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Abstract  

     In this work, the concept of the paracompact map has been generalized to other 

new types of maps, in addition to the fact that the paracompact map has been linked 

to these new maps.  Accordingly, we will separate these new types of maps into two 

classes, the first class is called a strong form which implies a paracompact map under 

certain conditions. While the other class is called a weaker form of a paracompact 

map, whereas the paracompact map implies them. Finally, the composition operations 

of paracompact maps are studied. 
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 الخلاصة 
الدوال بالإضافة الى ربط الدالة فوق  نواع جديدة من  لأ  يم مفهوم الدالة فوق المتراصةفي هذا العمل تم تعم      

  صيغة قوية الصنف الاول تسمى    صنفينعلى ذلك تم تصنيف تلك الدوال الى    أ  وبناء  المتراصة مع تلك الدوال
  صيغة ضعيفة بالنسبة للدالة فوق المتراصة وفقا  لشروط معينة على فضاءات تلك الدوال والصنف الثاني يسمى  

تم دراسة التركيب للأنواع المختلفة للدالة فوق    ، وأخيرا  بالنسبة للدالة فوق المتراصة في ظل شروط معينة أيضا .  
 المتراصة.

1. Introduction 

     The motivation of compactness into topology was beginning to generalize the properties of 

the bounded and closed subset ℝ𝑛. In 1944, Dieudonné [1] introduced a wider class of compact 

spaces, namely paracompact spaces. In 1951, Dowker [2] had given generalization of 

paracompact spaces by introducing the class of countably paracompact spaces. Through the use 
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of α-open, pre-open, semi-open, regular open, and β-open sets, new generalizations of 

paracompact spaces were given. Nearly paracompact space was defined by Singal and Arya [3] 

using the regular open. In 2006, Al-Zoubi [4] introduced the notion of S -paracompact space 

using a semi-open set. Demir and Ozbakir [5] defined in 2013  β -paracompact spaces, by 

replacing the open cover with a β-open cover in the definition of paracompact space. On the 

other hand, there are maps known as parallel advanced spaces. In 1947, Halfar [6] introduced 

the concept of a compact map in a metric space. Garg and Goel [7] in 1993 initiated a countably 

compact map and then Buhagiar [8] in 1997 introduced the notion of a paracompact map. After 

that, in 2003 a countably paracompact map was defined by AL-Zoubi and Hdeib [9]. In this 

paper, we introduce two classes of paracompact maps, namely, strong, and weak, and we 

investigate their compositions. A space 𝕎 means a topological space (𝕎,τ), by a map 

ℒ: 𝕎→𝕄, we mean continuous surjection map ℒ of a space 𝕎 into a space 𝕄. 

  

2. Preliminaries 

     This section includes several basic definitions and theorems on paracompactness that are 

essential in the paper are reviewed.  

 

Definitions 2.1: 

1. A Hausdorff space 𝕎  is known as a paracompact provided any open cover of it includes a 

locally finite open refinement [1]. 

2. Let 𝕎 and 𝕄 be two spaces. A map ℒ: 𝕎→𝕄 is known as compact providing the pre-image 

of any compact set in 𝕄 is compact in 𝕎 [6]. 

3. A Hausdorff space 𝕎 is known as extremally disconnected provided the closure of each 

open set in 𝕎 is open [10]. 

4. A Hausdorff space 𝕎 is known as completely extremally disconnected provided it is 

extremally disconnected and �̅� ⋂ �̅� = ∅  for any 𝐴, 𝐵 ⊆ 𝕎, [11]. 

5. A space 𝕎  is known as countably paracompact (sometimes called binormal) provided each 

open countable covering includes a locally finite open refinement, [2]. 

6. A space 𝕎is known as S-closed (res. Countably S-closed) provided for each semi-open (res., 

countable semi-open) cover of 𝕎 includes a finite subfamily the closures of whose members 

cover 𝕎, [12]. 

7. A space 𝕎 is known as an S-paracompact provided any open cover of it includes a locally 

finite semi-open refinement, [4]. 

8. A space 𝕎 is metacompact provided per open cover of 𝕎includes an open point finite 

refinement, [13]. 

9. A space 𝕎 is countably metacompact provided each countable open cover of 𝕎includes a 

point finite open refinement, [14]. 

10. A space 𝕎 is known as β-paracompact provided per open cover of 𝕎includes a β-locally 

finite β-open refinement, [5]. 

11. A space 𝕎is known as fully T4 provided per open cover of 𝕎includes a star refinement, 

[10]. 

12. A Hausdorff space 𝕎 is known as fully normal provided per open cover includes star open 

refinement, [15]. 

13. A space 𝕎 is known as submaximal provided any dense subset of W is open in W, [16]. 

 

Theorem 2.2: [10] 

1. Each paracompact space is countably paracompact. 

2. A space 𝕎is compact whenever it is countably compact and paracompact. 

3. Each countably paracompact and Lindelöf space is paracompact. 

4. All countably paracompact (or binormal) space is normal. 
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5. Any countably paracompact space is countably metacompact. 

6. Each metacompact space is countably metacompact. 

7. Any paracompact space is metacompact. 

8. All metacompact countably compact space is compact. 

9. Each fully T4 and Hausdorff space is paracompact. 

10. A fully T4 and T1-space is fully normal. 

11. any fully normal space is fully T4. 

12. Paracompactness of space implies countably paracompactness.  

13. Any compact space is a countably compact space 

14. Each compact space is Lindelöf. 

15. Each countably compact space is countably paracompact. 

 

Theorem 2.3: 

1. The compactness of space implies paracompactness, [2]. 

2. Each closed subspace of compact (res., paracompact, countably compact, countably 

paracompact) space is compact (res., paracompact, countably compact, countably 

paracompact), [2]. 

3. Each extremally disconnected S-paracompact T2-space is paracompact, [4]. 

4. Each paracompact space is S-paracompact, [4]. 

5. Each S-paracompact space is β-paracompact, [5]. 

6. Each paracompact space is a β-paracompact, [5]. 

7. Permit  𝕎 to be an extremally disconnected submaximal space. If 𝕎 is a β-paracompact 

space, then 𝕎 is a paracompact space, [5]. 

8. Each normal metacompact space is countably paracompact space,  [17]. 

9. Each Lindelöf countably metacompact space is metacompact space, [18]. 

10. Each fully normal and T1- space is paracompact, [19]. 

11. A Hausdorff paracompact space is fully normal, [20]. 

12. Each proper map of 𝕎 onto 𝕄 is paracompact, [21]. 

13. Let the map ℒ of  𝕎 onto 𝕄 be open and proper, then the image for any paracompact set 

in 𝕎 is paracompact set in 𝕄,  [21].  

14. A closed subset of a Lindelöf (res., normal) space, is a Lindelöf (resp., normal) subspace, 

[22]. 

15. Let 𝕎 be a Hausdorff space. 𝕎 is hereditarily extremally disconnected if and only if it is 

completely extremally disconnected, [23]. 

16. A continuous image of a compact space is compact, [24]. 

 

3. Strong forms of paracompact maps 

     This section aimed to introduce new types that are stronger than a paracompact map under 

certain conditions. Initially, we introduce the definition of a paracompact map as follows: 

 

Definition 3.1: A surjective continuous map ℒ: 𝕎→𝕄 is known as a paracompact map if the 

inverse image for any paracompact set in 𝕄 is a paracompact set in 𝕎.   

 

Example 3.2: Any map of a metrizable space into any space is a paracompact map. 

 

Definition 3.3: A space 𝕎 is known as Pa-closed provided each paracompact subset of 𝕎 is 

closed. 

Example 3.4: (ℤ, 𝜏𝐷) is a Pa-closed space. 

Definition 3.5: A map ℒ: 𝕎→𝕄is known as countably paracompact providing the pre-image 

of any closed and countably paracompact set in 𝕄 is countably paracompact in 𝕎. 
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Theorem 3.6: Each countably paracompact map of a Lindelöf space onto a Pa-closed space is 

a paracompact map. 

Proof: Let ℒ: 𝕎→𝕄 be a countably paracompact map such that 𝕎 is a Lindelöf space and 𝕄 

is a Pa-closed space. Assume that 𝕂 is a paracompact set in 𝕄. So, 𝕂 is a countably 

paracompact subset of 𝕄 by Theorem 2.2 part (1). Since 𝕄 is a Pa-closed, then 𝕂 is a closed 

subset of 𝕄. Thus, ℒ−1(𝕂) is a countably paracompact set in 𝕎. In addition,ℒ−1(𝕂) is closed 

in 𝕎. Now, Theorem 2.3 part (14) asserts that ℒ−1(𝕂) is a Lindelöf subspace of 𝕎.Then, 

Theorem 2.2 part (3) implies that ℒ−1(𝕂) is a paracompact set in 𝕎. Therefore, ℒ is a 

paracompact map.  

 

     The countable compactness and Pa-closedness are required for establishing the 

paracompactness for all the compact maps, which can be proven by the same argument of 

Theorem 3.6. 

 

Theorem 3.7: Each compact map onto a countably compact Pa-closed space is paracompact. 

 

Definition 3.8: A map ℒ: 𝕎→𝕄 is known as a countably compact map providing the pre-

image of any closed and countably compact set in 𝕄 is countably compact in 𝕎. 

 

Theorem 3.9: Each countably compact map of a Lindelöf space onto Pa-closed and compact 

space is a paracompact map. 

Proof: Let ℒ: 𝕎→𝕄 be a countably compact map. Assume that 𝕂 is a paracompact set in 𝕄. 

Since 𝕄 is a Pa-closed space, then 𝕂 is a closed subset of 𝕄andso, 𝕂 is a compact subspace 

of 𝕄 owing to Theorem 2.3 part (2). Thus, 𝕂 is countably compact by Theorem 2.2 part (13). 

Now,ℒ−1(𝕂) is a countably compact set in 𝕎 because ℒ is a countably  compact map and 

so, ℒ−1(𝕂) is a countably paracompact subspace of 𝕎. Since 𝕎 is Lindelöf space, then 

ℒ−1(𝕂) is a Lindelöf which implies that ℒ−1(𝕂)is paracompact set in 𝕎 due to Theorem 2.2 

part (3). Hence, ℒ is a paracompact map.  

 

Definition 3.10: A map ℒ: 𝕎→𝕄 is known as a meta compact providing the pre-image of any 

closed and metacompact set in 𝕄 is metacompact in 𝕎. 

 

Theorem 3.11: Each metacompact map of a Lindelöf and normal space onto a Pa-closed space 

is a paracompact map. 

Proof: Let ℒ: 𝕎→𝕄 be a metacompact map such that 𝕎 is a Lindelöf and normal space and 

𝕄 is a Pa-closed space. Suppose that 𝕂 is a paracompact set in 𝕄. Then Theorem 2.2 part (7) 

implies that  𝕂 is a metacompact subset of 𝕄. Since 𝕄 is a Pa-closed space, then 𝕂 is a closed 

subset of 𝕄, thus ℒ−1(𝕂) is a metacompact set in 𝕎 due to ℒ is a metacompact map. So, 

ℒ−1(𝕂) is a normal subspace in 𝕎 owing to Theorem 2.3 part (14). As a result, ℒ−1(𝕂) is a 

countably paracompact subspace of 𝕎 due to Theorem 2.3 part (8) andℒ−1(𝕂)is a Lindelöf 

subspace of 𝕎 by Theorem 2.3 part (14). Now, Theorem 2.2 part (3)asserts that ℒ−1(𝕂) is a 

paracompact set in 𝕎. Hence, ℒ is a paracompact map.  

Next, the countably paracompact map and the metacompact map are intimately linked.  

 

 

Theorem 3.12: Each countably paracompact map of a Lindelöf space onto a normal space is a 

metacompact map. 

Proof: Let ℒ: 𝕎→𝕄 be a countably paracompact map, where 𝕎 is a Lindelöf space and 𝕄 is 

a normal space. Assume that 𝕂 is a closed and metacompact set in 𝕄. So, 𝕂 is a normal 
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subspace of 𝕄 by Theorem 2.3 part (14). Then, Theorem 2.3 part (8) implies that 𝕂 is a 

countably paracompact subset of 𝕄. Thus, ℒ−1(𝕂)  is a countably paracompact set in 𝕎 due 

to ℒ is a countably paracompact map. Hence, ℒ−1(𝕂)  is a countably metacompact set in 𝕎 

due to Theorem 2.2 part (5). By Theorem 2.3 part (14) ℒ−1(𝕂)  is a Lindelöf set in 𝕎. Theorem 

2.3 part (9) asserts that ℒ−1(𝕂) is a metacompact set in 𝕎. Hence, ℒ is a metacompact map.  

 

Definition 3.13: A map ℒ: 𝕎→𝕄 is known as a countably metacompact providing the pre-

image of any closed and countably metacompact set in 𝕄 is countably metacompact in 𝕎. 

 

Theorem 3.14 Each countably metacompact map of a Lindelöf space is a metacompact map. 

Proof: Let ℒ: 𝕎→𝕄 be a countably metacompact map where𝕎 is a Lindelöf space. Suppose 

that 𝕂 is a closed and metacompact set in 𝕄. So, 𝕂 is a countably metacompact subspace of 𝕄 

by Theorem 2.2 part (6). Thus, ℒ−1(𝐾) is a countably metacompact set in 𝕎 due to ℒbeing a 

countably metacompact map. Indeed, ℒ−1(𝕂) is closed in 𝕎 by the continuity of ℒ. Theorem 

2.3 part (14)  asserts that ℒ−1(𝕂) is a Lindelöf subspace of 𝕎 due to ℒ−1(𝕂) is closed in 𝕎 . 

As a result, Theorem 2.3 part (9) implies that ℒ−1(𝕂) is a metacompact set in 𝕎. Hence, ℒ is 

a metacompact map. 

  

Corollary 3.15: Each countably metacompact map of a Lindelöf and normal space onto a Pa-

closed space is a paracompact map. 

Proof: The prove is straight forward by using Theorem 3.11 and Theorem 3.14. 

 

Definition 3.16: A map ℒ: 𝕎→𝕄is known as an S-paracompact providing the pre-image of 

any closed and S-paracompact set in 𝕄 is S-paracompact in 𝕎. 

 

Theorem 3.17: Each S-paracompact map of a Hausdorff completely extremally disconnected 

space is a paracompact map. 

Proof: Let ℒ: 𝕎→𝕄 be an S-paracompact map such that 𝕎 is a completely extremally 

disconnected space. Assume that 𝕂 is a paracompact set in 𝕄. Theorem 2.3 part (4) implies 

that 𝕂 is an S-paracompact set in 𝕄. Since ℒ is an S-paracompact map, then ℒ−1(𝕂) is anS-

paracompact set in 𝕎. But 𝕎 is a Hausdorff, completely extremally disconnected space, thus 

Theorem 2.3 part (15)  asserts that ℒ−1(𝕂) is extremely disconnected set in 𝕎. As a result, 

ℒ−1(𝕂) is an S-paracompact and extremally disconnected set in 𝕎, which implies that ℒ−1(𝕂) 

is paracompact in 𝕎 by Theorem 1.2.2. Hence, ℒ is a paracompact map.  

 

Definition 3.18: A map ℒ: 𝕎→𝕄 is known as a β-paracompact providing the pre-image of any 

closed and β-paracompact set in 𝕄 is β-paracompact in 𝕎. 

 

Theorem 3.19: Each β-paracompact map of a Hausdorff, completely extremally disconnected 

and submaximal space is a paracompact map. 

Proof: Let ℒ: 𝕎→𝕄 be a β-paracompact map such that 𝕎 is a completely extremally 

disconnected and submaximal space. Assume that 𝕂 is a paracompact set in 𝕄. So, 𝐾 is β-

paracompact by Theorem 2.3 part (6). Then, ℒ−1(𝕂) is a β-paracompact set in 𝕎 because ℒis 

a β-paracompact map. Added to, ℒ−1(𝕂) is an extremally disconnected subspace of 𝕎 by 

Theorem 2.3 part (15)  and it is submaximal of 𝕎. ℒ−1(𝕂) is paracompact set in 𝕎 by Theorem 

2.3 part (7). Hence, ℒ is a paracompact map. 

  

Theorem 3.20: Each β-paracompact map of a Hausdorff, completely extremally disconnected 

and submaximal space is an S-paracompact map. 
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Proof: Let ℒ: 𝕎→𝕄 be a β-paracompact map such that 𝕎 is a Hausdorff completely 

extremally disconnected space. Assume that 𝕂 is a closed S-paracompact set in 𝕄. Thus, 𝕂 is 

a β-paracompact subset of 𝕄 owing to Theorem 2.3 part (5). So,ℒ−1(𝕂) is β-paracompact set 

in 𝕎 because ℒ is a β-paracompact map. Added to,ℒ−1(𝕂) is an extremally disconnected 

subspace of 𝕎 by Theorem 2.3 part (15)  and it is submaximal. Theorem 2.3 part (7). implies 

that ℒ−1(𝕂) is paracompact. Therefore, ℒ−1(𝕂)is S-paracompact in 𝕎 owing to Theorem 2.3 

part (4). Hence, ℒ is an S-paracompact map.  

 

Definition 3.21: A map ℒ: 𝕎→𝕄 is known as a fully normal map providing the pre-image of 

any fully normal set in 𝕄 is fully normal in 𝕎.  

 

Theorem 3.22: Each fully normal map of a T1-space onto a Hausdorff space is a paracompact 

map. 

Proof: Let ℒ: 𝕎→𝕄 be a fully normal map such that 𝕎 is a T1- space and 𝕄 is a Hausdorff 

space. Assume that 𝕂 is a paracompact set in 𝕄. Thus,𝕂 is a Hausdorff subspace of 𝕄 because 

𝕄 is a Hausdorff space and so,  𝕂 is a fully normal subset of 𝕄 by Theorem 2.3 part (11). Now, 

ℒ−1(𝕂) is fully normal in 𝕎 due to ℒbeing fully normal. Hence, Theorem 2.3 part (10) asserts 

that ℒ−1(𝕂) is a paracompact set in 𝕎. Hence, ℒ is a paracompact map. 

  

Definition 3.23: A map ℒ: 𝕎→𝕄 is known as a fully T4 providing the pre-image of any fully 

T4 set in 𝕄 is fully T4 in 𝕎. 

 

Theorem 3.24: Each fully T4 map of a T1- space is a fully normal map. 

Proof: Let ℒ: 𝕎→𝕄 be a fully T4 map such that 𝕎 is a T1- space. Assume that 𝕂 is a fully 

normal set in 𝕄. So, 𝕂 is a fully T4 set in 𝕄 by Theorem 2.2 part (11). thus, ℒ−1(𝕂) is fully T4 

in 𝕎 due to ℒ being a fully T4 map. Since 𝕎 is a T1- space, thenℒ−1(𝕂) is fully normal by 

Theorem 2.2 part (10). Hence, ℒ is a fully normal map. 

  

Corollary 3.25: Each fully T4map of a T1- space onto a Hausdorff space is a paracompact map. 

 

4. Weaker forms of compact maps 

     The principal purpose of this section is to reveal more new and weaker definitions of maps 

by using the concept of paracompactness. 

  

Theorem 4.1: Each paracompact map of a countably compact space onto a Hausdorff space is 

a compact map. 

Proof: Let ℒ: 𝕎→𝕄 be a paracompact map. Assume that 𝕂 is a compact set in 𝕄. Then, 𝕂 is 

closed in 𝕄, because 𝕄 of is a Hausdorff space. Therefore, 𝕂 is also paracompact due to 

Theorem 2.3 part (1). Consequently, ℒ−1(𝕂) is paracompact set in 𝕎 because ℒ is paracompact 

mapping. Indeed, ℒ−1(𝕂) is a closed in 𝕎 by continuity of ℒ. Since  𝕎 is a countably compact 

space, so ℒ−1(𝕂) is countably compact subspace owing to Theorem 2.3 part (2). Thus, ℒ−1(𝕂) 

is compact in 𝕄 by Theorem 2.2 part (2). Hence, ℒ is a compact map. 

 

Theorem 4.2: Each paracompact map onto a normal and Lindelöf space is a metacompact map. 

Proof: Let ℒ: 𝕎→𝕄 be a paracompact map where 𝕄 is a normal and Lindelöf space. Assume 

that 𝕂 is a closed metacompact set in 𝕄. Since 𝕄 is normal, so 𝕂 is a countably paracompact 

set due to Theorem 2.3 part (8), also we have  𝕄 is Lindelöf, then 𝕂 is Lindelöf by Theorem 

2.3 part (14). So, 𝕂 is a paracompact set in 𝕎 from Theorem 2.2 part (3). Thus, ℒ−1(𝕂)  is a 
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paracompact in𝕎 due to ℒ is a paracompact map. Now, by Theorem 2.2 part (7),  ℒ−1(𝕂)  is 

a metacompact in 𝕎. Hence, ℒ is a metacompact map. 

 

Theorem 4.3: Each metacompact map onto a Lindelöf space is a countably metacompact map. 

Proof: The prove is straight forward by using  Theorem 2.3 part (9) and Theorem 2.2 part (6). 

 

Theorem 4.4: Each paracompact map onto a normal and Lindelöf space is a countably 

metacompact map. 

Proof: The prove is straight forward by using  Theorem 4.2 and Theorem 4.3. 

 

Theorem 4.5: Each paracompact map onto a Lindelöf space is a countably paracompact map. 

Proof: Let ℒ: 𝕎→𝕄 be a paracompact map where 𝕄 is a Lindelöf space. Assume that 𝕂 is a 

closed countably paracompact subset of 𝕄. Since 𝕄 is a Lindelöf space and 𝕂 is closed,𝕂 is a 

Lindelöf subspace of 𝕄 due to Theorem 2.3 part (14). Then, 𝕂 is a paracompact subspace of 

𝕄 due to Theorem 2.2 part (3). Consequently, ℒ−1(𝕂) is a paracompact subset of 𝕎 due to ℒ 

is a paracompact map. Hence, ℒ−1(𝕂) is a countably paracompact as a result of Theorem 2.2 

part (1). Hence, ℒ is a countably paracompact map.  

 

Theorem 4.6: Each compact map of a Lindelöf space onto a countably compact, normal, and 

a Lindelöf space is a metacompact map. 

Proof: Let ℒ: 𝕎→𝕄 be a compact map where 𝕎 is a Lindelöf space and 𝕄 is a countably 

metacompact, normal, and Lindelöf space. Assume that 𝕂 is a closed metacompact subset of 

𝕄. Then, 𝕂 is normal due to 𝕄 is a normal space. Theorem 2.3 part (8) emphasizes that 𝕂 is a 

countably paracompact subspace of 𝕄. Since 𝕄 is Lindelöf, thus  𝕂 is a paracompact set in 𝕄 

by Theorem 2.2 part (3). Since 𝕄 is a countably compact space, then 𝕂 is countably compact 

by Theorem 2.3 part (2). Then, Theorem 2.3 part (5)implies that 𝕂 is compact. Therefore, 

ℒ−1(𝕂) is a compact subset of 𝕎 due to ℒ is a compact map. Theorem 2.2 part (13)insists that 

ℒ−1(𝕂) is a countably compact set in 𝕎 and by Theorem 2.2 part (15)ℒ−1(𝕂) is a countably 

paracompact set in 𝕎, therefore ℒ−1(𝕂) is a countably metacompact due to Theorem 2.3 part 

(14). But we have 𝕎 isLindelöf therefore, ℒ−1(𝕂) is a Lindelöf and countably metacompact. 

Theorem 2.3 part (9) asserts that ℒ−1(𝕂) is a metacompact. Hence, ℒ is a metacompact map.  

Directly, Theorem 4.6 and Theorem 4.3 lead us the next result. 

 

Theorem 4.7: Each compact map of a Lindelöf space onto a countably metacompact, normal, 

and Lindelöf space is a countably metacompact map. 

Proof: The prove is straight forward by using  Theorem 4.6 and Theorem 4.3. 

 

Theorem 4.8: Each paracompact map onto a Hausdorff and completely extremally 

disconnected space is an S-paracompact map. 

Proof: Let ℒ: 𝕎→𝕄 be a paracompact map where 𝕄 is a Hausdorff and completely extremally 

disconnected space. To show that ℒ is an S-paracompact map. Assume that 𝕂 is a closed S-

paracompact subspace of 𝕄. Theorem 2.3 part (15)  asserts that 𝕂 is an extremally disconnected 

subspace of 𝕄, also𝕂 is a Hausdorff subspace of 𝕄thus,𝕂 is a paracompact subspace of 𝕄 due 

to Theorem2.3 part (3). Now, ℒ−1(𝕂) is paracompact set in 𝕎 due to ℒbeinga paracompact 

map. Theorem 2.3 part (4)implies that ℒ−1(𝕂)is an S-paracompact subspace of  𝕄. Hence, ℒ 

is an S-paracompact.  

 

Theorem 4.9: Each paracompact map onto a Hausdorff, completely extremally disconnected, 

and submaximal space is a β-paracompact map. 
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Proof: Let ℒ: 𝕎→𝕄 be a paracompact map where 𝕄 is a completely extremally disconnected 

and submaximal space. Suppose that 𝕂 is a closed and β-paracompact set in 𝕄. Since 𝕂 is an 

extremally disconnected and submaximal subspace of 𝕎 by Theorem 2.3 part (15), then 𝕂 is a 

paracompact subspace of 𝕎 by Theorem 2.3 part (7). Thus, ℒ−1(𝕂) is a paracompact set in 𝕎 

because ℒ is a paracompact map. Consequently, ℒ−1(𝕂) is β-paracompact set in 𝕎 for 

Theorem 2.3 part (6). Hence, ℒ is a paracompact map. 

  

Theorem 4.10: Each paracompact map of a T2-space onto is T1-space is fully normal. 

Proof: Let ℒ: 𝕎→𝕄 be a paracompact map where 𝕎 is a T2-space and 𝕄 is T1-space. Suppose 

that 𝕂 is a fully normal set in 𝕄. Then, 𝕂 is a paracompact set in 𝕄 by Theorem 2.3 part (10). 

This implies ℒ−1(𝕂) is paracompact in 𝕎 owing to ℒ is a paracompact map which follows 

ℒ−1(𝕂) is fully normal because of Theorem 2.3 part (11). Hence, is a fully normal map.  

Consequently, by similar arguments as in Theorem 4.10, the following results are recognized: 

 

Theorem 4.11: Each fully normal map onto a T1-space is  fully T4. 

 

Corollary 4.12: Each paracompact map of a T2-space onto a T1-space is  fully T4. 

 

Next, Figure  1  illustrates the relationships between certain types of strong paracompact maps 

under certain conditions as follows: 

 

 
     The following figure shows the relationships between certain types of weaker paracompact 

maps under certain conditions. 
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5. Composition of certain types of paracompact maps 

     In this section, we investigate the composition of the strong and weaker forms of 

paracompact maps in various cases. 

  

Theorem 5.1: Let 𝕎 be a Pa-closed and compact space and let 𝕄 be any space. Then, the 

continuous image of any paracompact set in 𝕎 is paracompact in 𝕄. 

Proof: Let ℒ: 𝕎→𝕄 be a continuous map. Suppose that 𝕂 is paracompact in 𝕎. Since 𝕎 is a 

Pa-closed space, then 𝕂 is a closed set in 𝕎, therefore, 𝕂 is compact by Theorem 2.3 part (2). 

Now, ℒ(𝕂) is a compact set in 𝕄 due to ℒ being a continuous map. From Theorem 2.3 part (1), 

ℒ(𝕂) is a paracompact subspace of 𝕄. 

  

Corollary 5.2: Let 𝕎 be a compact space and let 𝕄be any space. Then, the continuous image 

of any closed set in 𝕎 is paracompact in 𝕄. 

 

Theorem 5.3 The composition of paracompact maps is also a paracompact map. 

Proof: Let ℒ: 𝕎→𝕄 and  𝒥: 𝕄→𝔼 be two paracompact maps. To show that 𝒥 ∘ ℒ is also a 

paracompact map. Assume that𝕂 is a paracompact set in 𝔼, For demonstrating that 

(𝒥 ∘ ℒ)−1(𝕂) is a paracompact set in 𝕎. We have 𝒥−1(𝕂) is a paracompact set in 𝕄 since 𝒥 

is a paracompact map. Thus, ℒ−1(𝒥−1(𝕂)) is a paracompact set in 𝕎 due to, ℒbeing a 

paracompact map, but ℒ−1(𝒥−1(𝕂)) = (𝒥 ∘ ℒ)−1(𝕂). So,(𝒥 ∘ ℒ)−1(𝕂) is a paracompact set 

in 𝕎. Hence, 𝒥 ∘ ℒ is a paracompact map.  

As a direct consequence of employing similar arguments as in Theorem 5.3, the following 

results are recognized: 

 

Theorem 5.4: Let 𝕄 be a Pa-closed compact. If 𝒥 ∘ ℒ: 𝕎→𝔼 is a paracompact map and 

 𝒥: 𝕄→𝔼 is a continuous injective map, then ℒ: 𝕎→𝕄 is a  paracompact map. 

  

Theorem 5.5: Let 𝕎 be a Pa-closed and compact space. If 𝒥 ∘ ℒ: 𝕎→𝔼 is a paracompact map 

and ℒ: 𝕎→𝕄  is a continuous surjective map, then 𝒥: 𝕄→𝔼 is a paracompact map. 
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Theorem 5.6: The composition of countably paracompact maps is also a countably 

paracompact map. 

Theorem 5.7: Let 𝕎 be a Lindelöf, 𝕄 is a Pa-closed compact and 𝔼 is Pa-closed. If 𝒥 ∘
ℒ: 𝕎→𝔼 is a countably paracompact map and  𝒥: 𝕄→𝔼 is a continuous injective map, then 

ℒ: 𝕎→𝕄 is a  paracompact map. 

Proof: Let 𝒥 ∘ ℒ: 𝕎→𝔼 is a countably paracompact map and  𝒥: 𝕄→𝔼 is a continuous 

injective map where 𝕄 is a Pa-closed compact. Assume that 𝕂 is a paracompact set in 𝕄. Then, 

𝒥(𝕂) is the paracompact subspace of 𝔼 due to Theorem 5.1. Since  𝕎 is a Lindelöf and 𝔼 is 

Pa-closed, thus 𝒥 ∘ ℒ  is a paracompact map by Theorem 3.6. Now,  (𝒥 ∘ ℒ)−1(𝒥(𝕂)) =
ℒ−1(𝒥−1(𝒥(𝕂))) = ℒ−1(𝕂) is a paracompact subspace of 𝕎  due to 𝒥 ∘ ℒ is paracompact. 

Hence, ℒ is a paracompact map.  

 

Theorem 5.8: Let 𝕎 be a Pa-closed and compact space and 𝔼 be a Lindelöf space. If 𝒥 ∘
ℒ: 𝕎→𝔼 is a paracompact map and ℒ: 𝕎→𝕄  is a continuous surjective map, then 𝒥: 𝕄→𝔼 

is a countably paracompact map. 

Proof: Let 𝒥 ∘ ℒ: 𝕎→𝔼 is a paracompact map and ℒ: 𝕎→𝕄  is a continuous surjective map 

where 𝕎 be a Pa-closed and compact space. Suppose that 𝕂 is a closed countably paracompact 

set in 𝔼. Since 𝔼 is a Lindelöf space, then  𝒥 ∘ ℒis a countably paracompact subspace of 𝔼 

owing to Theorem 4.5 which follows (𝒥 ∘ ℒ)−1(𝕂) is a closed countably paracompact set in 𝕎. 

But 𝕎 is a compact space, thus 𝕎 is a Lindelöf by Theorem 2.2 part (14) which implies 

(𝒥 ∘ ℒ)−1(𝕂) is Lindelöf and so,(𝒥 ∘ ℒ)−1(𝕂) is paracompact. Because ℒ a surjective 

continuous map then, ℒ(𝒥 ∘ ℒ)−1(𝕂) = ℒ(ℒ−1((𝒥−1(𝕂)))) = 𝒥−1(𝕂) is paracompact in 𝕄 

by Theorem 6.1 therefore, 𝒥−1(𝕂) is countably paracompact by Theorem 1.2.24.  Hence, ℒ is 

a countably paracompact map. 

  

Theorem 5.9: The composition of S-paracompact maps is also an S-paracompact map. 

Proof: Let ℒ: 𝕎→𝕄 and  𝒥: 𝕄→𝔼 be two S-paracompact maps. To show that 𝒥 ∘ ℒ is also an 

S-paracompact map. Assume that𝕂 is a closed and S-paracompact set in 𝔼, For demonstrating 

that(𝒥 ∘ ℒ)−1(𝕂) is a closed and S-paracompact set in 𝕎. Since  𝒥−1(𝕂) is a closed and S-

paracompact set in 𝕄 owing to 𝒥 being an S-paracompact map. Thus, ℒ−1(𝒥−1(𝕂)) is an S-

paracompact set in 𝕎 because ℒ is an S-paracompact map, but ℒ−1(𝒥−1(𝕂)) = (𝒥 ∘ ℒ)−1(𝕂). 

So, (𝒥 ∘ ℒ)−1(𝕂) is a S-paracompact set in 𝕎. Hence, 𝒥 ∘ ℒ is S-paracompact.  

 

Theorem 5.10: Let 𝕎 be a Hausdorff completely externally disconnected and 𝕄 is a Pa-closed 

compact. If 𝒥 ∘ ℒ: 𝕎→𝔼 is an S-paracompact map and  𝒥: 𝕄→𝔼 is a continuous injective map, 

then ℒ: 𝕎→𝕄 is a paracompact map. 

Proof: Let 𝒥 ∘ ℒ: 𝕎→𝔼 is an S-paracompact map and  𝒥: 𝕄→𝔼 is a continuous injective map 

where 𝕄 is a Pa-closed compact. Assume that 𝕂is a paracompact set in 𝕄. Then, 𝒥(𝕂) is a 

paracompact subspace of 𝔼 due to Theorem 5.1. Since 𝕎 is a Hausdorff and completely 

extremally disconnected space, thus 𝒥 ∘ ℒ  is a paracompact map by Theorem 3.17. Now,  

(𝒥 ∘ ℒ)−1(𝒥(𝕂)) = ℒ−1(𝒥−1(𝒥(𝕂))) = ℒ−1(𝕂) is a paracompact subspace of 𝕎  due to 𝒥 ∘
ℒ is paracompact. Hence, ℒ is a paracompact map.  

Next, under certain conditions, the paracompact map is explored as an S-paracompact map, 

which can be satisfied by the same method as Theorem 5.10. 

 

Theorem 5.11: Let 𝕎 be a Pa-closed compact space, and 𝔼 is a completely externally 

disconnected and Hausdorff space. If 𝒥 ∘ ℒ: 𝕎→𝔼 is a paracompact map and  ℒ: 𝕎→𝕄    is a 

continuous surjective map, then 𝒥: 𝕄→𝔼 is an S-paracompact map. 
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Proof: Let 𝒥 ∘ ℒ: 𝕎→𝔼 be a paracompact map and  ℒ: 𝕎→𝕄  is a continuous surjective map. 

Suppose that 𝕂 is a closed S-paracompact set in 𝔼. Since 𝔼 is a completely e.d. and Hausdorff 

space, then 𝕂  is a Hausdorff externally disconnected subspace owing to Theorem 2.3 part (15) 

which follows 𝕂 is a paracompact set in 𝔼 by Theorem 2.3 part (4). Thus (𝒥 ∘ ℒ)−1(𝕂) is a 

closed paracompact set in 𝕎. But 𝕎 is a Pa-closed compact space, thus ℒ(𝒥 ∘ ℒ)−1(𝕂) =
ℒ(ℒ−1(𝒥−1(𝕂))) = 𝒥−1(𝕂) is a paracompact subset of 𝕄 by Theorem 5.1. Therefore, 𝒥−1(𝕂)  

is an S-paracompact set due to Theorem 2.3 part (4).  Hence, 𝒥 is an S-paracompact map.  

As a direct consequence of using similar arguments as in Theorem 5.11, the following results 

are established:  

 

Theorem 5.12: The composition of β-paracompact maps is also a β-paracompact map. 

 

Theorem 5.13: Let 𝕎 be a Hausdorff completely extremally disconnected and submaximal 

and 𝕄 is a Pa-closed compact. If 𝒥 ∘ ℒ: 𝕎→𝔼 is a β-paracompact map and  𝒥: 𝕄→𝔼 is a 

continuous injective map, then ℒ: 𝕎→𝕄 is a paracompact map. 

Proof: By Theorem 5.1 and Theorem 2.3 part (6). 

 

Theorem 5.14: Let 𝕎 be a Pa-closed compact space, and 𝔼 is a completely externally 

disconnected sub-maximal space. If 𝒥 ∘ ℒ: 𝕎→𝔼 is a paracompact map and  ℒ: 𝕎→𝕄    is a 

continuous surjective map, then 𝒥: 𝕄→𝔼 is a β -paracompact map. 

Proof: The prove is clear by using Theorem 5.1 and Theorem 2.3 part (7). 

 

Theorem 5.15: The composition of metacompact maps is also a metacompact map. 

 

Theorem 5.16: Let 𝕎 be a Lindelöf and normal space, 𝕄 be a Pa-closed compact, and 𝔼 is Pa-

closed space. If 𝒥 ∘ ℒ: 𝕎→𝔼 is a metacompact map and  𝒥: 𝕄→𝔼 is a continuous injective 

map, then ℒ: 𝕎→𝕄 is a paracompact map. 

Proof: By Theorem 5.1 and Theorem 3.11. 

 

Theorem 5.17: Let 𝕎 be a countably compact space and 𝔼 be a Lindelöf and normal space. If 

𝒥 ∘ ℒ: 𝕎→𝔼 is a paracompact map and ℒ: 𝕎→𝕄 is a continuous surjective map, then 𝒥: 𝕄→𝔼 

is a metacompact map. 

Proof: The prove is clear by using Theorem 4.2 and Theorem 2.3 part (1) and Theorem 2.2 part 

(8). 

 

Theorem 5.18: The composition of countably metacompact maps is also a countably 

metacompact map. 

 

Theorem 5.19: Let 𝕎 be a Lindelöf space, 𝕄 be a Pa-closed compact, and 𝔼 be a Pa-closed 

space. If 𝒥 ∘ ℒ: 𝕎→𝔼 is a countably metacompact map and  𝒥: 𝕄→𝔼 is a continuous injective 

map, then ℒ: 𝕎→𝕄 is a  paracompact map. 

Proof: The prove is clear by using Theorem 5.1 and Corollary 3.15. 

 

Theorem 5.20: Let 𝕎 be a countably compact space and 𝔼 be a Lindelöf and normal space. If 

𝒥 ∘ ℒ: 𝕎→𝔼 is a paracompact map and ℒ: 𝕎→𝕄  is a continuous surjective map, then 

𝒥: 𝕄→𝔼 is a countably metacompact map. 

Proof: The prove is clear by using Theorem 2.3 part (16) and Theorem 2.3 part (9) and Theorem 

2.3 part (8). 

Theorem 5.21: The composition of fully T4 maps is also a fully T4 map. 
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Theorem 5.22: Let 𝕎 be a T1-space and 𝕄 is a Pa-closed compact space and 𝔼 is a Hausdorff 

space. If 𝒥 ∘ ℒ: 𝕎→𝔼 is a fully T4 map and  𝒥: 𝕄→𝔼 is a continuous injective map, then 

ℒ: 𝕎→𝕄 is a paracompact map. 

Proof: The prove is clear by using Theorem 5.1 and Corollary 3.25. 

 

Theorem 5.23: Let 𝕎 be a T2-space and countably compact and 𝔼 is a T1-space. If 𝒥 ∘
ℒ: 𝕎→𝔼 is a paracompact map and ℒ: 𝕎→𝕄  is a continuous surjective map, then 𝒥: 𝕄→𝔼 

is a fully T4 map. 

Proof: The prove is clear by using Corollary 4.12 and Theorem 2.2 part (9) and Theorem 2.3 

part (16). 

 

Theorem 5.24: The composition of fully normal maps is also a fully normal map. 

 

Theorem 5.25: Let 𝕎 be a T1-space and 𝕄 is a Pa-closed compact space and 𝔼 is a Hausdorff 

space. If 𝒥 ∘ ℒ: 𝕎→𝔼 is a fully normal map and  𝒥: 𝕄→𝔼 is a continuous injective map, then 

ℒ: 𝕎→𝕄 is a paracompact map. 

Proof: The prove is clear by using Theorem 5.1 and Theorem 3.22. 

 

Theorem 5.26: Let 𝕎 be a T2-space and countably compact and 𝕄 is a T2-space and 𝔼 is a T1-

space. If 𝒥 ∘ ℒ: 𝕎→𝔼 is a paracompact map and ℒ: 𝕎→𝕄  is a continuous surjective map, 

then 𝒥: 𝕄→𝔼 is a fully normal map. 

Proof: The prove is clear by using Theorem 5.1 and Theorem 2.3 part (11) and Theorem 2.3 

part (16). 

 

6. Conclusions 

     To recapitulate, several types of maps are introduced by using the concept of 

paracompactness. These maps are classified based on their relations with the paracompact map 

into two forms, namely strong and weaker forms. As well as the links between these maps are 

investigated and satisfied under certain conditions. In addition, a new space is initiated which 

is utilized in the relations between the maps. 
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