Further properties of the fuzzy complete a-fuzzy normed algebra

Rasha Khudhur Abbas, Jehad R. Kider*

Branch of Mathematics, Department of Applied Sciences, University of Technology-Iraq

Received: 20/11/2022 Accepted: 7/2/2023 Published: 30/1/2024

Abstract

In this paper further properties of the fuzzy complete a-fuzzy normed algebra have been introduced. Then we found the relation between the maximal ideals of fuzzy complete a-fuzzy normed algebra and the associated multiplicative linear function space. In this direction we proved that if ℓ is character on Z then $\ker\ell$ is a maximal ideal in Z. After this we introduce the notion structure of the a-fuzzy normed algebra then we prove that the structure, $st(Z)$ is ω^*-fuzzy closed subset of $fb(Z, \mathbb{C})$ when (Z, n_Z, \circ, \bullet) is a commutative fuzzy complete a-fuzzy normed algebra with identity e.

Keywords: Character of a-fuzzy normed algebra, Structure of a-fuzzy normed algebra, ω^*-fuzzy topology on $afb(Z, \mathbb{C})$, Fuzzy Tychonoff Theorem, fuzzy Gelfand transform.

1. Introduction

In this paper we continue the previous study of fuzzy complete a-fuzzy normed algebra. We prove here the other important properties of fuzzy complete a-fuzzy normed algebra. The organization of this paper is as follows: we divided this research into four sections; the introduction will be in section one, after that in section two important properties of fuzzy length space and a-fuzzy normed space are recalled. Furthermore, basic important properties of a-fuzzy normed algebra that will be needed later can be found in section three. Moreover, further properties of fuzzy complete a-fuzzy normed algebra have been proved as a main results in the same section. Finally, in section four we highlight the conclusion for this research.

*Email: jehadkider@gmail.com
2. Preliminaries about a-fuzzy normed algebra

Definition 2.1 [1]:
Let \(\odot : I \times I \to I \) be a binary operation function, then it is said to be continuous t-conorm (or simply t-conorm) if it satisfies the following conditions:
(i) \(p \odot q = q \odot p \);
(ii) \(p \odot [q \odot w] = [p \odot q] \odot w \);
(iii) \(\odot \) is continuous function;
(iv) \(p \odot z \geq (q \odot w) \) whenever \(p \geq q \) and \(z \geq w \).
For all \(p, q, z, w \in I = [0, 1] \).

Definition 2.2:
If \(L_C : \mathbb{C} \to I \) is a fuzzy set, and \(\odot \) is a t-conorm, then \(L_C \) is **a-fuzzy length on** \(\mathbb{C} \) if
(i) \(0 < L_C(\sigma) \leq 1 \);
(ii) \(L_C(\sigma) = 0 \) if and only if \(\sigma = 0 \);
(iii) \(L_C(\sigma \tau) \leq L_C(\sigma) L_C(\tau) \);
(iv) \(L_C(\sigma + \tau) \leq L_C(\sigma) \odot L_C(\tau) \).
For all \(\sigma, \tau \in \mathbb{C} \). The \((\mathbb{C}, L_C, \odot) \) is **a-fuzzy length space**.

Remark 2.3:
We will take \(\odot \) to be \(\mu \odot \sigma = \mu + \sigma - \mu \sigma \), for all \(\mu, \sigma \in I = [0, 1] \).

Example 2.4:
If \(L_{|.|} : \mathbb{C} \to I \) for all \(\alpha \in \mathbb{C} \), where \(|.| \) is length value on \(\mathbb{C} \) Then \((\mathbb{C}, L_{|.|}, \odot) \) is a-fuzzy length space.

Definition 2.5 [3]:
If \((\mathbb{C}, L_C, \odot) \) is a-fuzzy length space, \(Z \) is a vector space over \(\mathbb{C} \), and \(\odot \) is a t-conorm and \(n_Z : Z \to I \) is a fuzzy set. Then \(n_Z \) is **a-fuzzy norm on** \(Z \) if
(i) \(0 < n_Z(z) \leq 1 \);
(ii) \(n_Z(z) = 0 \iff z = 0 \);
(iii) \(n_Z(\mu z) \leq L_C(\mu) n(z) \) for all \(\mu \neq 0 \in \mathbb{C} \);
(iv) \(n_Z(z + y) \leq n_Z(z) \odot n_Z(y) \).
For all \(z, y \in Z \). Then \((Z, n_Z, \odot) \) is **a-fuzzy normed space** (or simply a-FNS).

Definition 2.7 [3]:
If \((z_k) \) is a sequence in \(Z \), then \((z_k) \) is fuzzy converges to the limit \(z \) as \(k \to \infty \), if for all \(\mu \in (0, 1) \), we can find \(N \in \mathbb{N} \) when \(n_Z(z_k - z) < \mu \), for all \(k \geq N \), if \((Z, n_Z, \odot) \) is a-FNS.
If \((z_k) \) is a fuzzy converges to \(z \) we write \(\lim_{k \to \infty} z_k = z \), or \(z_k \to z \), or \(\lim_{k \to \infty} n_Z(z_k - z) = 0 \).

Definition 2.8 [3]:
If \((z_k) \) is a sequence in \(Z \), then \((z_k) \) is fuzzy Cauchy sequence in \(Z \) if for all \(\mu \in (0, 1) \), we can find \(N \in \mathbb{N} \) when \(n_Z(z_k - z_m) < s \), for all \(k, m \geq N \), if \((Z, n_Z, \odot) \) is a-FNS.
Definition 2.9 [3]:
If for any \((z_k)\) fuzzy Cauchy in \(Z\), there is \(z \in Z\) such that \(z_k \to z\), then the a-FNS \((Z, n_Z, \ominus)\) is a fuzzy complete.

Corollary 2.10 [3]:
The a-fuzzy length space \((\mathbb{C}, L_C, \ominus)\) is a fuzzy complete.

Theorem 2.11 [4]:
When \((Z, n_Z, \ominus)\) and \((W, n_W, \ominus)\) are two a-FNS. Then the operator \(H : Z \to W\) is a fuzzy continuous at \(z \in Z\) if and only if whenever \((z_k)\) is a fuzzy converges to \(z \in Z\) then \((H(z_k))\) is a fuzzy converges to \(H(z) \in W\).

Definition 2.12 [4]:
When \((Z, n_Z, \ominus)\) and \((Y, n_Y, \ominus)\) are two a-FNS then the operator \(S : Z \to Y\) is a fuzzy bounded if \(\mu \in (0, 1)\) with \(n_Y[S(z)] < \mu n_Z(z)\), for all \(z \in Z\).

Notation [4]:
If \((Z, n_Z, \ominus)\) and \((Y, n_Y, \ominus)\) are two a-FNS then \(\text{afb}(Z, Y) = \{S : Z \to Y, S\) is a fuzzy bounded operator\}.

Theorem 2.13 [4]:
Define \(n_{\text{afb}(Z,Y)}(S) = \sup_{z \in D(S)} n_Y(Sz)\), for all \(S \in \text{afb}(Z, Y)\). Then \((\text{afb}(Z, Y), n_{\text{afb}(Z,Y)}, \ominus)\) is a-FNS. If \((Z, n_Z, \ominus)\) and \((Y, n_Y, \ominus)\) are two a-FNS.

Theorem 2.14 [4]:
The space \(\text{afb}(Z, Y)\) is a fuzzy complete if \(Y\) is a fuzzy complete when \((Z, n_Z, \ominus)\) and \((Y, n_Y, \ominus)\) are two a-FNS.

Definition 2.15 [4]:
A linear functional \(h\) from a-FNS \((Z, n_Z, \ominus)\) into the a-fuzzy length space \((\mathbb{C}, L_C, \ominus)\) is fuzzy bounded if there is \(\delta \in (0, 1)\) with \(L_C[h(u)] < \delta \cdot n_Z(u)\) for any \(u \in D(h)\). Furthermore, the a-fuzzy norm of \(h\) is \(n_{\text{afb}(Z,\mathbb{C})}(h) = \sup_{u \in D(h)} L_C(hu)\), for all \(h \in \text{afb}(Z, \mathbb{R})\) and \(\sup_{u \in D(h)} L_C(hu) < n_{\text{afb}(Z,\mathbb{R})}(h) \cdot n_C(u)\) for any \(u \in D(h)\).

Definition 2.16 [4]:
Let \((Z, n_Z, \ominus)\) be a-FNS. Then \(\text{afb}(Z, \mathbb{C}) = \{h : Z \to \mathbb{C}, h\) is fuzzy bounded and linear\}\) forms a-fuzzy normed space with a-fuzzy norm defined by \(n_{\text{afb}(Z,\mathbb{C})}(h) = \sup_{u \in D(h)} L_C(hu)\) which is called the fuzzy dual space of \(Z\).

Theorem 2.17 [4]:
If \((Z, n_Z, \ominus)\) is a-FNS then fuzzy dual space \(\text{afb}(Z, \mathbb{C})\) is a fuzzy complete.

Definition 2.18 [4]:
\(Z_D = \{z + D : z \in Z\}\) is a \(\mathbb{K}\)-space with the operations \((v + D) + (z + D) = (v + z) + D\) and \(\alpha(z + D) = (\alpha z) + D\). If \(Z\) is a vector space over the field \(\mathbb{K}\) and \(D\) is a closed subspace of \(Z\).

Definition 2.19 [5]:
Define a-fuzzy norm for the quotient space \(Z_D\) by \(q[u + D] = \inf_{d \in D} n_U[z + d]\) for all \(z + D \in Z_D\).
When \((Z, n_Z, \odot)\) be a-FNS and \(D \subseteq Z\) is a fuzzy closed in \(Z\).

Theorem 2.20 [5]:

The quotient space \(\left(\frac{Z}{D}, q, \odot\right)\) is a-FNS if \((Z, n_Z, \odot)\) is a-FNS and \(D \subseteq Z\) is a fuzzy closed in \(Z\).

Remark 2.21 [5]:

If \((Z, n_Z, \odot)\) is a-FNS and \(D \subseteq Z\) is a fuzzy closed in \(Z\). Then

(1) \(\pi: Z \rightarrow \frac{Z}{D}\) is a natural operator defined by \(\pi[z] = z + D\);

(2) \(q(z + D) \leq n_Z(z)\).

Theorem 2.22 [5]:

If \((\frac{Z}{D}, q, \odot)\) is a fuzzy complete then \((Z, n_Z, \odot)\) is a fuzzy complete when \((Z, n_Z, \odot)\) be a-FNS and \(D \subseteq Z\) is a fuzzy closed in \(Z\).

Theorem 2.23 [5]:

If \((Z, n_Z, \odot)\) is a fuzzy complete then \((\frac{Z}{D}, q, \odot)\) is a fuzzy complete when \((Z, n_Z, \odot)\) is a-FNS and \(D \subseteq Z\) is a fuzzy closed in \(Z\).

Definition 2.24 [1]:

Let \(\odot: I \times I \rightarrow I\) be a binary operation function then \(\odot\) is said to be continuous t-norm (or simply t-norm) if it satisfies the following conditions:

(i) \(p \odot q = q \odot p\);

(ii) \(p \odot [q \odot w] = [p \odot q] \odot w\);

(iii) \(\odot\) is continuous function;

(iv) \(p \odot 1 = p\);

(v) \(p \odot z \leq (q \odot w)\) whenever \(p \leq q\) and \(z \geq w\).

For all \(p, q, z, w \in I = [0, 1]\).

Definition 2.25 [6]:

The space \((Z, n_Z, \odot, \otimes)\) is called a-fuzzy normed algebra space (or simply a-FNAS) if

(1) \((Z, +, .)\) is an algebra space over the field \(\mathbb{K}\), where \(\mathbb{K} = \mathbb{R}\) or \(\mathbb{K} = \mathbb{C}\);

(2) \((Z, n_Z, \odot)\) is a-FNS, with \(\odot\) is a t-conorm;

(3) \(\otimes\) is a t-norm;

(4) \(n_Z(p.q) \leq n_Z(p) \otimes n_Z(q)\), for all \(p, q \in Z\).

Remark 2.26:

In this paper we take:

(1) \(\sigma \odot \tau = \sigma \cdot \tau\), for all \(\sigma, \tau \in [0, 1]\).

(2) \(\gamma \odot \delta = \gamma + \delta - \gamma \delta\), for all \(\gamma, \delta \in [0, 1]\).

Definition 2.29 [6]:

The space \((Z, n_Z, \odot, \otimes)\) is a fuzzy complete a-FNA if \((Z, n_Z, \odot)\) is a fuzzy complete a-FNS. Then \((Z, n_Z, \odot, \otimes)\) is a commutative fuzzy complete a-FNA.

Lemma 2.31 [6]:

If \((Z, n_Z, \odot, \otimes)\) is a-FNA, then multiplication is a fuzzy continuous function.
Theorem 2.32 [6]:
An a-FNA \((Z, n_z, \odot, \oslash)\) without identity can be embedded into a-FNA \(Z_e\) having the identity \(e\), also \(Z\) is considered as an ideal in \(Z_e\).

Proposition 2.33 [6]:
The space \((Z_e, n_{Z_e}, \odot, \oslash)\) is a fuzzy complete \(\iff (Z, n_Z, \odot, \oslash)\) is a fuzzy complete.

Theorem 2.34 [6]:
Every a-FNA can be embedded as a closed subalgebra of \(afb(Z, Z)\).

Proposition 2.35 [6]:
If \((Z, n_Z, \odot, \oslash)\) is a fuzzy complete a-FNA and \(z \in Z\), then \((e-z)\) is invertible, the series \(\sum_{k=0}^\infty z^k\) is fuzzy converges, and \(\sum_{k=0}^\infty z^k = (e - z)^{-1}\).

Theorem 2.36 [6]:
The space \((\frac{Z}{D}, q, \odot, \oslash)\) is a fuzzy complete a-FNA if \((Z, n_Z, \odot, \oslash)\) is a fuzzy complete and \(D\) is a fuzzy closed ideal in \(Z\). Also \(\frac{Z}{D}\) has an identity if \(Z\) has an identity. As well as the identity of \(\frac{Z}{D}\) has a fuzzy norm equal to 1.

Remark 2.37 [6]:
If \((Z, n_Z, \odot, \oslash)\) is a fuzzy complete, then for any \(a \neq 0\), \(a^{-1}\) exists and \(a^{-1} \in Z\).

Proposition 2.38 [6]:
If \((Z, n_Z, \odot, \oslash)\) is a fuzzy complete a-FNA, then \(T(z) = z - 1\) is fuzzy continuous mapping.

Lemma 2.39 [6]:
Let \((Z, n_Z, \odot, \oslash)\) be a fuzzy complete having an identity \(e\). If \(z^{-1}\) and \(u^{-1}\) exist in \(Z\) then \((zu)^{-1}\) and \((uz)^{-1}\) are exist in \(Z\).

Proposition 2.40 [6]:
Let \((Z, n_Z, \odot, \oslash)\) be a fuzzy complete a-FNA having an identity \(e\). If \(z, u \in Z\) where \((e - zu)^{-1}\) exists. If \(d = (e - zu)^{-1}\) then \((e - uz)^{-1} = e + udz\).

Definition 2.41 [6]:
Let \(\mathcal{A} = \{A_j : j \in J\}\) be a family of subsets of a space \(Z\). The family \(\mathcal{A}\) is centered if for any finite number of sets \(A_1, A_2, \ldots, A_k \in \mathcal{A}\) we have \(\bigcap_{j=1}^k A_j \neq \emptyset\).

Definition 2.42 [6]:
Let \(Z\) be a non-empty set. A collection \(T\) of a subset of \(Z\) is said to be a fuzzy topology on \(Z\) if
(i) \(Z \in T\) and \(\emptyset \in T\);
(ii) If \(A_1, A_2, \ldots, A_n \in T\) then \(\bigcap_{i=1}^n A_i \in T\);
(iii) If \(\{A_j : j \in J\} \in T\) then \(\bigcup_{j \in J} A_j \in T\).
Then \((Z, T)\) is called a fuzzy topological space.

Theorem 2.43:
If \(Z\) is a fuzzy topological space then the following statement are equivalent:
(1) \(Z\) is a fuzzy compact;
(2) For any centred family \(\mathcal{A} \) of a fuzzy closed subset of \(Z \) we have \(\bigcap_{A \in \mathcal{A}} A \neq \emptyset \).

Proof: (2)\(\Rightarrow\)(1)

Let \(\mathcal{A} = \{A_j : j \in J\} \) be a fuzzy open cover of \(Z \). We need to show that \(\mathcal{A} \) has a finite subcover. For \(j \in J \), define \(G_j = \overline{A_j} \) this gives a family \(\mathcal{G} = \{G_j : j \in J\} \) of fuzzy closed sets in \(Z \). We have \(\bigcap_{j \in J} G_j = \bigcap_{j \in J} \overline{A_j} \) is not a centered family, and there exists \(G_1, G_2, \ldots, G_k \in \mathcal{G} \) such that \(\bigcap_{j=1}^k G_j \neq \emptyset \). This implies that \(\mathcal{G} \) is not a centered family, so there exists \(G_1, G_2, \ldots, G_k \in \mathcal{G} \) such that \(\bigcap_{j=1}^k G_j = \emptyset \). This gives, \(\emptyset = \bigcap_{j=1}^k G_j = \bigcap_{j \in J} \overline{A_j} \), so for all \(j \), \(\overline{A_j} \neq \emptyset \). Therefore, \(Z = \bigcup_{j=1}^k A_j \) and so \(Z \) is a fuzzy compact since \(\{A_j : j=1, 2, \ldots, k\} \) is a finite subcover of \(\mathcal{A} \).

(1)\(\Rightarrow\)(2) Follows from a similar argument.

Fuzzy Tychonoff Theorem 2.44:

If \(\{Z_j : j \in J\} \) is a family of fuzzy topological spaces and \(Z_j \) is a fuzzy compact \(\forall j \in J \), then the product space \(\prod_{j \in J} Z_j \) is a fuzzy compact.

Proof:

Let \(Z = \prod_{j \in J} Z_j \) where \(Z_j \) is a fuzzy compact \(\forall j \in J \). Let \(\mathcal{A} \) be a centred family of fuzzy closed subset of \(Z \). We will show that there exists \(z = (z_j)_{j \in J} \) such that \(z \in \bigcap_{A \in \mathcal{A}} A \). Let \(D \) denote the set consisting of all centred families \(\mathcal{F} \) of \(\{\overline{A_j} : j \in J\} \) and \(\mathcal{F} \) is an upper bound of \(\{\mathcal{F}_j : j \in J\} \). Now by Zorn’s Lemma we obtain that the set \(D \) contains a maximal element \(\mathcal{M} \).

We will show that every chain in \(D \) has an upper bound. Indeed, if \(\{\mathcal{F}_j : j \in J\} \) is a chain in \(D \) then take \(\mathcal{F} = \bigcup_{j \in J} \mathcal{F}_j \). Since \(\mathcal{F} \) is a centred family and \(\mathcal{F} \subseteq \mathcal{F} \) for all \(j \) thus \(\mathcal{F} \) is the upper bound of \(\{\mathcal{F}_j : j \in J\} \). Now by Zorn’s Lemma we obtain that the set \(D \) contains a maximal element \(\mathcal{M} \).

We will show that there exists \(z \in Z \) such that \(z \in \bigcap_{M \in \mathcal{M}} M \). Since \(\mathcal{A} \subseteq \mathcal{M} \) and \(\mathcal{A} \) contains of fuzzy closed sets we have, \(\bigcap_{M \in \mathcal{M}} M = \bigcap_{A \in \mathcal{A}} A \). Therefore, it will follow that \(z \in \bigcap_{A \in \mathcal{A}} A \) and \(\bigcap_{A \in \mathcal{A}} A \neq \emptyset \).

Construction of the element \(z \) proceed as follows. For \(j \in J \) let \(p_j : Z \to Z_j \) be the projection onto the \(j \)-th coordinate. Now for each \(j \in J \) the family \(\{p_j(M) : M \in \mathcal{M}\} \) is centred family of fuzzy closed subsets of \(Z_j \), so by the fuzzy compactness of \(Z_j \) there exists \(z_j \in Z_j \) such that \(z_j \in \bigcap_{M \in \mathcal{M}} M \). We set \(z = (z_j)_{j \in J} \).

In order to see that \(z \in \bigcap_{M \in \mathcal{M}} M \) notice that \(\mathcal{M} \) the following property:

If \(B \subseteq Z \) and \(B \cap M \neq \emptyset \) for all \(M \in \mathcal{M} \) then \(B \subseteq \mathcal{M} \) \((\ast)\)

Indeed if \(\mathcal{M}' = \mathcal{M} \cup \{B\} \) then \(\mathcal{M}' \in \mathcal{D} \), so by maximality of \(\mathcal{M} \) we must have \(\mathcal{M} \subseteq \mathcal{M}' \). For \(j \in J \) let \(U_j \subseteq Z_j \) be a fuzzy open neighborhood of \(z_j \). Since \(z_j \in \overline{p_j(M)} \) for all \(M \in \mathcal{M} \), thus \(U_j \cap p_j(M) \neq \emptyset \) for all \(M \in \mathcal{M} \).

Equivalently \(p_j^{-1}(U_j) \cap M \neq \emptyset \) for all \(M \in \mathcal{M} \). By property \(\ast \) we obtain that \(p^{-1}(U_j) \in \mathcal{M} \) for all \(j \in J \). Since \(\mathcal{M} \) is a centred family we obtain

\(p^{-1}(U_j) \cap p^{-1}(U_2) \cap \ldots \cap p^{-1}(U_k) \cap M \neq \emptyset \) for all \(M \in \mathcal{M} \) \((\ast\ast)\)

Now the sets of the form \(p^{-1}(U_1) \cap p^{-1}(U_2) \cap \ldots \cap p^{-1}(U_k) \) are precisely the fuzzy open neighbourhood of \(z \) that belong to the basis of the product fuzzy topology on \(Z \), and thus any fuzzy open neighbourhood of \(Z \) contains a neighbourhood of this type. Therefore, using \((\ast\ast)\) we obtain that if \(M \in \mathcal{M} \) then for any fuzzy open neighborhood \(U \) of \(z \) we have \(M \cap U \neq \emptyset \).
This means that for any $M \in \mathcal{M}$ we have $z \in \bar{M}$, and hence $z \in \bigcap_{M \in \mathcal{M}} \bar{M}$.

3. Further properties of fuzzy complete a-fuzzy normed algebra

Definition 3.1:
An ideal J in an algebra $(Z, +, \cdot)$ is maximal if $J \subseteq Z$ (that is $J \neq Z$), and if there is an ideal \mathcal{T} with $J \subseteq \mathcal{T}$ then $\mathcal{T} = Z$.

Proposition 3.2:
Every maximal ideal J in Z where $(Z, n_Z, \oplus, \ominus)$ is fuzzy complete a-fuzzy normed algebra with an identity e, is fuzzy closed.

Proof:
If J be a maximal ideal in Z, then J must does not contains any invertible element, otherwise $J = Z$. This implies that $J \subseteq Z \setminus \mathcal{G}(Z)$. But $\mathcal{G}(Z)$ is fuzzy open so $Z \setminus \mathcal{G}(Z)$ is fuzzy closed, hence $J \subseteq Z \setminus \mathcal{G}(Z)$. As special case, $J \neq Z$. Since $J \subseteq Z$ so $J = J$ but J is maximal ideal. Hence J is a fuzzy closed.

Proposition 3.3:
If $(Z, n_Z, \oplus, \ominus)$ is a fuzzy complete a-FNA, then every homomorphism $\theta : Z \rightarrow \mathbb{C}$, is fuzzy continuous.

Proof:
The case when $\theta = 0$ then it is fuzzy continuous. Let $\theta \neq 0$ and Z has an identity e. Now $\forall u \in Z$, $\theta(u) = \theta(u, e) = \theta(u, \cdot, e)$, and so $\theta(e) = 1$. If $u \in Z$ with $\theta(u) \neq 0$, then $u = u - \theta(u, e) \in \ker \theta$ and so b is not invertible [or $1 = \theta(bb^{-1}) = \theta(b, b^{-1})$ which is not correct]. Therefore, $\theta(u) \in \sigma_Z(u)$ and this implies that $L_C[\theta(u)] \leq n_Z(u)$. This inequality still true when $\theta(u) = 0$ and hence φ is fuzzy continuous on Z. [if (z_k) be a sequence in Z converge to $z \in Z$, that is $\lim_{k \to \infty} n_Z(z_k - z) = 0$, then $\lim_{k \to \infty} L_C[\theta(z_k) - \theta(z)] = 0$ that is $\theta(z_k) \rightarrow \theta(z)$].

If Z does not have an identity, we consider Z_e instead. Define $\theta' : Z_e \rightarrow \mathbb{C}$ by: $\theta'[(u, \alpha)] = \theta(u) + \alpha$ for all $(u, \alpha) \in Z_e$. Then φ' is a homomorphism is clear and therefore by the first part of the prove, φ' is fuzzy continuous on Z_e. specially, its restriction to Z in Z_e is fuzzy continuous i.e., θ is a fuzzy continuous.

Definition 3.4:
A homomorphism $\kappa : Z \rightarrow \mathbb{C}$ where $(Z, n_Z, \oplus, \ominus)$ is a fuzzy complete a-FNA is called a character. Character is fuzzy continuous by Proposition 3.3.

Theorem 3.5:
If κ is a character on Z, then $\ker \kappa$ is a maximal ideal in Z, and every maximal ideal has this form for some unique character, when $(Z, n_Z, \oplus, \ominus)$ is a commutative fuzzy complete a-FNA with identity e.

Proof:
If $\kappa : Z \rightarrow \mathbb{C}$ is a character and $J = \ker \ell$, it is clear that $J \neq Z$ because $\kappa = 0$. If $z \notin J$ then for any $u \in Z$ is represented by $u = z - \kappa(u) \frac{z}{\kappa(z)} [u - \kappa(u) \frac{z}{\kappa(z)}] \in \ker \kappa = J$, we see that $Z = Cz + J$ and therefore J is a maximal ideal. This implies that J is fuzzy closed and hence $\frac{Z}{J}$ is fuzzy.
complete a-FNA. Now we will show that the maximality of \(J \) implies that every non-zero element of \(\frac{Z}{J} \) is invertible. To prove this, let \((z + J)\neq 0\) and \((z + J)^{-1} \) does not exists.

Thus \(J \subseteq (J + z) \subseteq Z \) \(\forall e \in (J + z) \) because \((z + J)^{-1} \notin \frac{Z}{J} \). But this is not true since \(J \) is maximal by our assumption. This implies that every element of \(\frac{Z}{J} \) is \(\lambda(e + j) \) for \(\lambda \in \mathbb{C} \).

If \(\theta: \frac{Z}{J} \rightarrow \mathbb{C} \) represent this isomorphism, and if \(\pi: Z \rightarrow \frac{Z}{J} \) is the canonical projection.

Then \(\theta \circ \pi: Z \rightarrow \mathbb{C} \) is a homomorphism with \(\ker \theta = J \);
\[
\theta \circ \pi(p,q) = \theta[(p + q) + J] = \theta[(p + J)(q + J)] = [\theta(p + J)][\theta(q + J)] = \theta(p) \cdot \theta(q).
\]

Also, \(\theta \circ \pi(p) = 0 \iff \pi(p) = 0 \iff p \in J \).

Hence there is a correspondence between maximal ideals \(J \) and the characters \(\mathcal{J} \) with \(\ker \mathcal{J} = J \).

This correspondence is one-to-one because \(\mathcal{J} \) is uniquely determined by its Kernel. If \(\mathcal{J} \) and \(\mathcal{J}' \) are two character with \(\ker \mathcal{J} = \ker \mathcal{J}' \) then for any \(w \in Z \), \((w - \mathcal{J}(w)e) \in \ker \mathcal{J} \) and thus \(\mathcal{J}(w) = \mathcal{J}'(w) \) because \(\mathcal{J}(e) = 1 \).

Theorem 3.6:

Every commutative fuzzy complete a-FNA \((Z, n_Z, \mathcal{Q}, \bigodot)\) with an identity \(e \) has at least one character.

Proof:

If \(u^{-1} \) exists for all \(u \in Z \) then \(Z \cong \mathbb{C} \) and the isomorphism \(\mu: Z \rightarrow \mathbb{C} \) is a character. On the other hand, if \(\exists x \in Z \) such that \(u^{-1} \) does not exists then \(xZ \subset J \) where \(J \) is a maximal proper ideal, by Zorn’s lemma the set \(\mathcal{T} = \{J \subset L: L \text{ is ideal}\} \) is partially ordered by \(\subseteq \), thus \(\cup_{L \in \mathcal{T}} L \) is an ideal and \(J \subseteq \cup_{L \in \mathcal{T}} L \). Since \(e \notin \cup_{L \in \mathcal{T}} L \). By Zorn’s Lemma states that there exists a maximal \(\mathcal{K} \) with \(\subseteq \mathcal{K} \). But \(J = \ker \mathcal{K} \) where \(\mathcal{K} \) is a character on \(Z \).

If \(Z \) is not commutative, then we may does not find a character at all on the a-FNA.

Example 3.7

If \(Z = M_k(\mathbb{C}) \) where \(k > 1 \), then assume that \(E_{ij} = (e_{ij}) \in M_k(\mathbb{C}) \) where \(e_{ij} = 0 \), except for the i-j position is equal to 1. Now let \(\mathcal{K} \) is a character on \(Z \), then for \(i \neq j \), \(E_{ij}^2 = 0 \) which imply that \(\mathcal{K}(E_{ij}) = 0 \). But \(E_{ij} = E_{ji}. E_{ji} \), when i\(\neq j \), and this imply that \(\mathcal{K}(E_{ii}) = 0 \) for \(j = 1, 2, ..., k \).

Hence, \(\mathcal{K}(1) = \mathcal{K}(E_{11}) + \mathcal{K}(E_{22}) + ... + \mathcal{K}(E_{kk}) = 0 \). But this is not true.

Thus \(Z = M_k(\mathbb{C}) \) with \(k > 1 \), does not has a characters.

Definition 3.8:

If \((Z, n_Z, \mathcal{Q}, \bigodot)\) is a fuzzy complete a-FNA has an identity \(e \). Then \{ \(\mathcal{K}: \mathcal{K} \) is a characters of \(Z \) \} is called structure of \(Z \) and is denoted by \(\text{st}(Z) \).

Definition 3.9:

(1) The \(\omega^* - \)fuzzy topology on \(\text{af}(Z, \mathbb{C}) \) is generated by \(N(q, A, \varepsilon) = \{g \in \text{af}(Z, \mathbb{C}): L_g|g(a) - q(a)| \leq \varepsilon, \forall a \in A \} \), where \(q \in \text{af}(Z, \mathbb{C}) \), and \(A \subset Z \) is finite.

(2) A set \(E \) in \(\text{af}(Z, \mathbb{C}) \) is fuzzy open in \(\omega^* - \)fuzzy topology \(\iff \forall \theta \in E, \exists N(\theta, A, \varepsilon) \subseteq E \).
Proposition 3.10:
If \((Z, n_Z, \Theta, \bigodot)\) is a fuzzy complete a-FNA having an identity \(e\) then \(\omega^*\) –fuzzy topology on \(afb(Z, \mathbb{C})\) is a Hausdorff space.

Proof:
If \(h_1, h_2 \in afb(Z, \mathbb{C})\) with \(h_1 \neq h_2\) then there exist \(a \in Z\) such that \(h_1(a) \neq h_2(a)\). Let \(L_z[h_1(a) - h_2(a)] = r\), for some \(0 < r < 1\), then \(\forall r < r_0 < 1, \exists r_1\) satisfying \(r_1 \odot r_1 < r_0\).

Now consider \(N(h_1, \{a\}, r_1)\) and \(N(h_2, \{a\}, r_1)\). Clearly, \(N(h_1, \{a\}, r_1) \cap N(h_2, \{a\}, r_1) = \emptyset\) if there exists \(y \not\in N(h_1, \{a\}, r_1) \cap N(h_2, \{a\}, r_1)\) then \(r = L_z[h_1(a) - h_2(a)]\).

\[\leq L_z[h_1(a) - y(a)] \odot L_z[h_2(a) - y(a)]\]

\[\leq r_1 \odot r_1 < r.\]
But this is not true. Hence the proof is complete.

Proposition 3.11:
If \((Z, n_Z, \Theta, \bigodot)\) is a fuzzy complete a-FNA having identity \(e\) then \(st(Z)\) is \(\omega^*\)-fuzzy closed subset of \(afb(Z, \mathbb{C})\).

Proof:
If \((h_k)\) is a sequence in \(st(Z)\) converging to \(h \in \bigcap_{f \in \mathbb{C}} \{h \in afb(Z, \mathbb{C})\}\) for each \(z \in Z\). Now for any \(x, y \in Z\) we have

\[h(xy) = \lim_{k \to \infty} h_k(xy) = \lim_{k \to \infty} h_k(x). \lim_{k \to \infty} h_k(y) = h(x)h(y)\]

It follows that \(h \in st(Z)\). Hence \(st(Z)\) is a fuzzy closed.

In the next result we prove fuzzy Banach-Alaoglu’s Theorem:

Theorem 3.12
If \((Z, n_Z, \Theta, \bigodot)\) is a fuzzy complete a-FNS, then the fuzzy closed unit ball \(B_{\omega^*}(Z, \mathbb{C}) = \{h \in \omega^* afb(Z, \mathbb{C})\} : \exists_{n_{\omega^* afb(Z, \mathbb{C})}}(h) \leq 1\}\) of \(afb(Z, \mathbb{C})\) is a \(\omega^*\) –fuzzy compact.

Proof:
Let \(z \in Z\), define \(D_z = \{a \in \mathbb{C} : L_z(a) \leq n_z(z)\} \subseteq \mathbb{C}\). Then \(D_z\) is a fuzzy compact which implies \(D = \bigcap_{z \in Z} D_z\) is a fuzzy compact in the product fuzzy topology by fuzzy Tychonoff Theorem 2.44.

Let \(B^d\) denotes the fuzzy closed unit ball \(B_{\omega^* afb(Z, \mathbb{C})}\).

Define \(\theta: B^d \to D\) by \(\theta(\eta) = (\eta(u))_{u \in Z} \forall \eta \in B^d\). We will prove that \(\theta\) is one-to-one and fuzzy continuous. It is clear that \(\theta\) is Linear. If \(\theta(\eta) = 0\) then \(\eta(u) = 0\) \(\forall u \in Z\). Hence, \(\eta = 0\) and from this we obtain \(\eta\) is one-to-one.

To prove \(\theta\) is a fuzzy continuous, now if \((\sigma_z) \in B^d\) satisfying \(\sigma_z \to \omega^* \eta\). Then \(\eta_k(u) \to \eta(\eta) \forall u \in Z\). Consequently, \(\theta(\eta_k) = (\eta_k(u))_{u \in Z} \to (\eta(u))_{u \in Z} = \theta(\eta)\). Hence, \(\theta\) is a fuzzy continuous. If \(\theta(B^d)\) is a fuzzy closed subset of \(D\) and \(D\) being fuzzy compact, then \(\theta(B^d)\) is fuzzy compact.

Thus our next step is to prove \(\theta(B^d)\) is a fuzzy closed. If \(\sigma = (\sigma_z) \in D\) and \(\sigma \in \theta(B^d)\) then define \(\eta \in Z \to \mathbb{C}\) by \(\eta(u) = \sigma_u \forall u \in Z\). The map \(\eta\) is linear, if \(x, y \in Z\) and \(a, b \in \mathbb{C}\) then \(\forall k \in \mathbb{N}\), choose \(\eta_k \in B^d\) thus

\[\eta(ax + by) = \lim_{k \to \infty} \eta_k(ax + by) = ax \lim_{k \to \infty} \eta_k(x) + bx \lim_{k \to \infty} \eta_k(y) = ax \sigma_f(x) + bx \sigma_f(y) \quad \text{[since \(\eta_k\) is linear]}\]

Thus \(\eta\) is linear. Since \(L_z(\sigma_z) \leq n_z\), so \(\eta \in B^d\). Now by the definition of \(\eta\), we see that \(\sigma = \theta(\eta) \in B^d\). Hence, \(\theta(B^d)\) is a fuzzy closed. But \(B^d\) and \(\theta(B^d)\) are homeomorphic, so \(B^d\) must be fuzzy compact.
Proposition 3.13:
If \((Z, n_Z, \mathcal{O}, \mathcal{O})\) is a fuzzy complete a-FNA having an identity \(e\) then \(st(Z)\) is a \(\omega^*\)-fuzzy closed of \(B_{afb}(Z, \mathcal{C})=\{h \in afb(Z, \mathcal{C}): n_{afb}(Z, \mathcal{C})(h) \leq 1\}\) and hence is a fuzzy compact.

Proof:
Suppose that \((\ell_k)\) be a sequence in \(st(Z)\) which is fuzzy converge to \(\theta \in afb(Z, \mathcal{C})\). Then \(\ell_k(z) \to \theta(z) \forall z \in Z\).

Since \(\forall x, y \in Z, \theta(xy)=\lim_{k \to \infty} \ell_k(xy)=\lim_{k \to \infty} \ell_k(x) \cdot \lim_{k \to \infty} \ell_k(y) = \theta(x) \cdot \theta(y)\), so we conclude that \(\theta \in st(Z)\). Here \(\theta \neq 0\) since \(\theta(1)=1\). Thus \(st(Z)\) is a \(\omega^*\)-fuzzy closed. Therefore, \(st(Z)\) is a fuzzy compact because it is a fuzzy closed subset of a fuzzy compact set.

Theorem 3.14:
If \((Z, n_Z, \mathcal{O}, \mathcal{O})\) is a commutative fuzzy complete a-FNA having an identity \(e\), then for each \(z \in Z\) and \(h \in st(Z)\) we define \(\Psi_z: st(Z) \to \mathcal{C}\) by \(\Psi_z(h)=h(z)\). Then the range of the function \(\Psi_z\) on \(st(Z)\) satisfies \(R(\Psi_z)=\sigma_Z(z)\). Furthermore, the map \(\Psi: Z \to C(st(Z))\) and \(n_{afb}(st(Z), \mathcal{C})(\Psi_z) \leq n_Z(z)\) for all \(z \in Z\). The map \(\Psi\) is called Gelfand transform.

Proof:
If \(u \in Z\) and \(h \in st(Z)\) then \(h(x) \in \sigma_Z(u)\) that is \(\Psi_z(u) \in \sigma_Z(u)\) and so the range of \(\Psi_z\) satisfies the inclusion \(R(\Psi_z) \subseteq \sigma_Z(u)\).

Let \(\alpha \in \sigma_Z(u)\), so \((u-\alpha)e\) does not exists and \((u-\alpha)e \notin J\) where \(J\) is some maximal ideal, say \([\text{Since } (u-\alpha)e \notin Z(x-\alpha) \subset J]\).

If \(h \in st(Z)\) with \(\ker h=J\) then \((x-\alpha)e \in J\) which implies that \(h(u)=\alpha\). Thus \(\Psi_z(h)=h(u)=\alpha\) and so \(R(\Psi_z)=\sigma_Z(u)\). But \(\Psi\) is a homomorphism;
\[\Psi_{zy}(h)=h(zy)=h(z)h(y)=\Psi_z(h)\Psi_y(h) \forall z, y \in Z, h \in st(Z)\] and so \(\Psi_{zy} \in \Psi_z, \Psi_y\).

Similarly, we can show that \(\Psi_{az+\beta y}=a\Psi_z + b\Psi_y(h)\), thus \(\Psi_z\) is linear.

To prove that \(\Psi_z \in C(st(Z))\), if \(\Omega\) is a fuzzy open set in \(\mathcal{C}\) we will prove that \(\Psi_z^{-1}(\Omega)\) is a fuzzy open in \(st(Z)\). When \(\Psi_z^{-1}(\Omega)=\emptyset\), the proof is end. If \(\Psi_z^{-1}(\Omega)\neq \emptyset\). Assume that \(g \in \Psi_z^{-1}(\Omega)\). So \(\exists \delta \in \Omega\) such that \(\Psi_z(g) \in \delta\). Since \(\Omega\) is a fuzzy open set in \(\mathcal{C}\), \(\exists 0<\varepsilon<1\) with \(N_\varepsilon(\delta) = \{\alpha \in \mathcal{C}: L_C(\alpha-\delta) < \varepsilon\}\).

If \(\psi=\theta(g, \{u\}, \varepsilon)\), then \(\theta(\psi) \in \psi \in \Psi_z^{-1}(\Omega)\). Hence, \(\Psi_z^{-1}(\Omega)\) is a fuzzy open set in \(st(Z)\) and therefore \(\Psi_z: st(Z) \to \mathcal{C}\) is a fuzzy continuous function thus \(\Psi_z(u) \in C(st(Z))\).

On the other hand, we can introduce another prove for the fuzzy continuity of \(\Psi_z\) by using sequences. If \(g_k \to g\) in \(st(Z)\) then \(\Psi_z(g_k) \to \Psi_z(g) \Rightarrow g(u)\), hence \(\Psi_z\) is a fuzzy continuous.

Now, \(R(\Psi_z)=\sigma_Z(u)\subseteq \{\alpha \in \mathcal{C}: L_C(\alpha) \leq n_Z(u)\}\) and thus \(L_C(\Psi_z(g)) \leq n_Z(u)\) for all \(g \in st(Z)\). Hence, \(n_{afb}(st(Z), \mathcal{C})(\Psi_z) \leq n_Z(u)\) for all \(u \in Z\).

Theorem 2.3.15:
If \((Z, n_Z, \mathcal{O}, \mathcal{O})\) is a commutative fuzzy complete a-FNA having an identity \(e\) and \(Z=uZ\), that is, the set of polynomials in \(z\) is fuzzy dense in \(Z\). Then the map \(\Psi_u: st(Z)\to \sigma_Z(u) \subseteq \mathcal{C}\) is a homeomorphism.

Proof:
Since \(\Psi_u\) is fuzzy continuous function on \(st(Z)\) satisfying \(R(\Psi_u) = \sigma_Z(u)\) i.e., \(\Psi_u: st(Z)\to \sigma_Z(u)\) is a fuzzy continuous and onto. But \(st(Z)\) and \(\sigma_Z(u)\) are fuzzy compact Hausdorff spaces, thus it remains only to prove that \(\Psi_u\) is injective. Now if \(\Psi_u(\ell_1) = \Psi_u(\ell_2)\), so that \(\ell_1(u) = \ell_2(u)\), by using the multiplicativelty of \(\ell_1\) and \(\ell_2\) we see that for given \(k \in \mathbb{N}\) and \(c_0, c_1, \ldots, c_k\) in \(\mathcal{C}\),
\[\ell_1(\sum_{j=0}^{k} c_j u^k) = \ell_2(\sum_{j=0}^{k} c_j u^k)\]. Since \(\ell_1\) and \(\ell_2\) are fuzzy continuous and \(u\) generates \(Z\), it follows that \(\ell_1 = \ell_2\).
Example 2.3.16:
Let $Z=\{\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}: \alpha, \beta \in \mathbb{C}\}$ be a subalgebra of $M_2(\mathbb{C})$. Then $\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}=\alpha I + \beta q$, where $q=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. We note that $q^2=0$.
Evidently, Z is two-dimensional commutative fuzzy complete a-fuzzy normed algebra with identity I. We shall compute the spectrum $\sigma_Z(x)$ for $x=\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$. Indeed, for $\lambda \in \mathbb{C}$, $x-\lambda I=\begin{pmatrix} \alpha - \lambda & \beta \\ 0 & \alpha - \lambda \end{pmatrix}$ is invertible in $M_2(\mathbb{C})$ if $\alpha \neq \lambda$. If $\alpha \neq \lambda$, then in fact

$$(x-\lambda I)^{-1}=\begin{pmatrix} (\alpha-\lambda)^{-1} & -\beta (\alpha-\lambda)^{-1} \\ 0 & (\alpha-\lambda)^{-1} \end{pmatrix},$$
which belongs to Z. Hence, $\sigma_Z(x)=\sigma_Z(\alpha I + \beta q)=\{\alpha\}$. In particular $\sigma_Z(q)=\sigma_Z(\beta q)=\{0\}$, but $q\neq 0$. If \hat{h} is a character of Z then $\hat{h}(uv)\hat{h}(v)\hat{h}(u)$ implies $\hat{h}(q^2)=\hat{h}(q)\hat{h}(q)$. But $q^2=0$ and so $\hat{h}(q)=0$. Since $\hat{h}(I)=1$, we find that $\hat{h}(\alpha I + \beta q)=\alpha$ for any $\alpha, \beta \in \mathbb{C}$. Thus, there is just one character on Z so $st(Z) = \{\hat{h}\}$, where \hat{h} is given uniquely by the action $\hat{h}(I)=1$ and $\hat{h}(q)=0$.
The fuzzy Gelfand transform is the map $z \mapsto \Psi_z$, $(\alpha I + \beta q)\mapsto \alpha \Psi_I + \beta \Psi_q$. But $\Psi_I=1$ and $\Psi_q(\hat{h})=\hat{h}(q)=0$ so that $\Psi_q=0$ and we have $\Psi_{(\alpha I + \beta q)}=\alpha$ for any $\alpha, \beta \in \mathbb{C}$.

The transform Ψ_q has kernel $\{\beta q: \beta \in \mathbb{C}\}$, so Ψ_q is not an isomorphism. The algebra Z has exactly one maximal ideal, namely, the Kernel of \hat{h}. As Z is an algebra with identity generated by q and so $st(Z) \equiv \sigma_Z(q)$, throw $\Psi_{\alpha I + \beta q} \mapsto \sigma_Z(q)$, $\hat{h} \mapsto \Psi_q(\hat{h})=0$.
Thus, the two sets $st(Z)$ and $\sigma_Z(q)$ are singleton sets.

On the other hand, we can calculate the spectrum of $x \in Z$ using $R(\Psi_x)=\sigma_Z(x)$. For $x=\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$ we have, $\sigma_Z(x) = \{\Psi_x(\hat{h})\} = \{\hat{h}(x)\} = \{\hat{h}(\alpha I + \beta q)\} = \{\alpha \hat{h}(I) + \beta \hat{h}(q)\} = \{\alpha\}$
Since $\hat{h}(q)=0$.

4. Conclusions
In [6] we proved some properties of fuzzy complete a-fuzzy normed algebra. In this paper we recall the definition of a-fuzzy normed algebra in order to prove other properties of fuzzy complete a-fuzzy normed algebra.

References