
Devi et al.                                                  Iraqi Journal of Science, 2024, Vol. 65, No.6, pp: 3249-3258 

                                                                 DOI: 10.24996/ijs.2024.65.6.24 

 

____________________________ 

*Email:drgcrana15@gmail.com 
3249 

 
Instability Analysis Study of the Jeffrey Nanofluid Flow through a 

Brinkman-Darcy Porous Medium 
 

Promila Devi
1
, Gian C. Rana

2*
, Sita Ram Sharma

1
, Sanjeev Kumar

3
 

1
Chitkara University School of Engineering and Technology 

Chitkara University BADDI, District Solan, Himachal Pradesh, INDIA 
2
Department of Mathematics 

NSCBM Govt. College, Hamirpur, Himachal Pradesh, INDIA 
3
Department of Mathematics 

RGM Govt. College, Jogindernagar, Himachal Pradesh,INDIA 

 

 Received: 18/11/2022          Accepted: 7/6/2023          Published: 30/6/2024        
 

Abstract  

     The analysis of thermal instability in a Brinkman-Darcy Jeffrey nanofluid flow 

through a porous medium is studied in this paper.  The nanoparticles are immersed 

in the Jeffrey fluid so that the thermal conductivity of the system is maintained 

and high medium porosity is to be undertaken. Under the impact of the Jeffrey, 

nanoparticles and Brinkman-Darcy parameters, the momentum-balance 

equations of fluid flow are mutated. The dispersion relation for the Rayleigh 

number is derived by employing the normal mode analysis method and linear 

stability theory in terms of different parameters affecting the stability of the system.  

It is noticed that the Darcy-Brinkman number advances the convection while the 

Jeffrey parameter postpones the convection in a stationary mode. To verify the 

results numerically, graphs have been plotted by using Origin 6.1 software. Further, 

for the top-heavy nanoparticles distribution, oscillatory convection does not exist.  

 

Keywords: Thermal convection, Rayleigh number, Jeffrey Model, porous medium, 

nanofluid.  

 

1. Introduction 

     The instability of a non-Newtonian fluid has many applications in real-life problems as 

well as in various areas of modern technology and industry, viz. plastic production, polymer 

industry, paper and textile dyeing, food industry, geophysics, chemical and biological 

industry, etc. [1-9]. Motor oils, printing inks, egg white, wallpaper paste, toothpaste, soap 

solution, sauce, and biological fluids such as blood are some examples of non-Newtonian 

fluids. The Jeffrey fluid model [10] is one such kind of non-Newtonian fluid. He investigated 

some problems of an incompressible fluid that is heated from below, and now it is shown to 

be the best fluid model to describe the behaviour of physiological and industrial fluids [11-

14]. 

 

     Studying porous media has many applications in groundwater hydrology, Earth's molten 

core, and many others. Sandstone, limestone, human lungs, bile ducts and gall bladder with 

stones in the vessels are some examples of natural porous media. A simple Darcy model was 

used to initiate studies in a porous media. Later, the Darcy model was extended to the  

Brinkman-Darcy model due to its high porosity and was used in various industries for the 

                ISSN: 0067-2904 



Devi et al.                                                  Iraqi Journal of Science, 2024, Vol. 65, No.6, pp: 3249-3258 

 

3250 

production of highly porous materials such as paints, lubricants, metal foams, lightweight 

plastics, etc. Lapwood [15] examined the instability fluid in a porous medium while the 

instability of the boundary layer problem was investigated by Wooding [16]. Different 

authors [17-22] studied the effect of porosity on the onset of convection in the porous 

medium. 

 

     During the last few years, the studies of non-Newtonian nanofluids become an important 

topic of research due to their high thermal conductivity and various industrial applications. 

Sheu [23-24] studied the problem of a porous medium layer saturated by a nanofluid and 

found that oscillatory convection is possible for both bottom/top heavy nanoparticles 

distributions. Chand and Rana [25] studied the problem of thermal instability of Rivlin-

Ericksen nanofluid and found that the Rivlin-Ericksen nanofluid behaves like an ordinary 

fluid in the case of stationary convection while Yadav [26] studied the same problem by 

taking Kuvshiniski fluid as base fluid. Natural convection in non-Newtonian nanofluids has 

been analysed by different authors [27-32] on the basis of Buongiorno’s [33] model. They 

observed that nanofluids are the best coolants and find various applications in engineering 

industries, energy-saving industries and bio-medical industries, etc., viz, nanoparticle 

suspension develops medical applications such as in the treatment of hyperthermia.  

 

     In the present paper, the thermal instability of Jeffrey nanofluid layer permeated with high 

porosity medium is examined under the assumption that the nanoparticles are spherical in 

shape and the size of nanoparticles is quite smaller than the pore size of the matrix. 

  

2. Mathematical model 

     Here, we consider the Brinkman-Darcy Jeffrey nanofluid flow through a porous layer 

having thickened d as shown in Figure 1 

.  

 
 

Figure 1: Physical sketch of the problem 

 

2.1 Governing equations 

     The governing equations of Brinkman-Darcy Jeffrey nanofluid flow through a porous 

layer after applying Boussinesq approximation are given as follows: 

The equation of mass-balance is: 

0.  Dq ,          (1) 

Where,    is the Laplacian operator and Dq is the flow velocity of the fluid. 

Equations of modified momentum-balance [10-15] are: 

Jeffrey nanofluid layer saturating a 

Darcy-Brinkman porous medium 

Heated from below 

x 

y 

z 
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(2) 

Where 
f  is the fluid density,

 p  is the density of nanoparticles, p  is the fluid pressure, T  

is the fluid temperature,   is the fluid viscosity,   is the effective viscosity of the fluid,
1k  is 

the medium permeability,   is the porosity,   is the volumetric fraction of nanoparticles, 

medium permeability and 3

 

is the Jeffrey parameter (accounting for viscoelasticity). 

 

The equation of momentum-balance equation of nanoparticles [22-29] is: 

T
T

D
D

t

T
B

2
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Where, 
BD  is the Brownian diffusion coefficient and 

TD  is the Thermophoretic diffusion 

coefficient, they are given as follows: 

3

B
B
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Where 
Bk  is the Boltzmann’s  constant, npd  is the diameter of the nanoparticle, bfk  and npk  

are the thermal conductivities of the base fluid and nanoparticles, respectively. 

The equation of energy-balance [25-33] is: 

   2

0

. . .T
f m f Bbm p

DT
c T k T c D T T T

t T
   
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            

   
Dq  .     (4) 

Where  f bm
c is the effective capacity,  f bf

c  is the  heat  capacity of  nanofluid.  

Using the following non-dimensional variables 
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In non-dimensional form, equations (1-4) reduce to (deleting the (')  for simplicity)  
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Here, the thermal  diffusivity of the  base fluid  
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The appropriate boundary conditions are 

00 ,,0   TTw at z = 0 and 11,,0   TTw   at z = 1.      (9)

 
 2.2 Basic solutions 

     The basic state is supposed to be motionless, thus

 

     0 ,p p , ,b bu v w z T T z z      
 .      (10) 

Using equation (10), equations (5-8) reduce to 
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        (13) 

Using the boundary conditions (9) in the above equations and retaining only the first-order 

terms, we obtain the solution as  

zTb 1
 
and 

zb 
.         (14) 

Which verifies the results that are obtained by [25-26]. 

 

2.3 Perturbation equations
 

     Suppose that the quantities are perturbed from the equilibrium position as  
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.     (15) 

Where * denotes the perturbations in the physical quantities from the position of equilibrium. 

Equations (5-8) can be written after using equation (15) in the form of the non-dimensional 

perturbed equations as 
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*
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Applying 2grad div   in equation (17), we obtain 
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Where, 
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is a horizontal Laplacian operator. 

3. Linear stability analysis and normal modes 

Suppose the perturbations quantities ,w    and T   are of the form 
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Equations (16) – (19) and (21) together reduce to the ordinary linear differential equations 

after using equation (22) as follows: 
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Where, 
dz

d
D  and 

2 2 2k r s  is the dimensionless resultant wave number. 

For free-free boundaries, conditions (20) take the form
 2W=0,D W=0, =0, =0    at z = 0, and 

2W=0,D W=0, =0, =0    at z = 1.        (26) 

To solve equations (22-25), we now suppose that 

0 0 0W sin ,,  sin , sinW z z z      
       (27) 

Which satisfies boundary conditions (26).  

Using the solutions (27) in equations (23-25), the dispersion relation is given by  
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For a steady state, the real part of  is zero. Therefore, we put ii  in equation (28), we 

obtain 
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4. The stationary convection 

For the stationary convection ( = 0).  Equation (28) yields 
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When 0
~

aD , equation (32) becomes: 
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Which verifies the result obtained by [33].  

When both 0
~

aD and 03  , the equation (32) reduces to  
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~

aD and 03  , 00  ANandRn , equation (32) becomes: 
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Equations (34) and (35) are identical to the standard result in a Newtonian nanofluid.  

By definition, Rn has a negative value which implies NA also has a negative value for heavy 

nanoparticles  
bfnpei  .,. .   

In the following discussion, values of Rn and NA are taken to be negative if not specified (i. e., 

bottom-heavy). 
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      Equations (36) and (40) show the destabilizing influence of the Jeffrey parameter and 

nanoparticles Rayleigh number implying thereby postpones the stationary convection for both 

bottom/top-heavy nanoparticles distributions as attained by [31-33]. From equation (37), we 

notice that the Brinkman-Darcy number  aD
~ advances the stationary convection for both 

bottom/top-heavy nanoparticles distribution which accord the result that are analysed by [21-

23, 25-29]. 

 

     Equations (38) and (39) show that the Lewis number (Le) and modified diffusivity ratio 

(NA) have stabilizing effect on the system for bottom-heavy nanoparticles distribution. From 

(41), it is noticed that medium porosity has a destabilizing effect on the system. 

    

5. Result and Discussion 

     We now examine the results obtained earlier graphically by giving some numerical values 

to the parameters.  
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Figures (2-4) show that the Rayleigh number decreases with an increase in the value of the 

Jeffrey parameter, the nanoparticles Rayleigh number and the medium porosity which imply 

that  these parameters have a destabilizing effect on the stationary convection. Thus, the 

Jeffrey parameter, the nanoparticles Rayleigh number and the medium porosity postpone the 

stationary convection which is in good agreement with the results derived by Sheu [23-24], 

Chand et al. [27] and Rana and Gautam [32]. It has been observed from Figures (5-7) that the 

stationary Rayleigh number increases with an increase in the value of the Lewis number, the 

modified diffusivity ratio, and the Brinkman-Darcy number respectively which imply that 

these parameters stabilise the stationary convection which are in good agreement with the 

results derived by Sheu [23-24] Yadav et al. [26] and Chand et al [27]. 

 

 
Figure 2: Variation with respect to 3.

 

 Figure 3: Variation with respect to Rn . 

 

 Figure 4: Variation with respect to . . 

1 2 3 4 5 6

500

1000

1500

2000

2500

3000

3500

R
ay

le
ig

h 
N

um
be

r

Wave number

 Rn=-0.1
 Rn=-0.3
 Rn=-0.5



Devi et al.                                                  Iraqi Journal of Science, 2024, Vol. 65, No.6, pp: 3249-3258 

 

3256 

 
Figure 5: Variations with respect to .Le  

 
Figure 6: Variations with respect to .AN  

 
Figure 7: Variations with respect to .Da  

 

6. The oscillatory convection 

     In oscillatory convection ( 0i ), i.e., 02  , which gives 

 
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  
  

 .            (42)

      Equation (42) gives the frequency of oscillatory modes. If there is no positive value of the 

frequency of oscillatory modes
2

i
 , then equation (28) yields   
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,                           (43)

 

Where,
2

i
  is given in equation (42). 

If 0Rn   and 
1




 AN
Le , then 

2

i
 is negative, hence oscillatory convection does not exist. 

      Thus, 0Rn   and 
1




 AN
Le , are the sufficient conditions for the non-existence of 

oscillatory convection, the infraction of which does not certainly show the occurrence of 

oscillatory convection.  

 

7. Conclusions 

     The thermal instability in a layer of Jeffrey nanofluid has been investigated analytically 

for free-free boundaries. It is found that the Jeffrey parameter, the medium porosity and the 

nanoparticles Rayleigh number destabilize the stationary convection, i. e.,  delay convection 

while the Lewis number, the Brinkman-Darcy number and the modified diffusivity ratio 

stabilize the physical system, i. e., promote convection. The sufficient conditions for the non-

existence of oscillatory convection are obtained as Rn < 0 and 
1




 AN
Le . 
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