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Abstract

In this article, two issues related to the design of the experiment are investigated,;
namely the inspection times and optimal censoring. In the first issue, we study four
different approaches to determine the inspection times, namely; pre-specified, equally
spaced, optimally spaced, and equal probability using two optimality criteria. In the
second issue, we identify the optimal censoring scheme by finding the expected
numbers of removals or proportions that attain a specific optimality criterion using
two optimality criteria considered. Numerical comparisons using the Monte Carlo
simulations are provided of the inspection times, optimum control schemes issues for
different parameters and different sample sizes. Statistical measures such as bias and
root mean square error for both pre-specified and equal space methods are calculated
and the inspection times for different values of the censoring percentage h are
obtained.

Keywords:The generalized inverted exponential distribution, progressive type I
interval censored, optimal censoring, inspection times.
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1 Introduction
A random variable x X of the generalized inverted exponential distribution (GIED) with
shape parameter a and scale parameter A has the following expressions of c.d.f. and p.d.f.

Fx)=1—(1—e )% x>0,a>0,1>0, Q)
f(x) =Z—'21 e_l/x(l—e_l/x)“,x>O,a>0,/1>0 . (2)

The hazard function of GIED distribution is given by the following [1]:
flx) al
1-F(x) xZ(e_/l/x_l).

Clearly, the hazard function of the GIED can be increasing or decreasing which depends on the
shape parameter . The GIED was used in many applications, for instance; in horse racing,
supermarkets queue, sea currents, and wind speeds. It is also suitable for modeling for the
applications of agriculture, botany, economics, medicine, psychology, zoology, life testing and
reliability of mechanical or electrical components lying in the life testing experiment. It is also
observed that this distribution may provide a better fit than gamma, Weibull, and generalized
exponential distributions in many situations [2]. For more properties of the GIED in
applications, one can refer to [3] , [4] , [5] , and [6]. The most common censoring schemes in
life-testing and reliability studies are type | and type 11 censoring. However, type | and type Il
schemes do not have the ability to allow the removal of units at points other than the terminal
point of the experiment. The progressive type I interval censored scheme which was proposed
by [2] can be described as follows: Assume n units are put on test at time t, = 0 and each
unit is followed until it fails or is censored. Units are observed at pre-specified times t; < t, <
-+ < tmy, totheend. Let d; be the number of units which are failed in [t;_4,t;) and r; denote
the number of units which is removed from the experiment at time t; , i=
1,2,...,m.Clearlyn = Y (r; + d,).

Hence, our observations consist of D = {(t;,d;,1;);i =1,..,m}. The numbers of
removal items 1y, ..., 1, are expressed as nonnegative integers. Alternatively, the removal
numbers may determine by pre-specified percentages of the remaining surviving units as
follows. Let p = (p1,p2 -..-Pm) be pre-specified percentages with p,, = 1.At time
ti, [pi X (number of surviving unit time t;)] from the remaining surviving units that are
removed from the experiment, where [w] denotes the largest integer, which is smaller than or
equal to w.

In this article, two issues related to the design of the experiment are investigated,;
inspection times and optimal censoring. First, Section 1 is devoted to the maximum likelihood
estimation of the parameters of the GIED under progressive interval-censored data. In Section
2, we study four different approaches to determine the inspection times, namely; pre-specified,
equally spaced, optimally spaced, and equal probability using two optimality criteria. In Section
3, we identify the optimal censoring scheme by finding the expected numbers of removals (or
proportions) that attain a specific optimality criterion using two optimality criteria considered.
In Section 4, numerical comparisons using Monte Carlo simulations are provided of the two
aforementioned issues for different parameters and different sample sizes.

2 Maximum likelihood estimation

Based on the observed progressive the type | interval censored sample D =
{(t;,d;,....1)); i =1,...,m}, thelog-likelihood function of a« and A can be written as follows:
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(@, AID) = )" dy log (F(&) = F(t-1)) + ) 7ilog (1= F(£)

— ym e Na e na m =4,
=Y dilog (1—e /)@ —(1—¢ /)0 £ a ¥ rlog(1—e ).
©)

Where t, = 0. To compute the MLEs of the unknown parameters, @ and A, we need to
find o and A that maximize the log-likelihood function i.e.

(@ 1) = argmax, (@ A|D)
In order to obtain the MLEs, we propose to use the optim() function in R language to
solve the optimization problem.

3 Inspection times

We usually, in progressive type | interval censored, identified inspection times by fixed
quantities before the start of the experiment. However, it is important to investigate the effect
of different inspection times on the efficiency of obtained estimators. This problem under
progressive interval censored observations has not received much attention in the literature. The
authors determined [7] the optimally spaced inspection times for the two-parameter lognormal
distribution under progressive type | interval censored plan. Recently, in [8] , [9] and [10], the
authors obtained various inspection times by using the expected Fisher information matrix for
Burr XII, inverse Weibull and truncated normal distributions, respectively.

In the following, we study four different approaches to determine the inspection times,
namely; the pre-specified, equally spaced, optimally spaced and equal probability. In the pre-
specified approach, time points are commonly pre-determined on the basis of the available
knowledge about the experiment. The equally spaced inspection times are identified by
constructing inspection intervals of equal length in which time points to be included are
considered. Specifically, if t,, isthe termination time of the experiment, time points can be

obtained by t; = #tm,i = 1, ..., m. The authors mentioned [9] that when units on the test have

a decreasing failure rate, the equally spaced inspection times may provide efficient estimates.

In the optimally spaced approach, time points are obtained in order to achieve some
optimality criteria. To study the problem of selecting the inspection times, we consider the
following optimality criteria:

Criterion I: Minimizing the trace of the expected variance covariance matrix of the MLEs.
Criterion 1I: Maximizing the determinant of the expected Fisher information matrix of the
MLEs.

It is known that the expected variance covariance matrix of the MLEs can be obtained by
inverting the expected Fisher information matrix. Let p = (p4, ..., pm) be a censoring scheme.
Observe that the probability that a unit fails in the interval (0,t,] is

_ F@D-F(O) _
PO<T<{|T>0)= —ro) = F(ty).
Then D;~ Binomial(n,F(t,)) and R,|D,~ Binomial(n — D,,p;) Consequently, the
expected number of failures in the interval (0,t;] is {; = E(D,) = nF(t;) and the expected
number of removed units is 7; = E(R;|D,)|¢, = (n — {1)p;. Subsequently, the probability
that a unit fails in the interval (t;_4,¢; ]
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P(ti_ <T<4|T > ti_y) = ) ., m.

Then the conditional distributions of D; and R; are given by

Di|(Di—1, Ri—1, ., D1, Ry)~Binomial(n — i1 (D; + R;), “=fliza) )

J ] 1 1-F(ti-1)
Ri| D;,Di_1,R;_1, ..., D1, Ry = R; ~Binomial(n — ¥'_; D; — ¥'Z1R;,p; ), (5)
(%)

and the expected number of failures and the expected number of removed items are

respectively computed by

i = EWD;IDi—1 Ri—1, -, DL, ROy riciynC ey )
F(t)—-F(t;_1)

= (n - 21 ) R . ©
T, =
E(R;|D; ,Di—y,Ri—y, ., Dl’,Rl) |€Cic Ficanta, )
= (n - X5 + 1) — pe. ' )

Therefore, the expected Fisher information matrix can be obtained as follows

I(a, /1)—[ L, “’1]

—li
where
azl((l, AlD) AiAi,aa_ALg,a
laa .=T= i=1 fl T'
®) 2
0°l(a,A|D AALa ALaAL
g = e = T, & HA il gy g ©)
a%i(a, A|D AiAi - A% BB 2—Bf
= (6/12| -ym 151%"‘“2&1 i 22 %,
(10)
where
4 Y
Ai=(1-e "ti)*—(1—e 't)%,
_A/
Bi =1-—e¢ ti,
. -2 -2 -2 -2
Ajg = % =(1-e /ti—l)“log (1 —e /ti—l) —-(1-e /ti)“log(l —e /ti),
Agy ==%=t“ Tt - e Hiayet 2o - e et
-1
_ 9B _ 1 A/
Aige =28 = (log(1 — & Tua))? (1 — ¢ Vi) — (log(1 — e Tiyy2(1 — e Tuye
024,

— == M1 — o Mtiya-t o M
Aiar = 51 = b0 1e A —e ) [”"‘l"g (1 € )]
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_ie—)l/ti(l - e_/l/’-“i)”“1 [1 + alog (1 - e_l/ti)],

ti
Ay = a;/éi = (tl - ( e /tl 1)2(1 — /fi—1)“—2 _i e_/l/ti—1(1 _ e_/l/ti_l)a—l)
_tﬁ( . (e /tl) 1-e /t)a 2 _l /tt(l—e /t)a b,
Bija:= aazﬁi =~z 1,

It is easy to observe that the computing of the optimally spaced inspection times is a
constraint optimization problem due to the condition t; > t;_;,i = 1,2, ..., m. Hence, in order
to remove the monotonicity constraints, we consider the transformation of t; ’s as t; =
Yi_1 ek, With the use of new variables s; ’s, a genetic algorithm is used for the determination
of the optimally spaced inspection times via GA() package.

In the last approach, the equal probability, we study inspection times for a pre-specified
percentage of the censoring observations quantity h satisfying the expression >, 7; = nh.
Note that }1*, {; =n(1 —h)since X%, {;+ X%, 7; = n.Furthermore, we consider the
probability of the expected number of failures in each inspection interval is considered to be
the same. As consequence, the problem of finding the equal probability inspection times
reduces to compute t;’s such that {; =, ==, and X", {; =n(1— h). Observe
that, by solving (6) for t; , we obtain

—1| Gil1-F(ti—1)] .
t; = F 1 [+ F(t;_) |, i = 1,2, ...,
i 71—2;';11 ((j""fj) + ( i 1) l m
Hence, we propose the following algorithm to obtain equal probability inspection times
(see for example [9] ).

Input: Choose n € Z*t,me Z*,m <n,h € [0,1] and p = (p1,p2, ..., Pm ), Where Z* is the

set of positive integers and p; € [0,1].

Initialize: Set ¢; = n(lnzh),i =1,..,m. Compute t; = ( Y and 7, = (n — {)ps.

Repeat step L tostep 3for i = 2,...,m
Step 1: Obtain

(l(l F(ti—1))
—1 (Zj

ixn(l—h) <
e I L7
=1

Step 3: If ¥i_, 7; > nh thenset ; =nh — ¥}, 7,7, =0 for k =i+1,..,m and stop.
Here [x]denotes the greatest integer less than or equal to x.

t_Fl(

+ F(ti-1))
7)
Step 2: Compute

4 Optimal censoring

It is common in the analysis of real life experiments to consider the censoring scheme as
fixed and pre-specified. However, in the estimation problem, we may choose the censoring
scheme among a set of possible schemes in order to improve the estimations of parameters. It
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is known that under progressive type | interval censored, the number of the removed units R;
at each inspection time t;, can be a constant number or a pre-specified proportion p; of
surviving units. Optimal censoring can be described as finding the expected numbers
R = (Ry,R,, ...,R,,) (or proportions p = (py,p2, --,Pm) ) Which attains to a specific
optimality criterion. The issue of identifying the optimal censoring scheme for different
distributions under progressive type | interval censored has received little attention in the
statistical literature. See [8] for Burr X1l and [9] for inverse Weibull distribution.

The problem of selecting the optimal censoring method under progressive type | interval

censored observation can be described as follows. For given M and M the optimal censoring
scheme is the one among all possible censoring schemes which satisfy the conditions

Xt Ry = [nh] and X72,({; + ;) = n, where {; and 7; are defined in (6) and (7). Recall
that the number of all possible censoring schemes satisfying the relation Y. R; = [nh] is
([nh]+m-1)!

(m-)![nh]l "

First, we consider the optimal censoring with the pre-specified inspection times, i.e. t
includes the pre-specified quantities. Assume that ¥ (¢, 7, t) is the objective function that needs
to be minimized (or maximized). Following [9] , we use the following algorithm to get the
optimal censoring scheme based on the pre-specified inspection times.

Step 1. Set the values of n,m, h and t = (tq, ty, ..., t;).

Step 2. Calculate W = ™D i et ¢ = 0 and k = 1.
(m-D[nhl!

Step 3. Generate ., R; = [nh] and consider 7; = R;.

Step 4. Compute the {;,i = 1,2, ..., m using (6).

Step5. If X, {; —n+ [nh] < ¢ set c =c+ 1 and compute Y, ({,7,t) else set k =
k +1 andgo to Step 3.

Step 6. If Y, (¢, 1,t) > (or Yy_1({, 7,t), then update the optimal censoring scheme
(Ry, Ry, ..., R;y) and go to Step 3 with k = k + 1 until k = w.
Here, ¢ is a pre-specified quantity and ¥, (.) is the value of i (.) at the k — th iteration.
Next, we utilize the following algorithm to obtain the optimal censoring scheme based on the
equal probability inspection times (see, [9] ).

Step 1. Select the values of n,m and h.

Step 2. Set {; = "_T[:h] i=12,..,m

Step 3. Calculate W = {MA+m=D!

T and set k = 1.

Step 4. Generate (Rq,R;,...,R,) such that Y/, R; = [nh] and consider 7; = R;,i =
1,2,..,m.

Step 5. Compute

(1 —-F(t; — 1))
n—¥5 (G + 1)

t;=F1 +F(t;—1) |,i=23,..,m

Where t, = 0.
Step 6. Given the values of z;,¢; and t;,i = 1,2, ..., m, compute Y, ({, 7, t).
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Step 7. If Y, (¢, 7,t) > (or QYr_1({,7,t) then update the optimal censoring scheme
(R4, Ry, ..., R,,) and equal probability inspection times (tq, ty, ..., t,). Further, set k =k + 1
and go to Step 4 until k = w.

Based on the above algorithms, we suggest to consider the following two criteria.
Criterion(l): Minimizing the objective function 1 (.) which is the trace of the expected variance
covariance matrix of the MLEs.

Criterion(Il): Maximizing the objective function ¥ (.) which is the determinant of the expected
Fisher information matrix of the MLEs.

It is clear that for a large value of m, the total number of sampling schemes can be quite
large. For example when n = 25,m = 10 and h = 0.3 the possible number of censoring
nhlm =1y - (%) = 10015005,

Following [11], we propose to use a sub-optimal censoring problem in which the optimal
censoring scheme belongs to the convex hull generated by the points
([nh],0,...,0), (0, [nh],0,...,0),...,(0, ...,0,[nh]). Therefore, the sub-optimal censoring
scheme can be obtained by choosing the optimal censoring scheme among these extreme points
on the convex hull. In addition, for generating censoring schemes (Ry, R,, ..., R,;,) satisfies the
condition Y1, R; = [nh], we may utilize the function compositions() from partition
package in R language.

schemes is ([

5 Simulation

In this section, our objective is to compare the performance of the different methods of the
inspection times and optimal censoring schemes of the GIED under progressive type | interval
censored through the Monte-Carlo simulation study. At first, data is simulated by employing
an algorithm proposed by [11] to generate the number of failures d,,d,,...,d,, in each
interval (t;_q,¢t;], for i = 1,...,m from the sample of size n. The data generation algorithm
is described as follows. Given n,m and p = (p4, ..., pm) Where 0 <p; <1 and p,, = 1.

Step (i): Generate tj,..,t; from GIED (a,A) using ti*=——1/, where
log(l—Ui “)

U;: U(0,1).
Step(ii) : Arrange ti, ..., ty, aS t; < t, < - < tpy,.
Step(iii) : Compute F; = F(t;),i =1, ...,m using (1).
Step(iv) : Set dy =1y =F, =0 and i = 1.
Step(v) : Generate
d | (dg,---,d 4,100 ) MnmnMKn—Eidj+n)qL
j=0

q = F-F,
where 1-F,

Step(vi) :Compute
L= [pi(n_zdj _er)]l
j=0 j=0
where X1 denotes the largest integer not greater than *.
Step(vii) :If <M, then replace i by i+1 and go to Step(v), otherwise stop.

We consider different parameter values and sample sizes such as (@,4)=(05,05).(151) gpq
n = 25,50,100. The number of inspection times m is considered to be 5 or 10. Four
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different censoring schemes are adopted here for each value of m. When m = 5, we consider
the following censoring schemes
Scheme 1: p:~ (0.25,0.25,0.5,05,1)

Scheme 2: p2: (0.5,0.5,0.25,0.25,1) .

Scheme 3; ps~(©.0.0.0.1)
Scheme 4: p+~ (0-25.0,0,0,1).

and when ™=10. e consider the following censoring schemes.

Scheme 1: p:=(025.0.25,0.25,0,0,0,0,0,0,1)

Scheme 2: p2=(0.0.0,0.25,0.25,0.25,0,0,0,1).
Scheme 3: ps= (0.0.0,0,0,0,0.25,0.25,0.25,1).
Scheme 4: p+=(0:0.0,0,0,0,0,0,0)

The above schemes are chosen to specify the percentage of surviving units to be

withdrawn at the m censoring and monitoring points. Further, we consider h = 0.3,0.5,0.8.
First, we consider the numerical results concerned with different inspection times reported in
Tables 1-7. In Tables 1-2, we compare the performance of the MLEs based on the pre-specified
with the MLEs based on the equally spaced inspection times in terms of Bias and RMSE for
n = 25,50,100. The results of the two tables show the Bias and RMSE values for m = 10
are closer to each other for both the pre-specified and equally spaced methods than m = 5.
In Tables 3-4, we obtain the equal probability inspection times for different values of the
percentage of censoring observations quantity h. Some items of these tables are presented as "-
" which represents the situations that the experiment can be terminated only after the failure of
all remaining units. It can be seen that some equal probability inspection times are not available
for censoring schemes p; and p, (or ps and pg for m = 10) and h < 0.5. Moreover, the
first equal probability inspection times t, is the same for all the censoring schemes and the
scheme p, has the largest values of the equal probability inspection times among the other
scheme for a fixed value of h. Clearly, the values of inspection times are decreasing with the
values of the percentage of censoring, h. Tables 5-7 include the optimally spaced inspection
times based on criteria | and Il for m = 5,10 and n = 25,50,100 The main observation from
these tables is that the first inspection times for criterion I is less than that of criterion 11 for all
the cases.

Next, we consider the numerical results of optimal censoring schemes reported in Tables
8-9. In Table 8, we have reported the optimal censoring schemes for m =5 and in Table 9,
we have reported the sub-optimal censoring schemes for m = 10. It can be seen that, for both
tables, by changing the sample size, the censoring scheme patterns, in general, do not affect.
However, from Table 8, the reported censoring schemes for almost all the cases are the same
or very close to each other under criteria I and 11. Moreover, most of the unites are removed in
the first and the last stages. From Table 9, the censoring scheme patterns for both criteria are
showed that the units are removed in thei — th stage, i = 1,2,3, except for a few cases for h =
0.3. Furthermore, to investigate the optimal proportion of the removed units instead of the
optimal number, one may consider the expression (7).
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Table 1: Bias and RMSE of « and A using the pre-specified and equally spaced for m =
5

a=0.5 A=105
n The pre-specified The equally spaced The pre-specified The equally spaced
Sch. Bias RMSE Bias RMSE Bias RMSE Bias RMSE
pt 0.032 0.403 0.010 0.402 0.028 0.393 0.017 0.410
p2 0.002 0.377 0.019 0.382 0.019 0.354 0.021 0.387
25 K 0.005 0.308 0.014 0.326 0.018 0.344 0.005 0.373
pé 0.008 0.341 0.003 0.362 0.020 0.355 0.011 0.384
pt 0.013 0.294 0.022 0.286 0.014 0.295 0.019 0.298
p? 0.024 0.352 0.004 0.351 0.003 0.308 0.007 0.343
50 p3 0.027 0.236 0.034 0.245 0.014 0.259 0.023 0.276
pé 0.024 0.256 0.029 0.264 0.016 0.269 0.024 0.288
pt 0.024 0.221 0.036 0.227 0.026 0.226 0.034 0.241
p? 0.002 0.245 0.016 0.251 0.017 0.228 0.020 0.255
100
p3 0.034 0.195 0.038 0.201 0.027 0.210 0.034 0.221
pé 0.030 0.203 0.036 0.211 0.026 0.214 0.034 0.229
a=15 A=1
pt 0.277 1.151 0.318 1.294 0.057 0.440 0.054 0.506
p? 0.207 0.997 0.171 1.046 0.011 0.427 0.006 0.506
25 p? 0.206 0.726 0.218 0.912 0.059 0.356 0.061 0.428
pé 0.262 0.958 0.512 8.706 0.088 0.385 0.067 0.455
pt 0.122 0.721 0.109 0.649 0.020 0.299 0.017 0.323
p2 0.296 1.089 0.193 0.994 0.055 0.373 0.018 0.401
50 p3 0.073 0.456 0.087 0.479 0.026 0.238 0.021 0.261
pé 0.010 0.522 0.110 0.567 0.032 0.243 0.022 0.285
pt 0.070 0.414 0.107 0.469 0.019 0.188 0.0277 0.224
p? 0.111 0.571 0.097 0.568 0.021 0.233 0.018 0.270
100 p3 0.051 0.300 0.042 0.330 0.018 0.166 0.009 0.192
p* 0.049 0.353 0.073 0.387 0.008 0.178 0.022 0.207
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Table 2: Bias and RMSE of a and A using the pre-specified and equally spaced for m =
100

a=0.5 A=05
n The pre-specified The equally spaced The pre-specified The equally spaced
Sch. Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ps 0.078 0.540 0.036 0.418 0.026 0.425 0.013 0.388
po 0.066 0.412 0.008 0.395 0.094 0.387 0.025 0.339
25 p? 0.008 0.316 0.009 0.285 0.022 0.363 0.010 0.326
ps 0.003 0.338 0.003 0.316 0.027 0.369 0.009 0.351
ps 0.001 0.338 0.001 0.290 0.020 0.310 0.010 0.272
ps 0.015 0.380 0.028 0.354 0.053 0.332 0.010 0.297
50 p’ 0.028 0.237 0.032 0.226 0.009 0.266 0.024 0.249
ps 0.017 0.250 0.023 0.239 0.005 0.272 0.019 0.253
ps 0.010 0.256 0.020 0.230 0.021 0.242 0.030 0.222
pe 0.032 0.343 0.006 0.294 0.010 0.268 0.034 0.240
100 p7 0.036 0.198 0.042 0.199 0.026 0.215 0.038 0.211
pe 0.029 0.202 0.035 0.198 0.022 0.215 0.033 0.207
a=15 A=0.5
ps 0.265 1.152 0.372 1.351 0.027 0.447 0.067 0.452
ps 0.036 1.136 0.117 1.090 0.149 0.563 0.055 0.487
25 p7 0.197 0.742 0.245 0.766 0.059 0.350 0.099 0.337
ps 0.251 0.864 0.255 0.861 0.070 0.388 0.085 0.355
ps 0.130 0.769 0.127 0.662 0.004 0.315 0.024 0.289
pé 0.447 1.756 0.369 1.246 0.016 0.483 0.059 0.380
50 p’ 0.091 0.449 0.088 0.425 0.038 0.242 0.031 0.227
pe 0.102 0.518 0.107 0.492 0.033 0.248 0.033 0.239
ps 0.082 0.533 0.089 0.455 0.016 0.240 0.024 0.194
pe 0.162 0.893 0.166 0.698 0.014 0.337 0.028 0.251
100
p’ 0.040 0.310 0.025 0.310 0.017 0.177 0.003 0.181
pe 0.049 0.346 0.038 0.345 0.019 0.182 0.008 0.187
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Table 3: The equal probability inspection times for m = 5

(a, 2) = (0.5,0.5)
h t t, t, t, t,
ot 0.372 0.828 - - -
02 0.372 1.219 - - -
0.3 0 0.372 0.684 1.219 2.324 5.302
D! 0.372 0.828 1.85 5.302 38.677
oL 0.301 0.564 1.174 - -
02 0.301 0.743 - - -
05 D3 0.301 0.489 0.743 1.12 1.738
0t 0.301 0.564 0.975 1.738 3.463
oL 0.196 0.290 0.417 0.763 2.733
p? 0.196 0.336 0.684 1.685 9.873
0.8 0 0.196 0.267 0.336 0.409 0.489
0t 0.196 0.290 0.384 0.489 0.613
(a,2) = (1.5,1)
oL 0.426 0.684 - - -
02 0.426 0.841 - - -
0.3 D3 0.426 0.615 0.841 1.158 1.682
0t 0.426 0.684 1.037 1.682 3.748
oL 0.372 0.55 0.825 1.448 8.166
p? 0.372 0.644 - - -
05 0 0.372 0.505 0.644 0.805 1.006
0t 0.372 0.550 0.748 1.006 1.393
bt 0.276 0.362 0.458 0.586 0.779
o2 0.276 0.399 0.615 1.277 -
0.8 D3 0.276 0.343 0.399 0.453 0.505
Y 0.276 0.362 0.435 0.505 0577
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Table 4: The equal probability inspection times for m = 10

(a, 1) = (0.5,0.5)

h t tl tz t3 t4 t5 te t7 ts tg t10

ps 0.250 0.415 - - - - - - - -

pe 0.250 0.511 - - - - - - - -

0.3 p7 0.250 0.372 0.511 | 0.684 | 0.911 | 1.219 1.66 2.324 | 3.396 | 5.302

ps 0.250 0.415 0.622 | 0911 | 1.348 | 2.069 | 3.396 | 6.279 | 14.625 | 61.478

ps 0.215 0.330 0.501 - - - - - - -

pe 0.215 | 0.390 - - - - - - - -

0.5
p7 0.215 0.301 0.390 | 0.489 | 0.605 | 0.743 | 0.911 1.12 1.388 | 1.738

pe 0.215 0.330 0.455 | 0.605 | 0.795 | 1.045 | 1.388 | 1.879 | 2.622 | 3.826

ps 0.155 0.209 0.271 | 0.353 | 0.474 | 0.675 | 1.340 - - -

pe 0.155 0.232 0.372 - - - - - - -

0.8 p7 0.155 0.196 0.232 | 0.267 | 0.301 | 0.336 | 0.372 | 0.409 | 0.448 | 0.489

pe 0.155 | 0.209 0.255 | 0.301 | 0.348 | 0.396 | 0.448 | 0.504 | 0.564 | 0.630

(o, 1) =(151)

ps 0.328 0.457 - - - - - - - -

pe 0.328 0.519 - - - - - - - -

0.3 p 0.328 0.426 519 0.615 | 0.721 | 0.841 | 0.983 | 1.158 1.38 1.682

pe 0.328 0.457 0.582 | 0.721 | 0.886 | 1.095 1.38 1.809 | 2.566 | 4.461

ps 0.295 0.395 0.513 - - - - - - -

pe 0.295 0.439 - - - - - - - -

0.5 p7 0.295 0.372 0439 | 0.505 | 0.573 | 0.644 | 0.721 | 0.805 | 0.899 | 1.006

pe 0.295 0.395 483 0.573 | 0.669 | 0.776 | 0.899 | 1.045 | 1.225 | 1.457

ps 0.232 0.289 0.346 | 0.412 | 0.496 0.61 0.883 - - -

po 0.232 0.312 0.426 - - - - - - -

0.8 p 0.232 | 0.276 0.312 | 0.343 | 0.372 | 0.399 | 0.426 | 0.453 | 0.479 | 0.505

pe 0.232 0.289 0.333 | 0.372 | 0.408 | 0.444 | 0.479 | 0.514 0.55 0.587
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Table 5: The optimally spaced inspection times for m = 5

() | n Crit.l Crit.11

pt 1.7 3.8 7.0 104 | 141 1.8 4.7 8.7 12.4 15.2

p2 0.4 2.9 4.9 5.6 7.9 2.1 5.2 8.7 124 16.0

o5 | p? 11 1.8 3.3 5.9 9.4 1.5 3.2 6.0 9.9 13.6

pe 15 2.7 4.7 7.5 11.3 1.7 3.4 5.8 9.2 13.2

pt 1.7 3.8 7.1 10.8 | 14.0 1.9 4.8 8.7 125 16.1

p2 0.3 13 3.4 5.0 6.4 2.0 5.1 8.8 125 16.3

50 | ps 1.0 1.7 3.0 5.3 9.0 15 3.3 6.0 9.9 13.7

(0.5,0.5) pé 0.2 4.0 6.5 9.0 10.0 1.8 3.4 5.9 9.5 13.5

pl 1.7 3.9 7.2 11.0 | 14.8 1.8 45 8.5 11.7 155

p2 0.4 2.9 4.8 6.7 8.6 2.1 5.1 8.9 12.8 16.8

100| ps 1.0 1.7 3.1 5.4 9.2 1.4 3.0 5.6 9.4 13.3

ps 0.2 3.2 6.0 9.7 12.4 1.7 3.5 6.2 9.8 13.7

pt 0.9 3.3 4.4 5.7 6.1 15 24 3.8 5.5 7.8

p2 1.2 3.6 5.7 8.2 8.8 1.7 2.8 3.9 5.4 7.4

25 ps 0.6 2.8 4.6 5.9 7.7 1.2 1.7 2.3 3.5 5.6

pé 0.9 2.6 4.3 6.1 6.4 1.5 1.7 2.6 4.0 5.8

pt 0.9 1.2 4.1 4.7 5.6 1.5 25 3.8 5.6 7.8

p2 1.2 3.1 5.9 8.4 9.9 1.7 2.8 3.9 5.4 7.6

50 | p® 0.6 3.3 4.2 5.5 7.3 1.2 1.6 2.3 3.6 5.6

pé 0.9 2.7 4.5 7.6 9.9 1.5 1.8 2.7 4.1 6.3

(1.51) pt 0.9 2.3 4.6 6.9 8.0 1.5 24 3.8 5.5 75

p2 1.2 3.4 4.4 5.7 74 1.7 2.7 3.9 5.2 7.2

100 pe 0.6 3.3 4.3 5.6 7.3 1.2 1.8 2.4 3.8 58

pé 0.9 29 4.3 6.4 8.7 1.5 2.0 2.7 4.3 6.4
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Table 6: The optimally spaced inspection times for (a, 1) = (0.5,0.5) and m = 10

n Crit t t, t; t, t t t, ty [ t,

ps I 1.6 3.7 6.6 10.0 13.8 17.7 21.0 23.0 251 26.8

I 1.8 4.6 8.2 12.2 15.9 195 22.4 25.0 26.6 28.9

pe I 0.4 3.0 3.9 5.8 7.2 8.8 10.2 115 12.6 13.9

I 2.0 5.1 9.0 12.6 16.2 19.8 21.7 24.2 25.9 27.9

25 p7 I 1.0 15 2.2 3.7 5.6 7.3 9.7 12.9 16.6 19.9

I 15 2.7 4.2 6.3 8.7 12.0 15.7 19.2 23.1 26.3

pe I 0.2 3.9 59 7.7 9.9 12.4 15.6 18.5 21.7 25.3

I 1.8 3.1 4.8 6.6 9.3 12.7 16.2 20.1 23.8 27.4

ps I 1.6 3.7 6.6 10.0 13.8 17.7 21.0 23.0 25.1 26.8

I 1.8 4.6 8.2 12.2 15.9 19.5 224 25.0 26.6 28.9

pe I 0.4 3.0 3.9 5.8 7.2 8.8 10.2 115 12.6 13.9

I 2.0 5.1 9.0 12.6 16.1 19.8 21.7 24.2 25.9 27.9

p7 I 1.0 15 2.2 3.7 5.6 7.3 9.7 12.9 16.6 19.9

» I 15 2.7 4.2 6.3 8.7 12.0 15.7 19.2 23.1 26.3
pe I 0.2 3.9 5.9 7.7 9.9 12.4 15.7 185 21.7 25.3

I 1.8 3.1 4.8 6.6 9.3 12.7 16.2 20.1 23.8 274

ps I 1.6 3.6 6.3 9.6 13.3 17.0 19.9 22.2 24.3 25.9

I 1.8 4.4 7.9 11.6 155 19.0 22.3 23.9 26.9 29.2

pé I 0.4 3.1 4.8 6.7 9.2 10.3 12.3 12.6 13.6 14.3

I 2.0 5.1 8.8 12.3 16.0 194 21.0 22.4 25.3 27.4

p7 I 1.0 15 2.2 3.5 5.4 7.7 10.3 135 16.9 20.7

10 I 1.4 2.4 3.8 5.8 8.1 111 14.7 18.4 21.6 255
pe I 15 2.2 3.2 4.7 6.5 8.7 11.6 151 18.8 22.4

I 1.8 2.8 4.2 6.0 8.5 11.2 14.4 18.0 22.0 25.8
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Table 7: The optimally spaced inspection times for (o, 4) = (1.5,1) and m = 10

n Crit t, t, t t, t t, t, tg t to

ps I 0.9 3.9 4.7 6.4 7.5 8.3 8.8 10.9 13.2 15.8

I 1.5 2.3 3.4 4.7 6.3 8.4 10.7 13.4 15.7 17.4

po I 1.2 3.3 52 7.5 10.0 10.1 11.3 12.8 14.0 14.6

I 1.7 2.8 4.3 5.9 8.0 9.1 10.9 131 14.8 16.8

p7 I 0.5 2.3 5.5 7.4 8.7 10.9 12.4 14.2 15.1 18.4

® I 1.2 15 2.1 2.9 4.2 5.9 7.9 9.5 11.6 13.9
pe I 0.9 2.7 5.2 8.9 11.8 14.7 18.2 19.8 21.6 235

I 15 1.9 2.1 2.8 3.8 5.0 6.4 7.5 9.0 115

ps I 0.9 2.8 4.8 7.0 9.0 10.5 11.9 13.1 15.1 18.1

I 15 24 3.6 5.1 6.7 8.6 10.2 12.9 14.8 16.6

pé I 1.2 4.3 4.6 5.0 5.7 7.1 8.2 9.6 11.6 13.9

I 1.7 2.8 4.1 5.7 7.7 9.3 11.6 12.9 14.4 16.0

p I 0.6 3.6 5.2 7.3 8.9 11.3 12.8 14.6 15.8 17.6

» I 1.2 14 2.0 2.7 3.8 54 7.3 9.3 115 13.9
pe I 0.9 3.7 59 7.7 9.9 12.0 14.8 15.6 16.3 18.4

I 15 1.8 2.6 3.5 4.6 6.3 7.9 9.9 11.8 145

ps I 0.9 2.8 3.6 6.4 7.7 10.2 11.0 11.5 12.3 12.9

I 15 2.3 3.5 4.9 6.8 8.9 10.8 13.1 15.3 17.0

po I 1.2 2.6 4.2 6.6 8.4 9.9 114 121 135 15.0

I 1.7 2.9 4.3 6.0 7.7 9.3 11.7 14.2 15.9 17.6

p7 I 0.6 3.0 5.6 6.7 9.1 11.2 13.5 14.3 17.0 17.2

0 I 1.2 1.8 2.3 29 3.7 5.2 6.6 8.3 10.6 11.9
pe I 0.9 3.0 4.2 6.5 9.7 11.9 13.5 15.0 16.4 18.6

I 15 1.7 2.3 3.2 4.6 6.2 8.2 10.3 12.6 14.4
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Table 8: Optimal censoring schemes under the pre-specified and equal probability inspection

times for m =5
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(@, 2) n h Critl = (Ry, Ry, ..., Rs) Critll = (Ry, Ry, ..., Rs)
0.3 (0,0,0,0,7) (0,0,0,0,7)
b5 |05 (7,0,0,0,5) (6,0,0,2,4)
0.8 (18,0,0 0 ,2) (17,1,0,0,2)
0.3 (1,0,0,0,14) 0,0,1,1,13)
5 | 05 (15,0,0,0,10) (14 1,0,0,10)
0.8 (36 ,0,0,0,4) (35,1,0,0,4)
PS 0.3 (2,0,0,0,28) (2,0,0,0,28)
100 |05 (30,0,0,0,20) (30, 0,0,0,20)
0.8 (30 ,0,0,0,20) (30, 0,0,0,20)
0.3 (1,0,0,0,14) (0,0,1,1,13)
(0.5,0.5) s | 05 (15,0,0,0,10) (14,1,0,0,10)
0.8 (36,0,0,0 ,4) (35,1,0,0 4)
e 0.3 (1,0,0,0,14) (0,0,1,1,13)
5 | 05 (15,0,0,0, 10) (14,1,0,0,10)
0.8 (36,0,0,0,4) (35,1,0,0 4)
0.3 (1,0,0,0,14) (0,0,1,1,13)
100 |05 (15,0,0,0, 10) (14,1,0,0,10)
0.8 (36,0,0,0,4) (35,1,0,0 4)
0.3 (6,0,0,0,1) (6,0,0,0,1)
. | 05 (11,0,0,1,0) (11,0,0,1,0)
0.8 (15,4,1,0,0) (19,1,0,0,0)
0.3 (13,0,0,0,2) (13,0,0,0,2)
5 | 05 (1,21,3,0,0) (23,0,0,1,1)
oS 0.8 (30,9,1,0,0) (39,0,0,1,0)
0.3 (25,0,1,0,4) (23,3,0,0,4)
100 |05 (47,0,0,0,3) (47,0,0,0,3)
0.8 (60,18,2,0,0) (79,0,0,0,1)
0.3 (6,0,0,0,1) (6,0,0,0,1)
s | 05 (11,0,0,0,1) (11,0,0,0,1)
(15.1) 0.8 (19,0,0,0,1) (19,0,0,0,1)
0.3 (13,0,0,0,2) (12,0,0,0,3)
5 | 05 (23,0,0,0,2) (23,0,0,0,2)
Ep 0.8 (39,0,0,0,1) (39,0,0,0,1)
0.3 (26,0,0,0,4) (25,0,0,0,5)
100 |08 (47,0,0,0,3) (46,0,0,0,4)
0.8 (57,0,0,0,3) (57,0,0,0,3)

Table 9: Optimal censoring schemes under the pre-specified and equal probability inspection
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times for m = 10
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(a,2) n h Critl = (Ry, Ry, ..., Rs) Critll = (Ry, Ry, ..., Rs)

03 (0,0,0,0,0,0,0,0,7,0) (0,0,0,0,0,0,0,0,7,0)

o5 | 05 (0,0,0,12,0,0,0,0,0,0) (0,0,0,12,0,0,0,0,0,0)

08 | (0,20,0000,0,00,0) (20,0,0,0,0,0,0,0,0,0)

03 (0,0,0,0,0,0,15,0,0,0) (0,0,0,0,0,0,15,0,0,0)

50 |99 (0,25,0,0,0,0,0,0,0,0) (0,0,25,0,0,0,0,0,0,0)

The pre- 08 | (0,40,0,0,0,0,0,0,0,0) (40,0,0,0,0,0,0,0,0,0)
specified 03 | (0,30,0,0,0,00000 | (03000000000)
100 |95 | (0,0,50,0,0,0,0,0,0,0) (0,50,0,0,0,0,0,0,0,0)
08 | (0,80,00,0,00000) (80,0,0,0,0,0,0,0,0,0)

03 (7,0,0,0,0,0,0,0,0,0) (0,7,0,0,0,0,0,0,0,0)

o5 | 05 (12,0,0,0,0,0,0,0,0,0) (0,12,0,0,0,0,0,0,0,0)

08 | (20,0,00,000,0,00) (0,0,20,0,0,0,0,0,0,0)
05,09 03 | (15.0,0,0,0,0,0,0,0,0) (0,15,0,0,0,0,0,0,0,0)
50 | 0O (25,0,0,0,0,0,0,0,0,0) (0,25,0,0,0,0,0,0,0,0)

The equal 0.8 (40,0,0,0,0,0,00,0,0,) (0,0,40,0,0,0,0,0,0,0)
probebility 03 | (30,0,0,0,0,0,0,0,00) |  (0,30,0,0,0,0,0,0,0,0)
100 |95 | (50,0,0,0,0,0,0,0,0,0) (0,50,0,0,0,0,0,0,0,0)

08 | (80,0,0,0,0,0,0,0,0,0) (0,0,80,0,0,0,0,0,0,0)

03 [ (7,0,0,00,0,0,00,0) (7,0,0,0,0,0,0,0,0,0)

5 | 05 | (0,0,12,0,00,0,0,0,0) (12,0,0,0,0,0,0,0,0,0)

08 | (0,20,0,0,0,0,0,0,0,0) (20,0,0,0,0,0,0,0,0,0)

03 | (150,00,0,0,0,0,0,0) (15,0,0,0,0,0,0,0,0,0)

s0 | 05 | (0,0,250,0,0,00,0,0) (25.0,0,0,0,0,0,0,0,0)

The pre- 08 | (0,40,0,0,0,0,0,0,0,0) (40,0,0,0,0,0,0,0,0,0)
specified 03 | (0,30,0,0,0,00000) (0,30,0,0,0,0,0,0,0,0)
100 |05 | (0,0,50,00,0,0,0,0,0) (0,50,0,0,0,0,0,0,0,0)

08 | (0,80,0,0,0,0,0,0,0,0) (0,80,0,0,0,0,0,0,0,0)

03 [ (7,0,0,0,0,0,0,00,0) (0,7,0,0,0,0,0,0,0,0)

o5 | 05 | (12,0,0,0,0,00,0,0,0) (0,12,0,0,0,0,0,0,0,0)
08 | (20,0,0,0,0,00,000) | (0,0,20,0,0,0,0,0,0,0)

(15,1) 03 | (1500000,0,0,0,0) (0,15,0,0,0,0,0,0,0,0)
50 |09 (25,0,0,0,0,0,0,0,0,0) (25,0,0,0,0,0,0,0,0,0)

The equal 0.8 (40,0,0,0,0,0,0,0,0,0) (0,0, 40,0,0,0,0,0,0,0)
probability 03 | (30,0,0,0,0,00000 | (030,00000000)
100 | 05 | (50,0,0,0,0,00,0,00) (0,50,0,0,0,0,0,0,0,0)

0.8 (80,0,0,0,0,0,0,0,00) (0,0,80,0,0,0,0,0,0,0)

6 Concluding remarks

Selecting the inspection times is an important practical issue to improve the efficiency of
the obtained estimators. By considering such an issue, we investigate the pre-specified, equally
spaced, optimally spaced and equal probability methods to determine the inspection times. The
first equal probability inspection times t; is the same for all the censoring schemes and the
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scheme p, has the largest values of the equal probability inspection times among the other
scheme for a fixed value of h. We notice the optimally spaced inspection times based on criteria
land Il for m = 5,10 and n = 25,50, 100. The main observation from these tables is that the
first inspection times for criterion | are less than that of criterion 11 for all the cases. Clearly, the
values of inspection times are decreasing with the values of the percentage of censoring h. In
regard to optimal censoring, the censoring schemes with most of the removal units are appeared
in the first stages (at most the first three stages) is the most preferred ones among the other
schemes based on all criteria. However, the considered censoring schemes are almost the same
under criteria | and Il for almost all cases.

We hope that the methodologies proposed in this work will be useful to applied
statisticians. It will be interesting to study the same methodology under hybrid censored data.
The work is in the progress and it will be reported later.
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