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Abstract  

    The relationship between prey and predator populations is hypothesized and 

examined using a mathematical model. Predation fear, cannibalism among the prey 

population, and a refuge reliant on predators are predicted to occur. This study set out 

to look at the long-term behavior of the proposed model and the effects of its key 

elements. The solution properties of the model were investigated. All potential 

equilibrium points' existence and stability were looked at. The system's persistence 

requirements were established. What circumstances could lead to local bifurcation 

near equilibrium points was uncovered. Suitable Lyapunov functions are used to study 

the system's overall dynamics. Numerical simulations were conducted to verify the 

model's derived long-term behavior and understand the implications of the model's 

primary parameters in order to support the analytical conclusions. It is observed that 

the system undergoes different types of local bifurcation including Hopf bifurcation. 
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والافتراس  نمذجة وتحليل نظام الفريسة المفترس الذي يدمج الخوف والملجأ المعتمد على المفترس 
 في الفريسة الذاتي 

 

 2رائد كامل ناجي*, 1حمد سامي عبد الغفورا
 العراق  بغداد،  العراقية،  الجامعة الشؤون العلمية،  سم ق1

 سم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق ق2
 

  الخلاصة 
ويدرس  استخدام نموذج رياضي.  تحليلها من خلال  و   الفريسة والمفترسالعلاقة بين    في هذا البحث تم اقتراح    
الافتراس  اهرة  ظو والملجأ الذي يعتمد على الحيوانات المفترسة  من الافتراس  للفريسة  الخوف    النموذج تأثيرهذا  

وآثار عناصره    الذاتي  المقترح  للنموذج  الأجل  السلوك طويل  في  النظر  إلى  الدراسة  هذه  تهدف  الفرائس.  بين 
الرئيسية. تم التحقيق في خصائص الحل للنموذج. تم النظر في وجود واستقرار جميع نقاط التوازن المحتملة.  

متطلبات استمرار النظام. وتم الكشف عن الظروف التي يمكن أن تؤدي إلى تشعب محلي بالقرب من    تحديد و 
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المناسبة لدراسة الديناميكيات العامة للنظام. تم إجراء عمليات محاكاة عددية    واستخدام دالة ليابانوفنقاط التوازن.  
للتحقق من السلوك طويل الأجل المشتق من النموذج وفهم الآثار المترتبة على المعلمات الأساسية للنموذج من  

ي بما في ذلك تشعب  أجل دعم الاستنتاجات التحليلية. ويلاحظ أن النظام يخضع لأنواع مختلفة من التشعب المحل
 هوبف 

1. Introduction 

     Less attention is paid to the dynamics of predator-prey interactions when the predator uses 

other survival strategies due to a lack of food supplies, with the majority of studies in 

mathematical ecology focusing on the direct predation of prey species. The Lotka-Volterra 

model, which was initially published separately by Lotka and Volterra, is currently used to 

describe interactions between prey and predators [1]. Consuming a member of the same species 

as food is cannibalism. A typical intraspecific interaction that occurs in both aquatic and 

terrestrial populations is cannibalism [2]. Cannibalism rates rise in areas with insufficient 

nutrition because people turn to other members of their own species for additional sustenance. 

Cannibalism controls population growth by reducing possible competition for resources like 

food, shelter, and territory, which makes them more accessible. It has been demonstrated that 

the prevalence of cannibalism lowers the predicted survival rate of the entire group and raises 

the chance of consuming a relative, despite the fact that it may benefit the individual. As the 

frequency of encounters between hosts rises, there may be additional detrimental impacts, such 

as an increased risk of disease transmission. Cannibalism, however, does not as was formerly 

thought only occur in extreme food shortages or under artificial or unnatural conditions; it can 

also happen in a number of species under natural circumstances [3]. Accordingly, cannibalism 

can occur in both the species’ prey as well as predator.  

 

     It follows that there are significant differences between the studies on various types of 

predator-prey interactions and that on the classic predator-prey paradigm. However, Deng et al. 

[4] discovered that prey species with a significant rate of cannibalism help them survive in the 

environment and that predator species with a bigger quantity of this cannibalism propensity are 

the primary causes of prey extinction. Zhang and his coauthors found system dynamics to be 

significantly impacted by cannibalism and profit from cannibalism factors [5]. The stability of 

the system changes numerous times when the cannibalism parameter fluctuates around the 

coexistence steady state, but when there is considerable cannibalism, the system stabilizes 

globally. A mathematical model that incorporates predator cannibalism and refuge was recently 

considered by Rayungsari et al [6] to explain the interplay between predator and prey. To 

describe food transmission, they used the Lotka-Volterra type of functional response. However, 

the authors of [7] created and examined a mathematical model that takes predator cannibalism 

and refuge into account to characterize the interaction between predator and prey. They made 

the assumption that the population of prey contains both predator-dependent refuge and 

predation fear. 

 

     In addition to cannibalism, the predator-prey interaction is also interesting to examine 

because of the prey's tendency to hide from capture and attack by the predator. Ecologically 

speaking, this behavior is referred to as refuge. Our understanding of the dynamic connection 

between prey and predator has improved as a result of the development of analytical techniques 

and computerization, which have increasingly supplied a more accurate representation of 

ecological systems. A key component of predator-prey systems has been the hiding behavior of 

the prey, and the effects of this behavior on stability have been examined in many models. Prey 

that cannot be killed by predators in a fixed proportion or number is how refuge has traditionally 

been introduced. The utilization of refuges by prey may have a stabilizing influence on predator-
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prey dynamics, according to some early theoretical studies; however, other models do not 

exhibit this straightforward pattern [8]–[12]. Only a few studies [13]–[15] have used a predator-

prey model system with prey refuge proportional to both species. Even still, taking into account 

prey refuge proportional to both species brings our model system closer to reality since, in some 

natural systems, prey refuge may be impacted by both the number of predators and prey. 

 

     Later, a number of studies concentrated on and investigated the effect of a new kind of 

predator’s impact (one that does not kill) on prey populations [16]–[21] and the references 

therein. This effect, which reduces the prey birth rate, is known as fear in prey individuals. 

Predator-induced fear keeps prey animals out of open settings, denying them the freedom to 

carry out regular activities like mating. As a result, their capacity for reproduction is decreased 

by their fear of predators. It is critical to consider the price of fear as a decrease in reproduction. 

Wang et al. [16] published a prey-predator model that took into account the effect of fear on 

prey reproduction. Additionally, it was explained how a high level of fear may stabilize the 

system by ruling out the possibility of periodic fixes. Furthermore, Panday et al. [17] examined 

how fear affected a Holling type-II functional response in a tri-trophic food chain model. Since 

the system displays chaotic behavior for smaller values of both of these variables, they came to 

the conclusion that chaotic oscillations may be controlled by increasing the fear parameters. A 

prey refuge is a great way to reduce the possibility that predators may use their victim's biomass 

excessively.  

 

     In contrast to the above studies, in this paper, predation fear, predator-dependent refuge, and 

cannibalism in the prey population are formulated and studied. 

 

2. Model Formulation 

     The practice of eating another member of the same species as food is known as cannibalism. 

In the animal kingdom, cannibalism is a typical ecological relationship. Therefore, a 

mathematical formulation of an ecological system with a prey-predator incorporating 

cannibalism in prey species is presented in this section. The model has considered both the 

predator-dependent refuge and the fear of predation. Furthermore, Holling type II's functional 

response serves as a representation of the predation process.  In fact, fear affects the prey's birth 

rate and makes the prey's refuge depend on the predator since the intensity of predation inhibits 

the prey's population from mating properly and causes them to hide in various shelters. 

Accordingly, the dynamic of the above prey-predator system can be described mathematically 

in the following set of nonlinear first-order autonomous differential equations.  
𝑑𝑋

𝑑𝑇
= 𝑋 (

𝑟

1+𝑓𝑌
− 𝑑1 − 𝑏𝑋 + 𝑎3 −

𝑎1(1−𝑐𝑌)𝑌

𝐾1+𝑋(1−𝑐𝑌)
−

𝑒𝑋

𝐾2+𝑋
) = 𝑋𝑓1(𝑋, 𝑌) = 𝐹1(𝑋, 𝑌)

𝑑𝑌

𝑑𝑇
= 𝑌 (

𝑎2𝑋(1−𝑐𝑌)

𝐾1+𝑋(1−𝑐𝑌)
− 𝑑2) =  𝑌𝑓2(𝑋, 𝑌) = 𝐹2(𝑋, 𝑌)                                               

          (1) 

where all the coefficients are positive constants and can be described in table (1). 

 

     It is clear from the system (1) that the interaction functions 𝐹1(𝑋, 𝑌) and 𝐹1(𝑋, 𝑌) in the 

right-hand side of the system (1), are continuous and have continuous partial derivatives on the 

domain ℝ+
2 = {(𝑋, 𝑌) ∈ ℝ2: 𝑋 ≥ 0, 𝑌 ≥ 0}. Hence, they are locally-Lipschitz functions in ℝ+

2 . 

Consequently, due to the fundamental existence and uniqueness theorem, it is obtained that 

system (1) with any non-negative initial condition 𝑋(0) ≥ 0, and 𝑌(0) ≥ 0 there exists 𝑇 > 0 

so that the system (1) has a unique solution defined in ℝ+
2 .  

 

 

 



Ghafour and Naji                                            Iraqi Journal of Science, 2024, Vol. 65, No.1, pp:297-319 

 
 

Table 1: Variables and parameters description 

Variables and Parameter Description 

𝑿(𝑻) The population size of the prey at time 𝑇 

𝒀(𝑻) The population size of the predator at time 𝑇 

𝒓 The prey birth rate 

𝒅𝟏 The prey’s natural death rate 

b The prey intraspecific competition 

𝒇 The prey’s fear level, which is involved in the fear function 
1

1+𝑓𝑌
. 

𝒂𝟏 The attack rate 

𝑲𝟏 The half-saturation constant. 

𝒄 ∈ [𝟎, 𝟏] 
The prey’s refuge rate; hence the refuge amount is 𝑐𝑋𝑌, which leaves 𝑋(1 −

𝑐𝑌) of the prey available to be hunted by the predator 

𝒂𝟐 The conversion rate of prey biomass into predator birth 

𝒂𝟑 The conversion rate of cannibalism into prey birth 

𝒅𝟐 The predator’s natural death rate 

𝒆 The cannibalism rate in prey. 

𝑲𝟐 The half-saturation constant of cannibalism 

 
3. Properties of the solution 

     This section treats the properties of the solution of system (1), such as positivity and bounded 

as shown in the following theorems. 

 

Theorem 1. All system (1)’s solutions with initial values (𝑋(0), 𝑌(0)) ∈ ℝ+
2  are non-negative. 

Proof. From the equations of the system (1) with the given initial value it is clear that the 

solution can be written as: 

 𝑋(𝑡) = 𝑋(0) exp [∫ (
𝑟

1+𝑓𝑌(𝑢)
− 𝑑1 − 𝑏𝑋(𝑢) + 𝑎3 −

𝑎1(1−𝑐𝑌(𝑢))𝑌(𝑢)

𝐾1+𝑋(𝑢)(1−𝑐𝑌(𝑢))
−

𝑒𝑋(𝑢)

𝐾2+𝑋(𝑢)
) 𝑑𝑢

𝑡

0
] 

Similarly, 

 𝑌(𝑡) = 𝑌(0) exp [∫ (
𝑎2𝑋(𝑢)(1−𝑐𝑌(𝑢))

𝐾1+𝑋(𝑢)(1−𝑐𝑌(𝑢))
− 𝑑2) 𝑑𝑢

𝑡

0
] 

Therefore, if 𝑋(0) = 0, and 𝑌(0) = 0 then it is obtained that 𝑋(𝑡) = 𝑌(𝑡) = 0 for all the time. 

Thus due to the positivity of the exponential function in the above two equations, it is concluded 

that 𝑋(𝑡) ≥ 0, and 𝑌(𝑡) ≥ 0 indefinitely. Hence the proof is complete. 

Now, before the uniformly bounded system (1)’s solution is proved, the following two lemmas 

given by Chen [22] are presented.  

 

Lemma 2.1 [22]: If 𝑎 > 0, 𝑏 > 0, and 𝑥′ ≥ (≤)𝑏 − 𝑎𝑥, when 𝑡 ≥ 0, and 𝑥(0) > 0, we have 

 𝑥(𝑡) ≥ (≤)
𝑏

𝑎
[1 + (

𝑎𝑥(0)

𝑏
− 1) 𝑒−𝑎𝑡]. 

Lemma 2.2 [22]: If 𝑎 > 0, 𝑏 > 0, and 𝑥′ ≥ (≤)𝑥(𝑏 − 𝑎𝑥𝛼), when 𝛼 is a positive constant, 𝑡 ≥
0, and 𝑥(0) > 0, we have 

 𝑥(𝑡) ≥ (≤) (
𝑏

𝑎
)

1 𝛼⁄

[1 + (
𝑏𝑥−𝛼(0)

𝑎
− 1) 𝑒−𝑏𝑎𝑡]

−1 𝛼⁄

. 

Theorem 2: All system (1)’s solutions that initiate in the positive quadrant are uniformly 

bounded. 

Proof: From the first equation of system (1), it is obtained that  
𝑑𝑋

𝑑𝑇
≤ 𝑋(𝑟 + 𝑎3 − 𝑑1 − 𝑏𝑋). 

Therefore, by applying lemma (2.2), it is reached: 
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𝑋(𝑇) ≤ (
𝑟+𝑎3−𝑑1

𝑏
) [1 + (

𝑟+𝑎3−𝑑1

𝑏
𝑋−1(0) − 1) 𝑒−(𝑟+𝑎3−𝑑1)𝑇]. 

Therefore 

 lim
𝑇→∞

sup 𝑋(𝑇) ≤
𝑟+𝑎3−𝑑1

𝑏
= 𝜎1.  

Let 𝑊 = 𝑋 +
𝑎1

𝑎2
𝑌, then it is obtained that 

𝑑𝑊

𝑑𝑡
=

𝑑𝑋

𝑑𝑡
+

𝑎1

𝑎2

𝑑𝑌

𝑑𝑡
≤ (𝑟 + 𝑎3 − 𝑑1)𝑋 −

𝑎1

𝑎2
𝑑2𝑌 ± 𝑑2𝑋, 

which gives that: 

 
𝑑𝑊

𝑑𝑡
+ 𝑑2𝑊 ≤ (𝑟 + 𝑎3 + 𝑑2 − 𝑑1)𝜎1 = 𝜎2 

Therefore, by applying lemma (2.1), for 𝑇 → ∞ it is obtained that 

 sup 𝑊(𝑇) ≤
𝜎2

𝑑2
. 

Hence the proof is complete. 

 

4. Equilibrium points and stability analysis 

     It is clear that system (1) has two equilibrium points belonging to the boundary axes while 

the system has at least one positive equilibrium point in the interior of the first quadrant under 

the specific conditions determined below. These points can be described below. 

The vanishing equilibrium point (VEP) 𝑃1 = (0,0) always exists. 

 

The axial equilibrium point or predator-free equilibrium point (AEP) 𝑃2 = (𝑚, 0), where 𝑚 

represents the positive root of the equation 

𝑋2 −
(𝑟−𝑒+𝑎3−𝑑1−𝑏𝐾2)

𝑏
𝑋 −

𝐾2(𝑟+𝑎3−𝑑1)

𝑏
= 0.                    (2) 

Clearly, the term 𝑟 + 𝑎3 − 𝑑1 is positive, which is known as the prey’s survival condition, hence 

equation (2) has a unique positive root given by 

𝑚 =
(𝑟−𝑒+𝑎3−𝑑1−𝑏𝐾2)

2𝑏
+

1

2
√(

(𝑟−𝑒+𝑎3−𝑑1−𝑏𝐾2)

𝑏
)

2

+ 4 (
𝐾2(𝑟+𝑎3−𝑑1)

𝑏
).                  (3) 

Furthermore, if 𝑟 + 𝑎3 − 𝑑1 < 0 then the coefficients of equation (2) do not change the sign 

and thus equation (2) has no positive root, which leads to the extinction of 𝑋. 

The coexistence equilibrium point (COEP) 𝑃3 = (𝑋∗, 𝑌∗), where 

𝑋∗ =
𝑑2𝐾1

(1−𝑐𝑌∗)(𝑎2−𝑑2)
.                         (4) 

While 𝑌∗ represents a positive root of the fifth-order polynomial equation 

 𝐴0𝑌5 + 𝐴1𝑌4 + 𝐴2𝑌3 + 𝐴3𝑌2 + 𝐴4𝑌 + 𝐴5 = 0,                   (5) 

where 

𝐴0 = 𝑐3𝑓𝑎1𝐾2(𝑎2 − 𝑑2)3. 

𝐴1 = −𝑐2𝑓𝑎1𝑑2𝐾1(𝑎2 − 𝑑2)2 + 𝑐2𝑎1𝐾2(c − 3𝑓)(𝑎2 − 𝑑2)3. 

𝐴2 = 𝑎1𝑐𝐾1𝑑2(𝑎2 − 𝑑2)2(2𝑓 − 𝑐) + 3𝑎1𝑐𝐾2(𝑎2 − 𝑑2)3(𝑓 − 𝑐)

+𝑐2𝑓𝑎2𝐾1𝐾2(𝑎3 − 𝑑1)(𝑎2 − 𝑑2)2 . 

𝐴3 = 𝑎1𝑑2𝐾1(𝑓 − 2𝑐)(𝑎2 + 𝑑2)2 + 𝑑2𝐾1
2𝑐𝑓𝑎2(𝑒 − 𝑎3 + 𝑑1)(𝑎2 − 𝑑2)                 

+𝑎1𝐾2(3𝑐 − 𝑓)(𝑎2 − 𝑑2)3 + 𝑐𝑎2𝐾1𝐾2(𝑎2 − 𝑑2)2[𝑐𝑟 + (𝑎3 − 𝑑1)(𝑐 − 2𝑓)]

+𝑏𝑐𝑓𝑎2𝑑2𝐾1
2𝐾2(𝑎2 − 𝑑2)

. 

𝐴4 = −𝑎1𝑑2𝐾1(𝑎2 − 𝑑2)2 + 𝑎2𝑑2𝐾1
2(𝑎2 − 𝑑2)[−𝑐𝑟 + (𝑐 − 𝑓)(𝑒 − 𝑎3 + 𝑑1)]   

−𝑏𝑓𝑎2𝑑2
2𝐾1

3 − 𝑎1𝐾2(𝑎2 − 𝑑2)3 − 𝑎2𝐾1𝐾2(𝑎2 − 𝑑2)2[2𝑐𝑟

+(𝑎3 − 𝑑1)(2𝑐 − 𝑓)] + 𝑏𝑎2𝑑2𝐾1
2𝐾2(𝑎2 − 𝑑2)(𝑐 − 𝑓)

. 

𝐴5 = −𝑎2𝑑2𝐾1
2(𝑎2 − 𝑑2)[(𝑒 − 𝑟) − (𝑎3 − 𝑑1)] − 𝑏𝑎2𝑑2

2𝐾1
3           

+𝑎2𝐾1𝐾2(𝑎2 − 𝑑2)2(𝑟 + 𝑎3 − 𝑑1) − 𝑏𝑎2𝑑2𝐾1
2𝐾2(𝑎2 − 𝑑2)

. 

Obviously, for the positivity of 𝑋∗, the following condition should be satisfied. 
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 𝑑2 < 𝑎2.                          (6) 

Moreover, since condition (6) leads to 𝐴0 > 0 always, then equation (5) has a unique positive 

root provided that one set of the following sets of conditions holds. 

 

𝐴1 > 0, 𝐴2 > 0, 𝐴4 < 0, 𝐴5 < 0
𝐴1 > 0, 𝐴2 > 0, 𝐴3 > 0, 𝐴5 < 0
𝐴1 > 0, 𝐴3 < 0, 𝐴4 < 0, 𝐴5 < 0
𝐴2 < 0, 𝐴3 < 0, 𝐴4 < 0, 𝐴5 < 0

}.                    (7) 

Otherwise, equation (5) has at least one positive root provided that 𝐴5 < 0.  

The stability analysis of the above equilibrium points is investigated using the linearization 

technique. The Jacobian matrix (JM) of the system (1) at the point (𝑋, 𝑌) is computed in order 

to examine the local asymptotically stability (LAS) of each equilibrium point. 

The general JM of the system (1) is given by:  

 𝐽 = [
𝑋

𝜕𝑓1

𝜕𝑋
+ 𝑓1 𝑋

𝜕𝑓1

𝜕𝑌

𝑌
𝜕𝑓2

𝜕𝑋
𝑌

𝜕𝑓2

𝜕𝑌
+ 𝑓2

],                           (8) 

where 𝑓1 and 𝑓2 are given in the system (1), while 

 
𝜕𝑓1

𝜕𝑋
= −𝑏 +

𝑌(1−𝑐𝑌)2𝑎1

(𝑋(1−𝑐𝑌)+𝐾1)2 −
𝑒𝐾2

(𝑋+𝐾2)2, 

 
𝜕𝑓1

𝜕𝑌
= −

𝑓𝑟

(1+𝑓𝑌)2 −
𝑐𝑋𝑌(1−𝑐𝑌)𝑎1

(𝑋(1−𝑐𝑌)+𝐾1)2 −
(1−2𝑐𝑌)𝑎1

𝑋(1−𝑐𝑌)+𝐾1
 

 
𝜕𝑓2

𝜕𝑋
=

𝐾1(1−𝑐𝑌)𝑎2

(𝑋(1−𝑐𝑌)+𝐾1)2 

 
𝜕𝑓2

𝜕𝑌
= −

𝐾1𝑐𝑋𝑎2

(𝑋(1−𝑐𝑌)+𝐾1)2. 

Accordingly, the JM at the VEP can be written as: 

𝐽𝑃1
= [

𝑟 − 𝑑1 + 𝑎3 0
0 −𝑑2

]                             (9) 

Hence, the eigenvalues of 𝐽𝑃1
 are given by: 

𝜆11 = 𝑟 − 𝑑1 + 𝑎3, 𝜆12 = −𝑑2.                       (10) 

Thus, VEP is LAS if and only if the following condition is met. 

 𝑟 + 𝑎3 < 𝑑1.                        (11) 

Clearly, condition (11) leads extinction of the 𝑋 and hence extinction of Y. However, the VEP 

is a saddle point when condition (11) is reflected. 

The JM at the AEP can be determined by: 

𝐽𝑃2
= [

−𝑚 (𝑏 +
𝑒𝐾2

(𝑚+𝐾2)2
) −𝑚 (𝑓r +

𝑎1

𝑚+𝐾1
)

0
𝑚𝑎2

𝑚+𝐾1
− 𝑑2

].                    (12) 

Hence, the eigenvalues of 𝐽𝑃2
 are given by: 

𝜆21 = −𝑚 (𝑏 +
𝑒𝐾2

(𝑚+𝐾2)2), 𝜆22 =
𝑚𝑎2

𝑚+𝐾1
− 𝑑2.                     (13) 

Thus, AEP is LAS if and only if the following condition is met. 

 
𝑚𝑎2

𝑚+𝐾1
< 𝑑2.                           (14) 

Otherwise, it is saddle point if the condition (14) is reflected. 

The JM at the COEP can be written as follows: 

𝐽𝑃3
= [

𝑎11 𝑎12

𝑎21 𝑎22
],                        (15) 

where 

𝑎11 = −𝑋∗ (𝑏 −
𝑌∗(1−𝑐𝑌∗)2𝑎1

(𝑋∗(1−𝑐𝑌∗)+𝐾1)2
+

𝑒𝐾2

(𝑋∗+𝐾2)2
), 

 𝑎12 = −𝑋∗ (
𝑓𝑟

(1+𝑓𝑌∗)2
+

𝑐𝑋∗𝑌∗(1−𝑐𝑌∗)𝑎1

(𝑋∗(1−𝑐𝑌∗)+𝐾1)2
+

(1−2𝑐𝑌∗)𝑎1

𝑋∗(1−𝑐𝑌∗)+𝐾1
), 
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 𝑎21 =
𝐾1𝑎2(1−𝑐𝑌∗)𝑌∗

(𝑋∗(1−𝑐𝑌∗)+𝐾1)2 > 0, 

 𝑎22 = −
𝐾1𝑎2𝑐𝑋∗𝑌∗

(𝑋∗(1−𝑐𝑌∗)+𝐾1)2 < 0. 

The characteristic polynomial of 𝐽𝑃3
 can be determined as: 

𝜆2 − 𝑇𝑟𝑃3
𝜆 + 𝐷𝑒𝑡𝑃3

= 0,                       (16) 

where 𝑇𝑟𝑃3
= 𝑎11 + 𝑎22, and 𝐷𝑒𝑡𝑃3

= 𝑎11𝑎22 − 𝑎12𝑎21. Clearly, equation (16) has the 

following roots (eigenvalues): 

𝜆31 =
𝑇𝑟𝑃3+√(𝑇𝑟𝑃3)

2
−4𝐷𝑒𝑡𝑃3

2
, 𝜆32 =

𝑇𝑟𝑃3−√(𝑇𝑟𝑃3)
2

−4𝐷𝑒𝑡𝑃3

2
.                                (17) 

According to the Routh Hurwitz criterion, the two roots 𝜆31 and 𝜆32 have negative real parts if 

and only if 𝑇𝑟𝑃3
< 0, and 𝐷𝑒𝑡𝑃3

> 0. Therefore, direct computation shows that the COEP will 

be LAS if and only if the following sufficient conditions hold. 

 
𝑌∗(1−𝑐𝑌∗)2𝑎1

(𝑋∗(1−𝑐𝑌∗)+𝐾1)2 ≤ 𝑏 +
𝑒𝐾2

(𝑋∗+𝐾2)2.                        (18) 

 𝑌∗ ≤
1

2𝑐
.                             (19) 

However, the COEP becomes:  

Unstable point if and only if 𝑇𝑟𝑃3
> 0, and 𝐷𝑒𝑡𝑃3

> 0. 

Saddle point if and only if 𝐷𝑒𝑡𝑃3
< 0. 

Linear centre if and only if 𝑇𝑟𝑃3
= 0, and 𝐷𝑒𝑡𝑃3

> 0. 

 

5. Persistence  

This section delves into the concept of persistence. Persistence in biology refers to the continued 

survival of all populations indefinitely whenever they initially exist. Mathematically, system 

(1) is said to be uniformly persistent if there exists a compact region 𝑈 ⊆ 𝑖𝑛𝑡. ℝ+
2  such that 

every solution Φ(𝑇) = (𝑋(𝑇), 𝑌(𝑇))T of system (1) with positive initial condition eventually 

enters and remains in region 𝑈, see [22]. Then the conditions that guarantee the system (1)’s 

uniform persistence is given in the following theorem  

 

Theorem 3: System (1) is uniformly persistent under the following conditions 

 
𝑑1 < 𝑟 + 𝑎3

𝑑2 <
𝑎2𝑚

𝐾1+𝑚

}                       (20)  

Proof: Define the function 𝜑(𝑋, 𝑌) = 𝑋𝛼𝑌𝛽, where 𝛼 and 𝛽 are positive constants. Clearly 

𝜑(𝑋, 𝑌) > 0 for all (𝑋, 𝑌) ∈ 𝑖𝑛𝑡. ℝ+
2  and 𝜑(𝑋, 𝑌)  → 0 when 𝑋 → 0 or 𝑌 → 0. Furthermore, 

it’s clear that  
𝜑′

𝜑
=  

𝛼

𝑋

𝑑𝑋

𝑑𝑇
+

𝛽

𝑌

𝑑𝑌

𝑑𝑇
= 𝛼𝑓1 + 𝛽𝑓2, 

where 𝑓1 and 𝑓2 are given in the system (1). Thus 
𝜑′

𝜑
= 𝛼 [

𝑟

1+𝑓𝑌
− 𝑑1 − 𝑏𝑋 + 𝑎3 −

𝑎1(1−𝑐𝑌)𝑌

𝐾1+𝑋(1−𝑐𝑌)
−

𝑒𝑋

𝐾2+𝑋
] + 𝛽 [

𝑎2𝑋(1−𝑐𝑌)

𝐾1+𝑋(1−𝑐𝑌)
− 𝑑2]. 

According to the Lyapunov average method [23], if 
𝜑′

𝜑
> 0 for all the boundary equilibrium 

points, then the solution of system (1) initiates in 𝑖𝑛𝑡. ℝ+
2  eventually enters and remains in 

𝑖𝑛𝑡. ℝ+
2  for suitable choice of constants 𝛼 > 0 and 𝛽 > 0. Now, since 

𝜑′

𝜑
(𝑃1) = 𝛼[𝑟 − 𝑑1 + 𝑎3] + 𝛽[−𝑑2]. 

𝜑′

𝜑
(𝑃2) =  𝛽 [

𝑎2𝑚

𝐾1+𝑚
− 𝑑2]. 

Then the first expression is positive as the positive constants 𝛼 and 𝛽 are arbitrary constants 

and we are always can choose that 𝛼 is sufficiently larger than 𝛽. Hence, the requirements of 
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the Lyapunov average method are met provided that the conditions (20) hold, which means 

system (1) is uniformly persistent. 

 

6. Local Bifurcation 

     This section uses an application of Sotomayor's theorem [24] to identify the potential for 

local bifurcation. It is well known that the likelihood of local bifurcation is dependent on several 

conditions, one of which is the existence of a nonhyperbolic equilibrium point type. In the 

following theorems, the candidate bifurcating parameter is correspondingly chosen to ensure 

that the analyzed equilibrium point is not a hyperbolic point. Now rewrite system (1) in the 

vector form as: 

𝑑𝐖

𝑑𝑇
= 𝐅(𝐖, 𝜇), 𝐖 = (

𝑋
𝑌

), 𝜇 ∈ ℝ+, 𝐅(𝐖, 𝜇) = (
𝐹1(𝑋, 𝑌, 𝜇)
𝐹2(𝑋, 𝑌, 𝜇)

).                     (21) 

Hence, the second directional derivative of 𝐅, where 𝐕 = (𝑣1, 𝑣2)T be any vector, can be written 

using direct computation as: 

𝐷2𝐅(𝐖, 𝜇). (𝐕, 𝐕) = (
𝑐11

𝑐21
),                                            (22) 

where  

 
𝑐11 = −

2[𝑏(𝑋+𝐾2)3+𝑒𝐾2
2]𝑣1

2

(𝑋+𝐾2)3
−

2𝑓𝑟𝑣1𝑣2

(1+𝑓𝑌)2
+

2𝑓2𝑟𝑋𝑣2
2

(1+𝑓𝑌)3
+

2𝑎1𝐾1𝑌(1−𝑐𝑌)2𝑣1
2

(𝑋(1−𝑐𝑌)+𝐾1)3

+
2𝑎1𝐾1𝑐𝑋(𝑋+𝐾1)𝑣2

2

(𝑋(1−𝑐𝑌)+𝐾1)3 −
2𝑎1𝐾1[𝑋(1−𝑐𝑌)+(1−2𝑐𝑌)𝐾1]𝑣1𝑣2

(𝑋(1−𝑐𝑌)+𝐾1)3 .
 

 𝑐21 = −
2𝑎2𝐾1𝑌(1−𝑐𝑌)2𝑣1

2

(𝑋(1−𝑐𝑌)+𝐾1)3 +
2𝑎2𝐾1[𝑋(1−𝑐𝑌)+(1−2𝑐𝑌)𝐾1]𝑣1𝑣2

(𝑋(1−𝑐𝑌)+𝐾1)3 −
2𝑎2𝐾1𝑐𝑋(𝑋+𝐾1)𝑣2

2

(𝑋(1−𝑐𝑌)+𝐾1)3 . 

 

Theorem 4: When the parameter 𝑑1 crosses through the value 𝑑1
∗ = 𝑟 + 𝑎3, a transcritical 

bifurcation (TB) of the system (1) occurs at the VEP. 

Proof: From the JM that is written in equation (9), it is observed that, for 𝑑1 = 𝑑1
∗ it becomes 

𝐽1 = 𝐽𝑃1,𝑑1
∗ = [

0 0
0 −𝑑2

]. 

As a result, 𝐽1's eigenvalues are 𝜆11
∗ = −𝑑2, which is negative, and 𝜆11

∗ = 0, which is zero. As 

a consequence, the VEP fails to be a hyperbolic point. Allow 𝐕1 = (
𝑣11

𝑣21
) and 𝐔1 = (

𝑢11

𝑢21
) to 

represent the eigenvectors for 𝜆11
∗ = 0 and its transpose, respectively. Then, using 

straightforward mathematical procedures, it is concluded that: 

𝐕1 = (
1
0

), 𝐔1 = (
1
0

) 

Direct calculation also reveals that: 

𝐅𝑑1
(𝐖, 𝑑1) = (

−𝑋
0

) ⇒ 𝐅𝑑1
(𝑃1, 𝑑1

∗) = (
0
0

).  

This gives that 𝐔1
Τ𝐅𝑑1

(𝑃1, 𝑑1
∗) = 0. 

𝐔1
Τ[𝐷𝐅𝑑1

(𝑃1, 𝑑1
∗)𝐕1] = −1 ≠ 0, 

where 𝐷𝐅𝑑1
(𝑃1, 𝑑1

∗) represents the directional derivative of 𝐅𝑑1
(𝐖, 𝑑1) at (𝑃1, 𝑑1

∗). 

Additionally, the equation (22) yields the following conclusion. 

𝐷2𝐅(𝑃1, 𝑑1
∗). (𝐕1, 𝐕1) = (

−
2(𝑒+𝑏𝐾2)

𝐾2

0
). 

Hence, it is simple to verify that 𝐔1
Τ[𝐷2𝐅(𝑃1, 𝑑1

∗). (𝐕1, 𝐕1)] = −
2(𝑒+𝑏𝐾2)

𝐾2
≠ 0. Thus, the 

Sotomayor theorem of local bifurcation [24], specifies that the system (1) possess a TB at the 

𝑃1, and that completes the proof. 
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Therefore, it is easy to confirm that 𝐔1
Τ[𝐷2𝐅(𝑃1, 𝑑1

∗). (𝐕1, 𝐕1)] = −
2(𝑒+𝑏𝐾2)

𝐾2
≠ 0. The proof is 

thus complete because the Sotomayor theorem of local bifurcation states that the system (1) has 

a TB at the 𝑃1. 

 

Theorem 5: When the parameter 𝑎2 crosses through the value 𝑎2
∗ =

(𝑚+𝐾1)𝑑2

𝑚
, a TB of the 

system (1) occurs at the AEP. 

Proof: From the JM that is written in equation (12), it is observed that, for 𝑎2 = 𝑎2
∗  it becomes 

𝐽2 = 𝐽𝑃2,𝑎2
∗ = [

−𝑚 (𝑏 +
𝑒𝐾2

(𝑚+𝐾2)2) −𝑚 (𝑓r +
𝑎1

𝑚+𝐾1
)

0 0
].   

As a result, 𝐽2's eigenvalues are 𝜆21
∗ = −𝑚 (𝑏 +

𝑒𝐾2

(𝑚+𝐾2)2
), which is negative, and 𝜆22

∗ = 0, 

which is zero. As a consequence, the AEP fails to be a hyperbolic point. Allow 𝐕2 = (
𝑣12

𝑣22
) and 

𝐔2 = (
𝑢12

𝑢22
) to represent the eigenvectors for 𝜆22

∗ = 0 and its transpose, respectively. Then, 

using straightforward mathematical procedures, it is concluded that: 

𝐕2 = (
−

[𝑓r(𝑚+𝐾1)+𝑎1](𝑚+𝐾2)2

[ 𝑏(𝑚+𝐾2)2+𝑒𝐾2](𝑚+𝐾1)

1
) = (

𝛾1

1
), 𝐔2 = (

0
1

). 

Direct calculation also reveals that: 

𝐅𝑎2
(𝐖, 𝑎2) = (

0

𝑌
𝑋(1−𝑐𝑌)

𝐾1+𝑋(1−𝑐𝑌)

) ⇒ 𝐅𝑎2
(𝑃2, 𝑎2

∗) = (
0
0

).  

This gives that 𝐔2
Τ𝐅𝑎2

(𝑃2, 𝑎2
∗) = 0. 

𝐔2
Τ[𝐷𝐅𝑎2

(𝑃2, 𝑎2
∗)𝐕2] =

𝑚

𝐾1+𝑚
≠ 0, 

where 𝐷𝐅𝑎2
(𝑃2, 𝑎2

∗) represents the directional derivative of 𝐅𝑎2
(𝐖, 𝑎2) at (𝑃2, 𝑎2

∗). 

Additionally, the equation (22) yields the following conclusion. 

𝐷2𝐅(𝑃2, 𝑎2
∗). (𝐕2, 𝐕2) =                                                                                                 

(
−

2[𝑏(𝑚+𝐾2)3+𝑒𝐾2
2]𝛾1

2

(𝑚+𝐾2)3 − 2𝑓𝑟𝛾1 + 2𝑓2𝑟𝑚 +
2𝑎1𝐾1𝑐𝑚

(𝑚+𝐾1)2 −
2𝑎1𝐾1𝛾1

(𝑚+𝐾1)2

𝑎2
∗ (

2𝐾1𝛾1

(𝑚+𝐾1)2 −
2𝐾1𝑐𝑚

(𝑚+𝐾1)2)
)

. 

Hence, since 𝛾1 < 0, it is simple to verify that: 

𝐔2
Τ[𝐷2𝑭(𝑃2, 𝑎2

∗). (𝐕2, 𝐕2)] = 𝑎2
∗ (

2𝐾1𝛾1

(𝑚+𝐾1)2 −
2𝐾1𝑐𝑚

(𝑚+𝐾1)2) < 0.  

Thus the Sotomayor theorem of local bifurcation, specifies that the system (1) possess a TB at 

the 𝑃2, and that completes the proof. 

 

Theorem 6: Assume that condition (19) holds, then the system (1) possesses a saddle-node 

bifurcation (SNB) at COEP when the parameter 𝑏 crosses through the value 𝑏∗ =
𝑌∗(1−𝑐𝑌)2𝑎1

(𝑋∗(1−𝑐𝑌)+𝐾1)2 −
𝑒𝐾2

(𝑋∗+𝐾2)2 −
𝑎12𝑎21

𝑋∗𝑎22
, if the following requirements are met. 

 
𝑒𝐾2

(𝑋∗+𝐾2)2 +
𝑎12𝑎21

𝑋∗𝑎22
<

𝑌∗(1−𝑐𝑌)2𝑎1

(𝑋∗(1−𝑐𝑌)+𝐾1)2.                                  (23) 

 𝑐11(𝑃3, 𝑏∗)𝛾3 + 𝑐21(𝑃3, 𝑏∗) ≠ 0.                       (24)  

where all the new symbols are given in the proof. 

Proof: From the JM that is written in equation (15), it is observed that, for 𝑏 = 𝑏∗ it becomes 

𝐽3 = 𝐽𝑃3,𝑏∗ = [𝑎𝑖𝑗
∗ ],                 

where 𝑎11
∗ = 𝑎11(𝑏∗), 𝑎12

∗ = 𝑎12, 𝑎21
∗ = 𝑎21, and 𝑎22

∗ = 𝑎22. Straightforward computation 

shows that the determinant of 𝐽3 at 𝑏 = 𝑏∗ (i.e. 𝐷𝑒𝑡𝑃3,𝑏∗) is zero. Then 𝐽3 has zero eigenvalue 
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(𝜆31
∗ = 0) with the second eigenvalue 𝜆32

∗ = 𝑇𝑟𝑃3,𝑏∗. Thus, the COEP is a non-hyperbolic point 

when 𝑏 = 𝑏∗. 

Allow 𝐕3 = (
𝑣13

𝑣23
) and 𝐔3 = (

𝑢13

𝑢23
) to represent the eigenvectors for 𝜆31

∗ = 0 and its transpose, 

respectively. Then, using straightforward mathematical procedures, it is concluded that: 

𝐕3 = (
−

𝑎12

𝑎11
∗

1
) = (

𝛾2

1
), 𝐔3 = (

−
𝑎21

𝑎11
∗

1
) = (

𝛾3

1
). 

According to the elements of 𝐽3 and the condition (23), it is observed that 𝛾2 > 0, and 𝛾3 < 0. 

Direct calculation also reveals that 

𝐅𝑏(𝐖, 𝑏) = (−𝑋2

0
) ⇒ 𝐅𝑏(𝑃3, 𝑏∗) = (−𝑋∗2

0
).  

This gives that 𝐔3
ΤF𝑏(𝑃3, 𝑏∗) = −𝛾3𝑋∗2 > 0. Moreover, from the equation (22), the following 

finding is obtained 

𝐷2𝐅(𝑃3, 𝑏∗). (𝐕3, 𝐕3) = (
𝑐11(𝑃3, 𝑏∗)

𝑐21(𝑃3, 𝑏∗)
), 

where 

𝑐11(𝑃3, 𝑏∗) = −
2[𝑏∗(𝑋∗+𝐾2)3+𝑒𝐾2

2]𝛾2
2

(𝑋∗+𝐾2)3 −
2𝑓𝑟𝛾2

(1+𝑓𝑌∗)2 +
2𝑓2𝑟𝑋∗

(1+𝑓𝑌∗)3 +
2𝑎1𝐾1𝑌∗(1−𝑐𝑌∗)2𝛾2

2

(𝑋∗(1−𝑐𝑌∗)+𝐾1)3

+
2𝑎1𝐾1𝑐𝑋∗(𝑋∗+𝐾1)

(𝑋∗(1−𝑐𝑌∗)+𝐾1)3 −
2𝑎1𝐾1[𝑋∗(1−𝑐𝑌∗)+(1−2𝑐𝑌∗)𝐾1]𝛾2

(𝑋∗(1−𝑐𝑌∗)+𝐾1)3

. 

 𝑐21(𝑃3, 𝑏∗) = −
2𝑎2𝐾1𝑌∗(1−𝑐𝑌∗)2𝛾2

2

(𝑋∗(1−𝑐𝑌∗)+𝐾1)3 +
2𝑎2𝐾1[𝑋∗(1−𝑐𝑌∗)+(1−2𝑐𝑌∗)𝐾1]𝛾2

(𝑋∗(1−𝑐𝑌∗)+𝐾1)3 −
2𝑎2𝐾1𝑐𝑋∗(𝑋∗+𝐾1)

(𝑋∗(1−𝑐𝑌∗)+𝐾1)3 . 

Therefore, it is easy to confirm that using the condition (24). 

𝐔3
Τ[𝐷2𝐅(𝑃3, 𝑏∗). (𝐕3, 𝐕3)] = 𝑐11(𝑃3, 𝑏∗)𝛾3 + 𝑐21(𝑃3, 𝑏∗) ≠ 0. 

The proof is thus complete because the Sotomayor theorem of local bifurcation states that the 

system (1) has an SNB at the 𝑃3. 

 

7. Global stability 

Here, we provide the result to attain global asymptotic stability (GAS) for each equilibrium 

point of the system (1). 

 

Theorem 7: The VEP is globally asymptotically stable whenever it is LAS. 

Proof: Consider the scalar function 𝑉1 = 𝑋 + 𝑌.  

Obviously, 𝑉1: ℝ+
2 → ℝ, such that 𝑉1(𝑃1) = 0 and 𝑉1(𝑢, 𝑣) > 0, ∀ (𝑢, 𝑣) ≠ 𝑃1 with (𝑢, 𝑣) ∈

ℝ+
2 . 

Accordingly, 𝑉1 is a positive definite function. The derivative of 𝑉1 can be determined as 

    
𝑑𝑉1

𝑑𝑇
=

𝑑𝑋

𝑑𝑇
+

𝑑𝑌

𝑑𝑇
< (𝑟 + 𝑎3 − 𝑑1)𝑋 − 𝑑2𝑌. 

Therefore, due to local stability condition (11), it is obtained that 
𝑑𝑉1

𝑑𝑇
< 0 and 

𝑑𝑉1

𝑑𝑇
= 0 only at 

𝑃1 that means 
𝑑𝑉1

𝑑𝑇
 is a negative definite function. Moreover, since  𝑉1(𝑾) → ∞ whever ‖𝑾‖ →

∞ with 𝑾 = (
𝑋
𝑌

), then it is a radial unbounded function. Therefore, according to the global 

stability theorem [25], the VEP is a GAS. 

 

Theorem 8: The AEP is a GAS provided that  

 𝑚(𝑟𝑓 + 𝑎1) < 𝑑2.                     (25) 

Proof: Consider the scalar function 𝑉2 = (𝑋 − 𝑚 − 𝑚 ln (
𝑋

𝑚
)) + 𝑌.  

Obviously, 𝑉2: ℝ+
2 → ℝ, such that 𝑉2(𝑃2) = 0 and 𝑉2(𝑢, 𝑣) > 0, ∀ (𝑢, 𝑣) ≠ 𝑃2 with (𝑢, 𝑣) ∈

ℝ+
2 . 
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Accordingly, 𝑉2 is a positive definite function. The derivative of 𝑉2 can be determined as 

 

𝑑𝑉2

𝑑𝑇
=

(𝑋−𝑚)

𝑋

𝑑𝑋

𝑑𝑇
+

𝑑𝑌

𝑑𝑇
= (𝑋 − 𝑚) [−𝑟

𝑓𝑌

1+𝑓𝑌
− 𝑏(𝑋 − 𝑚) −

𝑎1(1−𝑐𝑌)𝑌

𝐾1+𝑋(1−𝑐𝑌)

−𝑒 (
𝐾2(𝑋−𝑚)

(𝐾2+𝑋)(𝐾2+𝑚)
)] +

𝑎2𝑋(1−𝑐𝑌)𝑌

𝐾1+𝑋(1−𝑐𝑌)
− 𝑑2𝑌.

 

Therefore 

 
𝑑𝑉2

𝑑𝑇
≤ − [𝑏 + 𝑒 (

𝐾2

(𝐾2+𝑋)(𝐾2+𝑚)
)] (𝑋 − 𝑚)2 − 

𝑟𝑓𝑋𝑌

1+𝑓𝑌
+

𝑟𝑓𝑚𝑌

1+𝑓𝑌
+

𝑎1𝑚(1−𝑐𝑌)𝑌

𝐾1+𝑋(1−𝑐𝑌)
− 𝑑2𝑌 

< − [𝑏 + 𝑒 (
𝐾2

(𝐾2 + 𝑋)(𝐾2 + 𝑚)
)] (𝑋 − 𝑚)2 − [𝑑2 − 𝑚(𝑟𝑓 + 𝑎1)]𝑌 

Therefore, due to condition (25), it is obtained that 
𝑑𝑉2

𝑑𝑇
< 0 and 

𝑑𝑉2

𝑑𝑇
= 0 only at 𝑃2 that means 

𝑑𝑉2

𝑑𝑇
 is a negative definite function. Moreover, since  𝑉2(𝐖) → ∞ whever ‖𝐖‖ → ∞ with 𝐖 =

(
𝑋
𝑌

), then it is a radial unbounded function. Therefore, according to the global stability theorem, 

the AEP is a GAS. 

 

Theorem 9: The COEP is a GAS provided that the following conditions are met. 

 
𝑎1[(1−𝑐𝑌)(1−𝑐𝑌∗)𝑌∗]

Λ3Λ3
∗ <

𝑟𝑓

Λ1Λ1
∗ + 𝑏 +

𝑒𝐾2

Λ2Λ2
∗ .                                (26) 

 𝜌12
2 < 4𝜌11𝜌22.                       (27) 

where all the new symbols are given in the proof. 

Proof: Consider the scalar function 𝑉3 = (𝑋 − 𝑋∗ − 𝑋∗ ln (
𝑋

𝑋∗)) + (𝑌 − 𝑌∗ − 𝑌∗ ln (
𝑌

𝑌∗)).  

Obviously, 𝑉3: ℝ+
2 → ℝ, such that 𝑉3(𝑃3) = 0 and 𝑉3(𝑢, 𝑣) > 0, ∀ (𝑢, 𝑣) ≠ 𝑃3 with (𝑢, 𝑣) ∈

ℝ+
2 . 

Accordingly, 𝑉3 is a positive definite function. The derivative of 𝑉3 can be determined as 

 

𝑑𝑉3

𝑑𝑇
=

(𝑋−𝑋∗)

𝑋

𝑑𝑋

𝑑𝑇
+

(𝑌−𝑌∗)

𝑌

𝑑𝑌

𝑑𝑇
= −

𝑟𝑓

Λ1Λ1
∗ (𝑋 − 𝑋∗)2 − 𝑏(𝑋 − 𝑋∗)2

+
𝑎1[(1−𝑐𝑌)(1−𝑐𝑌∗)𝑌∗]

Λ3Λ3
∗ (𝑋 − 𝑋∗)2 −

𝑒𝐾2

Λ2Λ2
∗ (𝑋 − 𝑋∗)2

−
𝑎1[Λ2

∗ −𝑐Λ2
∗ (𝑌+𝑌∗)+𝑋∗𝑌∗𝑌]

Λ3Λ3
∗ (𝑋 − 𝑋∗)(𝑌 − 𝑌∗)

+
𝑎2𝐾1(1−𝑐𝑌)

Λ3Λ3
∗ (𝑋 − 𝑋∗)(𝑌 − 𝑌∗) −

𝑎2𝑐𝑋∗(𝐾1+𝑋∗)

Λ3Λ3
∗ (𝑌 − 𝑌∗)2

. 

where  

Λ1 = (1 + 𝑓𝑌), Λ1
∗ = (1 + 𝑓𝑌∗), Λ2 = (𝐾2 + 𝑋), Λ2

∗ = (𝐾2 + 𝑋∗). 

Λ3 = [𝐾1 + 𝑋(1 − 𝑐𝑌)], Λ3
∗ = [𝐾1 + 𝑋∗(1 − 𝑐𝑌∗)]. 

Therefore, it is obtained that 

 

𝑑𝑉3

𝑑𝑇
= − [

𝑟𝑓

Λ1Λ1
∗ + 𝑏 −

𝑎1[(1−𝑐𝑌)(1−𝑐𝑌∗)𝑌∗]

Λ3Λ3
∗ +

𝑒𝐾2

Λ2Λ2
∗ ] (𝑋 − 𝑋∗)2 −

𝑎2𝑐𝑋∗(𝐾1+𝑋∗)

Λ3Λ3
∗ (𝑌 − 𝑌∗)2

− [
𝑎1[Λ2

∗ −𝑐Λ2
∗ (𝑌+𝑌∗)+𝑋∗𝑌∗𝑌]−𝑎2𝐾1(1−𝑐𝑌)

Λ3Λ3
∗ ] (𝑋 − 𝑋∗)(𝑌 − 𝑌∗)

= −[𝜌11(𝑋 − 𝑋∗)2 + 𝜌12(𝑋 − 𝑋∗)(𝑌 − 𝑌∗) + 𝜌22(𝑌 − 𝑌∗)2]

. 

Now, using the conditions (26)-(27), it is obtained that 

 
𝑑𝑉3

𝑑𝑇
< −[√𝜌11(𝑋 − 𝑋∗) + √𝜌22(𝑌 − 𝑦∗)]

2
 

Obviously, 
𝑑𝑉3

𝑑𝑇
 is a negative definite function, which is 

𝑑𝑉3

𝑑𝑇
= 0 only at 𝑃3. Moreover, since  

𝑉3(𝐖) → ∞ whenever ‖𝐖‖ → ∞ with 𝐖 = (
𝑋
𝑌

), then it is a radial unbounded function. 

Therefore, according to the global stability theorem, the COEP is a globally asymptotically 

stable. 
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8. Hopf bifurcation 

     The Hopf bifurcation occurrence at the COEP is analyzed by selecting 𝑎1 as the bifurcation 

parameter. According to the JM at 𝑃3 given in equation (15), the characteristic equation was 

determined in equation (16) depending on JM’s trace (𝑇𝑟𝑃3
= 𝑎11 + 𝑎22) and determinant 

(𝐷𝑒𝑡𝑃3
= 𝑎11𝑎22 − 𝑎12𝑎21), where 𝑎𝑖𝑗, 𝑖, 𝑗 = 1,2 are the JM elements. Therefore, the 

following theorem provides the necessary and sufficient condition for having a Hopf 

bifurcation.  

 

Theorem 10. When the parameter 𝑎1 passes through 𝑎1
∗, the system (1) undergoes a Hopf 

bifurcation around  COEP provided that the following condition is met.  

𝑐𝑋∗ (𝑏 +
𝑒𝐾2

(𝑋∗+𝐾2)2) + (
𝑓𝑟(1−𝑐𝑌∗)

(1+𝑓𝑌∗)2 +
(1−𝑐𝑌∗)(1−2𝑐𝑌∗)𝑎1

∗

𝑋∗(1−𝑐𝑌∗)+𝐾1
) > 0,                  (28) 

where 

 𝑎1
∗ =

𝐾1𝑎2𝑐𝑌∗

𝑌∗(1−𝑐𝑌∗)2 +
(𝑋∗(1−𝑐𝑌∗)+𝐾1)2

𝑌∗(1−𝑐𝑌∗)2 [𝑏 +
𝑒𝐾2

(𝑋∗+𝐾2)2].     

Proof. At 𝑎1 = 𝑎1
∗, the 𝑇𝑟𝑃3

= 𝑎11 + 𝑎22 = 0, and hence the characteristic equation (16) 

becomes 

 𝜆2 + 𝐷𝑒𝑡𝑃3
= 0.                        (29) 

Moreover, since 𝐷𝑒𝑡𝑃3
= 𝑎11𝑎22 − 𝑎12𝑎21, hence 𝐷𝑒𝑡𝑃3

(𝑎1
∗) > 0 under the condition (28).  

Clearly, the equation (29) has roots 𝜆1 = 𝑖√𝐷𝑒𝑡𝑃3
(𝑎1

∗) and 𝜆2 = −𝑖√𝐷𝑒𝑡𝑃3
(𝑎1

∗). Thus JM of 

the system (1) has two purely imaginary eigenvalues at (𝑃3, 𝑎1
∗).  

Note that, 𝑇𝑟𝑃3
 and 𝐷𝑒𝑡𝑃3

 are smooth functions of 𝑎1.  Therefore, in the neighbourhood of 𝑎1, 

the characteristic equation (16)’s roots are written in the form 

𝜆1 = 𝜎1(𝑎1) + 𝑖𝜎2(𝑎1) =
𝑇𝑟𝑃3+√(𝑇𝑟𝑃3)

2
−4𝐷𝑒𝑡𝑃3

2
,  

𝜆2 = 𝜎1(𝑎1) − 𝑖𝜎2(𝑎1) =
𝑇𝑟𝑃3−√(𝑇𝑟𝑃3)

2
−4𝐷𝑒𝑡𝑃3

2
,  

where 𝜎𝑖(𝑎1); 𝑖 = 1,2 are real functions. 

Now, due to Hopf bifurcation theorem [1], the proof follows if the transversality condition 
𝑑

𝑑𝑎1
𝑅𝑒 𝜆𝑖(𝑎1)|𝑎1=𝑎1

∗ ≠ 0 is satisfied. 

Since 𝑅𝑒 𝜆𝑖(𝑎1) = 𝜎1(𝑎1) =
𝑇𝑟𝑃3

2
, then direct computation gives that: 

  
𝑑

𝑑𝑎1
 𝑅𝑒 𝜆𝑖(𝑎1) =

𝑑

𝑑𝑎1
𝜎1(𝑎1) =

𝑋∗𝑌∗(1−𝑐𝑌∗)2

(𝑋∗(1−𝑐𝑌∗)+𝐾1)2. 

Accordingly, 
𝑑

𝑑𝑎1
𝑅𝑒 𝜆𝑖(𝑎1)|𝑎1=𝑎1

∗ =
𝑋∗𝑌∗(1−𝑐𝑌∗)2

(𝑋∗(1−𝑐𝑌∗)+𝐾1)2 ≠ 0. 

Hence, the system (1) undergoes a Hopf bifurcation at 𝑃3 when 𝑎1 = 𝑎1
∗. 

 

9. Numerical simulation 

     In this section, a few numerical simulations were run using MATLAB code for solving and 

drawing the phase portrait and Mathematica of version 12 for the preparing the direction field 

to test our analytical conclusions and investigate the impact of parameters on the dynamical 

behavior of the system (1). Accordingly, System (1) with the following hypothetical fixed 

parameters Dataset is investigated. 

 
𝑟 = 2, 𝑓 = 0.2, 𝑏 = 0.2, 𝑑1 = 0.1, 𝑎1 = 0.5, 𝑐 = 0.4

𝐾1 = 1, 𝑎2 = 0.25, 𝑎3 = 0.1, 𝑒 = 0.4, 𝐾2 = 1, 𝑑2 = 0.15
.                  (30) 
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It is observed that for the dataset (30), system (1) has a unique COEP given by 𝑃3 =
(5.18, 1.77) which is an asymptotic stable point and two boundary saddle points 𝑃1 = (0, 0) 

and 𝑃2 = (8.21, 0) as shown in figure 1. In the following figures, the red and black points 

represent the equilibrium points and initial points respectively, while the black arrows represent 

the direction of the trajectories.  

 

 
Figure 1: For Dataset (30), the system (1)’s (a) Phase portrait.  (b) Existence of equilibrium points and direction 

field. 

     According to Figure 1, it is clear that the trajectories from different initial points approach 

asymptotically to the unique COEP. Moreover, a direction field is a mathematical object that 

graphically represents solutions to a first-order differential equation so that a line segment 

appears at each point with a slope equal to the slope of a solution to the differential equation 

passing through the corresponding point given in the phase portrait. 

 

The influence of varying the parameters on the system (1)'s dynamical behavior is investigated 

numerically. The obtained results are drawn in the form of phase portraits and direction fields. 

For the parameter 𝑟, it is observed that for the range 𝑟 ∈ (0,0.55) the COEP disappears and the 

AEP becomes an asymptotic stable point, see Figure 2 at a selected value. 

 
Figure 2: For Dataset (30) with 𝑟 = 0.5, the system (1)’s (a) Phase portrait approaches to 𝑃2 = (1.35, 0).  (b) 

Existence of equilibrium points and direction field. 

The effect of varying the parameter f is investigated in Figure 3. 
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Figure 3: For Dataset (30) with different values of 𝑓, the system (1)’s (a) Phase portrait for 𝑓 = 10 approaches 

to 𝑃3 = (1.64, 0.22). (b) Phase portrait for 𝑓 = 25 approaches to 𝑃3 = (1.56, 0.09). (c) Phase portrait for 𝑓 =
50 approaches to 𝑃3 = (1.53, 0.05). (d) Phase portrait for 𝑓 = 150 approaches to 𝑃3 = (1.51, 0.01). 

     According to Figure (3), although system (1) approaches COEP for different values of 𝑓, the 

predator population decreases approaching zero as the value of 𝑓 increases.  

 

     The effect of changing the parameter 𝑏 on the dynamics of the system (1) was investigated 

using the data set (30) with different values of 𝑏 and the obtained results were presented in 

Figure 4. It is evident from Figure 4 that the asymptotically stable COEP gradually approaches 

the AEP, and coincides with each other at 𝑏 = 1.18. 
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Figure 4: For Dataset (30) with different values of 𝑏, the system (1)’s (a) Phase portrait for 𝑏 = 0.5 approaches 

to 𝑃3 = (2.51, 1).  (b) Existence of equilibrium points and direction field for 𝑏 = 0.5. (c) Phase portrait for 𝑏 = 1 

approaches to 𝑃3 = (1.63, 0.2).  (d) Existence of equilibrium points and direction field for 𝑏 = 1. (e) Phase 

portrait for 𝑏 = 1.18 approaches to 𝑃2 = (1.49,0).  (f) Existence of equilibrium points and direction field for 𝑏 =
1.18. 

Figure 5 investigates the influence of varying the parameter 𝑎1 on the dynamic behavior of the 

system (1). It is observed that the behavior of the trajectories of system (1) near the COEP with 

increasing the value of 𝑎1 transfers from nodal sink to spiral sink, then becomes unstable at 

𝑎1 = 4.24 and a Hopf bifurcation occurs. However the boundary points are saddle points.  
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Figure 5: For Dataset (30) with different values of 𝑎1 , the system (1)’s (a) Phase portrait for 𝑎1 = 2 approaches 

to nodal sink 𝑃3 = (3.71, 1.49). (b) Phase portrait for 𝑎1 = 4 approaches to spiral sink 𝑃3 = (2.37, 0.92). (c) 

Trajectory approaches to small limit cycle around the source point 𝑃3 = (2.3, 0.87) for 𝑎1 = 4.24. (d) Trajectory 

approaches to bigger limit cycle around the source point 𝑃3 = (2.23, 0.82) for 𝑎1 = 4.5. 

     Clearly, Figure 5 ensures the obtained theoretical results regarding the Hopf bifurcation. The 

influence of varying 𝑐 on the dynamic of system (1) is investigated Figure 6. 

 
Figure 6: For Dataset (30) with different values of 𝑐, the system (1)’s (a) Trajectory approaches to a spiral sink 

𝑃3 = (1.55, 3.33) for 𝑐 = 0.01. (b) Phase portrait for 𝑐 = 0.25 approaches to a nodal sink 𝑃3 = (4.09, 2.53). (c) 

Phase portrait for 𝑐 = 0.75 approaches to a nodal sink 𝑃3 = (6.34, 1.01). (d) Phase portrait for 𝑐 = 0.99 

approaches to a nodal sink 𝑃3 = (6.72, 0.78). 

     The influence of varying the parameter 𝐾1 on the system (1)'s dynamic is explained in Figure 

7.  It is observed that for the range 𝐾1 ∈ (0.01,0.09) there are three COEPs, source, saddle, and 

nodal sink while the boundary equilibrium points are saddle points. While increasing the value 

of this parameter gradually makes the COEP approaches AEP, they coincide with each other at 

𝐾1 = 5.48.   
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Figure 7: For Dataset (30) with different values of 𝐾1, the system (1)’s (a) Phase portrait for 𝐾1 = 0.08 

approaches to a nodal sink 𝑃3 = (4.25, 2.42). (c) Phase portrait for 𝐾1 = 2.5 approaches to a nodal sink 𝑃3 =
(6.33, 1.02). (e) Phase portrait for 𝐾1 = 4.5 approaches to a nodal sink 𝑃3 = (7.62, 0.28). (g) Phase portrait for 

𝐾1 = 5.5 approaches to a nodal sink 𝑃2 = (8.21, 0). (b), (d), (f), and (h) are the direction fields for 𝐾1 =
0.08, 2.5, 4.5, 𝑎𝑛𝑑 5.5 respectively. 
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Figure 8 demonstrates the influence of varying the parameter 𝑎2 on the dynamic of the system 

(1). It is noted that for the range 𝑎2 ∈ (0,0.16) the COEP does not exists and the AEP is nodal 

sink. Otherwise, the system (1) approaches asymptotically to COEP. 

  

 
Figure 8: For Dataset (30) with different values of 𝑎2, the system (1)’s (a) Phase portrait for 𝑎2 = 0.15 

approaches to 𝑃2 = (8.21, 0).  (b) Existence of equilibrium points and direction field for 𝑎2 = 0.15. (c) Phase 

portrait for 𝑎2 = 0.17 approaches to 𝑃3 = (7.92, 0.13).  (d) Existence of equilibrium points and direction field 

for 𝑎2 = 0.17. 

     The influence of the parameter 𝑎3 on the dynamic of the system (1) is studied numerically. 

It is noted that system (1) still approaches COEP asymptotically with quantitative change in the 

population size. However, decreasing 𝑎3 together with 𝑟 so that the prey’s survival condition is 

reflected makes the system (1) approaches asymptotically to the VEP as shown in Figure 9. 

 
Figure 9: For Dataset (30), the system (1)’s (a) Phase portrait for 𝑎3 = 0.01 and 𝑟 = 0.08 approaches nodal sink 

𝑃1 = (0,0).  (b) Existence of equilibrium points and direction field. 
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The influence of the parameter 𝑒 on the dynamic of system (1) is investigated in the Figure 10. 

It is clear from the Figure 10 that as 𝑒 increases the COEP approaches gradually to AEP, they 

are coincide with each other at 𝑒 = 2.84. 

 

 
 

 
Figure 10: For Dataset (30) with different values of 𝑒, the system (1)’s (a) Phase portrait for 𝑒 = 1 approaches 

to a nodal sink 𝑃3 = (3.36, 1.38). (c) Phase portrait for 𝑒 = 2.5 approaches to a nodal sink 𝑃3 = (1.63, 0.21). 

(e) Phase portrait for 𝑒 = 2.84 approaches to a nodal sink 𝑃2 = (1.49, 0). (b), (d), and (f) are the direction fields 

for 𝑒 = 1, 2.5, 𝑎𝑛𝑑 2.84 respectively. 

Finally, Figure 11 demonstrates the influence of 𝑑2 on the dynamic of the system (1). It is noted 

that as  𝑑2 ≥ 0.24 the COEP disappears and the system (1) approaches asymptotically AEP. 
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Figure 11: For Dataset (30), the system (1)’s (a) Phase portrait for d2 = 0.24 approaches nodal 

sink P2 = (8.21,0).  (b) Existence of equilibrium points and direction field for d2 = 0.24. 

 

      Finally, the influence of the parameter 𝑓 on the existence of limit cycle that shown in figure 

5d is studied and the obtained result is presented in Figure 12. It is noted that the increase of the 

value of 𝑓 lead to stabilize the system (1). 

 

 
Figure 12: For Dataset (30), with 𝑎1 = 4.5 and 𝑓 = 0.5 the system (1)’s Phase portrait approaches spiral sink 

𝑃3 = (2, 0.63). 

 

10. Conclusions 

     In this paper, the prey-predator model involving cannibalism and predator-dependent refuge 

in the prey population had been proposed and studied. All the properties of the solution were 

investigated. All possible equilibrium points were determined by their existence conditions. The 

local stability analysis of the model had been studied. It was obtained that all the equilibrium 

points are conditionally locally stable. The persistence requirements were obtained. It was 

proved that system (1) undergoes a TB near the boundary equilibrium points, while an SNB 

was detected near the COEP. The global dynamics of the system (1) were studied with the help 

of the Lyapunov function. Finally, the system was investigated numerically to confirm the 

theoretical findings and detect the parameters' influence on the system (1)'s dynamic behavior. 

The numerical simulation results are summarized as follows. 

For Dataset (30), system (1) has two saddle boundary equilibrium points and asymptotic stale 

COEP. Decreasing the prey’s birth rate or the conversion rate of prey biomass into predator 

birth below a specific value leads to extinction in the predator population and the system (1) 

approaches AEP asymptotically. Rising the prey’s fear level has a stabilizing effect on the 
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dynamic behavior of the system up to vital value then the system loses its persistence and 

approaches to AEP. When prey intraspecific competition rises above a certain threshold, the 

predator population goes extinct and system (1) gets closer to AEP. Regarding increases in the 

value of the prey's natural death rate or predator’s natural death rate or cannibalism rate in prey, 

a similar influence on the system's dynamic behavior (1) had been registered as observed in the 

case of the prey's intraspecific competition. On the other hand, the rise in the prey’s refuge rate 

causes an increase in prey population and a decrease in the predator population but the system 

(1) still approaches COEP. While decreasing the half-saturation constant of the prey results in 

the existence of multiple COEPs, however, raising this value above the critical value causes 

extinction in the predator population and the system (1) approaches AEP. Finally, decreasing 

the conversion rate of cannibalism into prey birth and the prey’s birth rate simultaneously causes 

extinction in both populations and the system (1) approaches VEP. 
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