leq 1\}$ and hence is a fuzzy compact.

Proof:

Suppose that (ℓ_k) be a sequence in st(Z) which is fuzzy converge to $\theta \in afb(Z, \mathbb{C})$. Then $\ell_k(z) \rightarrow \ell_k(z)$ $\theta(z) \forall z \in \mathbb{Z}$. Since $\forall x, y \in \mathbb{Z}$, $\theta(xy) = \lim_{k \to \infty} \ell_k(xy) = \lim_{k \to \infty} \ell_k(x)$. $\lim_{k \to \infty} \ell_k(y) = \theta(x)$. $\theta(y)$ so, we conclude that $\theta \in st(Z)$. Here $\theta \neq 0$ since $\theta(I)=1$. Thus st(Z) is a ω^* -fuzzy closed. Therefore, st(Z) is a fuzzy compact because it is a fuzzy closed subset of a fuzzy compact set.

Theorem 3.14:

If $(Z, n_Z, \mathfrak{S}, \mathfrak{O})$ is a commutative fuzzy complete a-FNA having an identity *e*, then for each $z \in Z$ and $h \in st(Z)$ we define $\Psi_z: st(Z) \to \mathbb{C}$ by $\Psi_z(h) = h(z)$. Then the range of the function Ψ_z on st(Z) satisfies $R(\Psi_z) = \sigma_Z(z)$. Furthermore, the map Ψ is homomorphisum, $\Psi: Z \rightarrow C(st(Z))$ and $n_{afb(st(Z),\mathbb{C})}(\Psi_z) \leq n_Z(z)$ for all $z \in \mathbb{Z}$. The map Ψ is called Gelfand transform.

Proof:

If $u \in Z$ and $h \in st(Z)$ then $h(x) \in \sigma_Z(x)$ that is $\Psi_u(h) \in \sigma_Z(u)$ and so the range of Ψ_u satisfies the inclusion $R(\Psi_u) \subseteq \sigma_Z(u)$.

Let $\alpha \in \sigma_{Z}(u)$, so $(u - \alpha e)^{-1}$ does not exists and $(u - \alpha e) \notin \mathcal{J}$ where \mathcal{J} is some maximal ideal, say [Since $(u-\alpha e) \in Z(x-\alpha e) \subset \mathcal{J}$].

If $h \in st(Z)$ with ker $h = \mathcal{J}$ then $(x - \alpha e) \in \mathcal{J}$ which implies that $h(u) = \alpha$. Thus $\Psi_u(h) = h(u) = \alpha$ and so $R(\Psi_u) = \sigma_z(u)$. But Ψ is a homomorphism;

 $\Psi_{zv}(h) = h(zy) = h(z).h(y) = \Psi_z(h).\Psi_v(h) \forall z, y \in \mathbb{Z}, h \in st(\mathbb{Z}) and so \Psi_{zv} = \Psi_z.\Psi_v.$

Similarly, we can show that $\Psi_{\alpha z+\beta v} = \alpha \Psi_z + \beta \Psi_v(h)$, thus Ψ_z is linear.

To prove that $\Psi_u \in C(st(Z))$, if Ω is a fuzzy open set in \mathbb{C} we will prove that $\Psi_u^{-1}(\Omega)$ is a fuzzy open in st(Z). When $\Psi_x^{-1}(\Omega) = \emptyset$, the proof is end. If $\Psi_u^{-1}(\Omega) \neq \emptyset$. Assume that $g \in \Psi_u^{-1}(\Omega)$. So $\exists \delta \in \Omega$ such that $\Psi_{u}(g) = \delta$. Since Ω is a fuzzy open in \mathbb{C} , $\exists 0 < \varepsilon < 1$ with $N_{\varepsilon}(\delta) = \{\alpha \in \mathbb{C}:$ $L_{\mathbb{C}}(\alpha - \delta) < \varepsilon \} \subset \Omega$. If V=N(g:{u}, ε)={ $\omega \in st(Z)$: $L_{\mathbb{C}}(\omega(u) - g(u)) < \varepsilon$ }.

Then $\omega(u) = \Psi_u(\omega) \in \Omega$, $\forall \omega \in V$, so $\mathscr{G} \in V \subseteq \Psi_u^{-1}(\Omega)$. Hence, $\Psi_u^{-1}(\Omega)$ is a fuzzy open in st(Z) and therefore Ψ_{u} :st(Z) $\rightarrow \mathbb{C}$ is a fuzzy continuous thus $\Psi_{u}(.) \in C(st(Z))$.

On other hand, we can introduce another prove for the fuzzy continuity of Ψ_x by using sequences. If $g_k \to g$ in st(Z) then $\Psi_u(g_k) \to \Psi_u(g) = g(u)$, hence Ψ_x is a fuzzy continuous. Now, $R(\Psi_u) = \sigma_Z(u) \subseteq \{ \alpha \in \mathbb{C} : L_{\mathbb{C}}(\alpha) \le n_Z(u) \}$ and thus $L_{\mathbb{C}}(\Psi_u(\mathcal{G})) \le n_Z(u), \forall \mathcal{G} \in st(Z)$. Hence, $n_{afb(st(Z),\mathbb{C})}(\Psi_{u}) \leq n_{Z}(u), \forall u \in \mathbb{Z}.$

Theorem 2.3.15:

If $(Z, n_Z, \circledast, \odot)$ is a commutative fuzzy complete a-FNA having an identity *e* and Z=uZ, that is, the set of polynomials in z is fuzzy dense in Z. Then the map $\Psi_u: st(Z) \to \sigma_Z(u) \subset \mathbb{C}$ is a homeomorphism.

Proof:

Since Ψ_u is fuzzy continuous function on st(Z) satisfying $R(\Psi_u) = \sigma_Z(u)$ i.e., Ψ_u :st(Z) \rightarrow $\sigma_Z(u)$ is a fuzzy continuous and onto. But st(Z) and $\sigma_Z(u)$ are fuzzy compact Hausdorff spaces, thus it remains only to prove that Ψ_u is injective. Now if $\Psi_u(\ell_1) = \Psi_z(\ell_2)$, so that $\ell_1(u) = \ell_2(u)$, by using the multiplicatively of ℓ_1 and ℓ_2 we see that for given $k \in \mathbb{N}$ and $c_0, c_1, ..., c_k$ in \mathbb{C} , $\ell_1(\sum_{i=0}^k c_i u^k) = \ell_2(\sum_{i=0}^k c_i u^k)$. Since ℓ_1 and ℓ_2 are fuzzy continuous and u generates Z, it follows that $\ell_1 = \ell_2$.

Example 2.3.16:

Let $Z = \{ \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix} : \alpha, \beta \in \mathbb{C} \}$ be a subalgebra of $M_2(\mathbb{C})$. Then $\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix} = \alpha I + \beta q$, where $q = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. We note that $q^2 = 0$.

Evidently, Z is two-dimensional commutative fuzzy complete a-fuzzy normed algebra with identity I. We shall compute the spectrum $\sigma_Z(x)$ for $x = \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$. Indeed, for $\lambda \in \mathbb{C}$, $x - \lambda I = \begin{pmatrix} \alpha - \lambda & \beta \\ 0 & \alpha - \lambda \end{pmatrix}$ is invertible in $M_2(\mathbb{C}) \Leftrightarrow$ if $\alpha \neq \lambda$. If $\alpha \neq \lambda$, then, in fact $(x - \lambda I)^{-1} = \begin{pmatrix} (\alpha - \lambda)^{-1} & -\beta(\alpha - \lambda)^{-1} \\ 0 & (\alpha - \lambda)^{-1} \end{pmatrix}$, which belongs to Z. Hence, $\sigma_Z(x) = \sigma_Z(\alpha I + \beta q) = \{\alpha\}$. In particular $\sigma_Z(q) = \sigma_Z(\beta q) = \{0\}$, but $q \neq 0$. If Λ is a character of Z then $\Lambda(uv) = \Lambda(u) \Lambda(v)$ implies $\Lambda(q^2) = \Lambda(q) \Lambda(q)$. But $q^2 = 0$ and so $\Lambda(q) = 0$. Since $\Lambda(I) = 1$, we find that $\Lambda(\alpha I + \beta q) = \alpha$ for any $\alpha, \beta \in \mathbb{C}$. Thus, there is just one character on Z so st(Z) = $\{\Lambda\}$, where Λ is given uniquely by the action $\Lambda(I) = 1$ and $\Lambda(q) = 0$.

The fuzzy Gelfand transform is the map $z \mapsto \Psi_z$, $(\alpha I + \beta q) \mapsto \alpha \Psi_I + \beta \Psi_q$. But $\Psi_I = 1$ and $\Psi_q(h) = h(q) = 0$ so that $\Psi_q = 0$ and we have $\Psi_{(\alpha I + \beta q)} = \alpha$ for any $\alpha, \beta \in \mathbb{C}$.

The transform Ψ_q has kernel { $\beta q: \beta \in \mathbb{C}$ }, so Ψ_q is not an isomorphism. The algebra Z has exactly one maximal ideal, namely, the Kernel of \hbar . As Z is an algebra with identity generated by q and so st(Z) $\cong \sigma_Z(q)$, throw $\Psi_Z: st(Z) \to \sigma_Z(q)$, $\hbar \mapsto \Psi_q(\hbar) = 0$. Thus, the two sets st(Z) and $\sigma_Z(q)$ are singleton sets.

On the other hand, we can calculate the spectrum of $x \in \mathbb{Z}$ using $\mathbb{R}(\Psi_x) = \sigma_Z(x)$. For $x = \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$ we have, $\sigma_Z(x) = \{ \Psi_x(\hbar) \} = \{ \hbar(x) \} = \{ \hbar(\alpha \mathbf{I} + \beta \mathbf{q}) \} = \{ \alpha \, \hbar(\mathbf{I}) + \beta \, \hbar(\mathbf{q}) \} = \{ \alpha \}$ Since $\hbar(\mathbf{q}) = 0$.

4. Conclusions

In [6] we proved some properties of fuzzy complete a-fuzzy normed algebra. In this paper we recall the definition of a-fuzzy normed algebra in order to prove other properties of fuzzy complete a-fuzzy normed algebra.

References

- [1] A. A. Khalaf and J. R. Kider, "The extension of a linear operator on a-fuzzy normed space when it is fuzzy compact", *International Journal of Mathematics and Computer Science*, vol.17, no. 3, pp. 1133–1144, 2022.[Online] Available : http://ijmcs.future-in-tech.net/Volume17.3.htm
- [2] J. R. Kider, "The Product Fuzzy Metric Space and its Basic Properties", *Journal of Physics: Conference Series*, vol. 2322, pp. 1-11, 2022. [Online] Available: https://iopscience.iop.org/article/10.1088/1742-6596/2322/1/012023
- [3] Z. A. Khudhair and J. R. Kider, "Some Properties of Fuzzy Compact Algebra Fuzzy Normed Spaces and Finite Dimensional Algebra Fuzzy Normed Spaces", *Journal of Physics: Conference Series*, vol.1879, pp.1-11, 2021. [Online] Available: https://iopscience.iop.org/article/10.1088/1742-6596/1879/2/022116
- [4] A. A. Khalaf and J. R. Kider, "Linear operator of various types and its basic properties", *International Journal of Nonlinear Analysis and Applications (IJNAA)*, vol. 13, no. 1, pp. 3949- 3957, 2022. [Online] Available: https://ijnaa.semnan.ac.ir/article_6194.html
- [5] Z. A. Khudhair and J. R. Kider, "The algebra fuzzy norm of the quotient space and pseudo algebra fuzzy normed space", *International Journal of Nonlinear Analysis and Applications (IJNAA)*, vol.13, no. 1, pp.3589-3597, 2022. [Online] Available:

https://ijnaa.semnan.ac.ir/article_6139.html

[6] R. K. Abbas and J. R. Kider, "The a-fuzzy normed algebra and its Basic Properties", International Journal of Mathematics and Computer Science, (To appear).