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Abstract

In this work, the concept of the paracompact map has been generalized to other
new types of maps, in addition to the fact that the paracompact map has been linked
to these new maps. Accordingly, we will separate these new types of maps into two
classes, the first class is called a strong form which implies a paracompact map under
certain conditions. While the other class is called a weaker form of a paracompact
map, whereas the paracompact map implies them. Finally, the composition operations
of paracompact maps are studied.
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1. Introduction
The motivation of compactness into topology was beginning to generalize the properties of
the bounded and closed subset R™. In 1944, Dieudonné [1] introduced a wider class of compact

spaces, namely paracompact spaces. In 1951, Dowker [2] had given generalization of
paracompact spaces by introducing the class of countably paracompact spaces. Through the use
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of a-open, pre-open, semi-open, regular open, and B-open sets, new generalizations of
paracompact spaces were given. Nearly paracompact space was defined by Singal and Arya [3]
using the regular open. In 2006, Al-Zoubi [4] introduced the notion of S -paracompact space
using a semi-open set. Demir and Ozbakir [5] defined in 2013 [ -paracompact spaces, by
replacing the open cover with a 3-open cover in the definition of paracompact space. On the
other hand, there are maps known as parallel advanced spaces. In 1947, Halfar [6] introduced
the concept of a compact map in a metric space. Garg and Goel [7] in 1993 initiated a countably
compact map and then Buhagiar [8] in 1997 introduced the notion of a paracompact map. After
that, in 2003 a countably paracompact map was defined by AL-Zoubi and Hdeib [9]. In this
paper, we introduce two classes of paracompact maps, namely, strong, and weak, and we
investigate their compositions. A space W means a topological space (W,r), by a map
L: W—M, we mean continuous surjection map £ of a space W into a space M.

2. Preliminaries
This section includes several basic definitions and theorems on paracompactness that are
essential in the paper are reviewed.

Definitions 2.1:

1. A Hausdorff space W is known as a paracompact provided any open cover of it includes a
locally finite open refinement [1].

2. Let W and M be two spaces. A map £: W—M is known as compact providing the pre-image
of any compact set in M is compact in W [6].

3. A Hausdorff space W is known as extremally disconnected provided the closure of each
open set in W is open [10].

4. A Hausdorff space W is known as completely extremally disconnected provided it is
extremally disconnected and AN B = @ forany 4,B € W, [11].

5. A space W is known as countably paracompact (sometimes called binormal) provided each
open countable covering includes a locally finite open refinement, [2].

6. A space Wis known as S-closed (res. Countably S-closed) provided for each semi-open (res.,
countable semi-open) cover of W includes a finite subfamily the closures of whose members
cover W, [12].

7. A space W is known as an S-paracompact provided any open cover of it includes a locally
finite semi-open refinement, [4].

8. A space W is metacompact provided per open cover of Wincludes an open point finite
refinement, [13].

9. A space W is countably metacompact provided each countable open cover of Wincludes a
point finite open refinement, [14].

10. A space W is known as B-paracompact provided per open cover of Wincludes a p-locally
finite B-open refinement, [5].

11. A space Wis known as fully T4 provided per open cover of Wincludes a star refinement,
[10].

12. A Hausdorff space W is known as fully normal provided per open cover includes star open
refinement, [15].

13. A space W is known as submaximal provided any dense subset of W is open in W, [16].

Theorem 2.2: [10]

1. Each paracompact space is countably paracompact.

2. A space Wis compact whenever it is countably compact and paracompact.
3. Each countably paracompact and Lindel6f space is paracompact.

4. All countably paracompact (or binormal) space is normal.
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5. Any countably paracompact space is countably metacompact.
6. Each metacompact space is countably metacompact.
7. Any paracompact space is metacompact.

8. All metacompact countably compact space is compact.

9. Each fully T4 and Hausdorff space is paracompact.

10. A fully T4and Ti-space is fully normal.

11. any fully normal space is fully Ta.

12. Paracompactness of space implies countably paracompactness.
13. Any compact space is a countably compact space

14. Each compact space is Lindel6f.

15. Each countably compact space is countably paracompact.

Theorem 2.3:

1. The compactness of space implies paracompactness, [2].

2. Each closed subspace of compact (res., paracompact, countably compact, countably
paracompact) space is compact (res., paracompact, countably compact, countably
paracompact), [2].

3. Each extremally disconnected S-paracompact To-space is paracompact, [4].

4. Each paracompact space is S-paracompact, [4].

5. Each S-paracompact space is B-paracompact, [5].

6. Each paracompact space is a [3-paracompact, [5].

7. Permit W to be an extremally disconnected submaximal space. If W is a B-paracompact
space, then W is a paracompact space, [5].

8. Each normal metacompact space is countably paracompact space, [17].

9. Each Lindel6f countably metacompact space is metacompact space, [18].

10. Each fully normal and T:- space is paracompact, [19].

11. A Hausdorff paracompact space is fully normal, [20].

12. Each proper map of W onto M is paracompact, [21].

13. Let the map £ of W onto M be open and proper, then the image for any paracompact set
in W is paracompact set in M, [21].

14. A closed subset of a Lindelof (res., normal) space, is a Lindeldf (resp., normal) subspace,
[22].

15. Let W be a Hausdorff space. W is hereditarily extremally disconnected if and only if it is
completely extremally disconnected, [23].

16. A continuous image of a compact space is compact, [24].

3. Strong forms of paracompact maps
This section aimed to introduce new types that are stronger than a paracompact map under
certain conditions. Initially, we introduce the definition of a paracompact map as follows:

Definition 3.1: A surjective continuous map £: W—M is known as a paracompact map if the
inverse image for any paracompact set in M is a paracompact set in W.

Example 3.2: Any map of a metrizable space into any space is a paracompact map.

Definition 3.3: A space W is known as Pa-closed provided each paracompact subset of W is
closed.

Example 3.4: (Z, tp) is a Pa-closed space.

Definition 3.5: A map £: W—Mis known as countably paracompact providing the pre-image
of any closed and countably paracompact set in M is countably paracompact in W.
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Theorem 3.6: Each countably paracompact map of a Lindel6f space onto a Pa-closed space is
a paracompact map.

Proof: Let £L: W—M be a countably paracompact map such that W is a Lindel6f space and M
is a Pa-closed space. Assume that K is a paracompact set in M. So, K is a countably
paracompact subset of M by Theorem 2.2 part (1). Since M is a Pa-closed, then K is a closed
subset of M. Thus, L71(KK) is a countably paracompact set in W. In addition,£~1(K) is closed
in W. Now, Theorem 2.3 part (14) asserts that £~1(KK) is a Lindelof subspace of W.Then,
Theorem 2.2 part (3) implies that £L71(K) is a paracompact set in W. Therefore, £ is a
paracompact map.

The countable compactness and Pa-closedness are required for establishing the
paracompactness for all the compact maps, which can be proven by the same argument of
Theorem 3.6.

Theorem 3.7: Each compact map onto a countably compact Pa-closed space is paracompact.

Definition 3.8: A map £: W—M is known as a countably compact map providing the pre-
image of any closed and countably compact set in M is countably compact in W.

Theorem 3.9: Each countably compact map of a Lindel6f space onto Pa-closed and compact
space is a paracompact map.

Proof: Let £: W—M be a countably compact map. Assume that IK is a paracompact set in M.
Since M is a Pa-closed space, then K is a closed subset of Mandso, K is a compact subspace
of M owing to Theorem 2.3 part (2). Thus, K is countably compact by Theorem 2.2 part (13).
Now,L~1(KK) is a countably compact set in W because £ is a countably compact map and
so, L71(K) is a countably paracompact subspace of W. Since W is Lindelof space, then
L71(K) is a Lindelof which implies that £~ (KK)is paracompact set in W due to Theorem 2.2
part (3). Hence, £ is a paracompact map.

Definition 3.10: A map £: W—M is known as a meta compact providing the pre-image of any
closed and metacompact set in M is metacompact in W.

Theorem 3.11: Each metacompact map of a Lindel6f and normal space onto a Pa-closed space
is a paracompact map.

Proof: Let £: W—M be a metacompact map such that W is a Lindel6f and normal space and
M is a Pa-closed space. Suppose that K is a paracompact set in M. Then Theorem 2.2 part (7)
implies that K is a metacompact subset of M. Since M is a Pa-closed space, then K is a closed
subset of M, thus £71(K) is a metacompact set in W due to £ is a metacompact map. So,
L71(K) is a normal subspace in W owing to Theorem 2.3 part (14). As a result, L~1(K) is a
countably paracompact subspace of W due to Theorem 2.3 part (8) and£~1(K)is a Lindelof
subspace of W by Theorem 2.3 part (14). Now, Theorem 2.2 part (3)asserts that £L71(K) is a
paracompact set in W. Hence, £ is a paracompact map.

Next, the countably paracompact map and the metacompact map are intimately linked.

Theorem 3.12: Each countably paracompact map of a Lindel6f space onto a normal space is a
metacompact map.

Proof: Let £: W—M be a countably paracompact map, where W is a Lindel6f space and M is
a normal space. Assume that K is a closed and metacompact set in M. So, K is a normal
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subspace of M by Theorem 2.3 part (14). Then, Theorem 2.3 part (8) implies that K is a
countably paracompact subset of M. Thus, L™1(K) is a countably paracompact set in W due
to L is a countably paracompact map. Hence, £L~1(KK) is a countably metacompact set in W
due to Theorem 2.2 part (5). By Theorem 2.3 part (14) £L71(K) is a Lindelof set in W. Theorem
2.3 part (9) asserts that £~1(KK) is a metacompact set in W. Hence, £ is a metacompact map.

Definition 3.13: A map £: W—M is known as a countably metacompact providing the pre-
image of any closed and countably metacompact set in M is countably metacompact in W.

Theorem 3.14 Each countably metacompact map of a Lindel6f space is a metacompact map.
Proof: Let £L: W—M be a countably metacompact map whereW is a Lindel6f space. Suppose
that K is a closed and metacompact set in M. So, K is a countably metacompact subspace of M
by Theorem 2.2 part (6). Thus, L™1(K) is a countably metacompact set in W due to Lbeing a
countably metacompact map. Indeed, £L71(K) is closed in W by the continuity of £. Theorem
2.3 part (14) asserts that L=1(K) is a Lindelof subspace of W due to £L71(K) is closed in W .
As a result, Theorem 2.3 part (9) implies that £71(K) is a metacompact set in W. Hence, £ is
a metacompact map.

Corollary 3.15: Each countably metacompact map of a Lindel6f and normal space onto a Pa-
closed space is a paracompact map.
Proof: The prove is straight forward by using Theorem 3.11 and Theorem 3.14.

Definition 3.16: A map L: W—Mis known as an S-paracompact providing the pre-image of
any closed and S-paracompact set in M is S-paracompact in W.

Theorem 3.17: Each S-paracompact map of a Hausdorff completely extremally disconnected
space is a paracompact map.

Proof: Let £: W—M be an S-paracompact map such that W is a completely extremally
disconnected space. Assume that K is a paracompact set in M. Theorem 2.3 part (4) implies
that KK is an S-paracompact set in M. Since £ is an S-paracompact map, then £~ (K) is anS-
paracompact set in W. But W is a Hausdorff, completely extremally disconnected space, thus
Theorem 2.3 part (15) asserts that L=1(K) is extremely disconnected set in W. As a result,
L71(K) is an S-paracompact and extremally disconnected set in W, which implies that L= (K)
Is paracompact in W by Theorem 1.2.2. Hence, £ is a paracompact map.

Definition 3.18: A map £: W—M is known as a -paracompact providing the pre-image of any
closed and B-paracompact set in M is B-paracompact in W.

Theorem 3.19: Each B-paracompact map of a Hausdorff, completely extremally disconnected
and submaximal space is a paracompact map.

Proof: Let £:W—M be a p-paracompact map such that W is a completely extremally
disconnected and submaximal space. Assume that K is a paracompact set in M. So, K is -
paracompact by Theorem 2.3 part (6). Then, £~1(K) is a p-paracompact set in W because Lis
a p-paracompact map. Added to, L71(K) is an extremally disconnected subspace of W by
Theorem 2.3 part (15) and it is submaximal of W. £~ (K) is paracompact set in W by Theorem
2.3 part (7). Hence, £ is a paracompact map.

Theorem 3.20: Each B-paracompact map of a Hausdorff, completely extremally disconnected
and submaximal space is an S-paracompact map.
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Proof: Let £: W—M be a p-paracompact map such that W is a Hausdorff completely
extremally disconnected space. Assume that K is a closed S-paracompact set in M. Thus, K is
a B-paracompact subset of M owing to Theorem 2.3 part (5). So,L~1(KK) is B-paracompact set
in W because £ is a B-paracompact map. Added to,£L71(KK) is an extremally disconnected
subspace of W by Theorem 2.3 part (15) and it is submaximal. Theorem 2.3 part (7). implies
that L71(KK) is paracompact. Therefore, £L~1(KK)is S-paracompact in W owing to Theorem 2.3
part (4). Hence, £ is an S-paracompact map.

Definition 3.21: A map £: W—M is known as a fully normal map providing the pre-image of
any fully normal set in M is fully normal in W.

Theorem 3.22: Each fully normal map of a T;-space onto a Hausdorff space is a paracompact
map.

Proof: Let £: W—M be a fully normal map such that W is a T;- space and M is a Hausdorff
space. Assume that K is a paracompact set in M. Thus,KK is a Hausdorff subspace of M because
M is a Hausdorff space and so, K is a fully normal subset of M by Theorem 2.3 part (11). Now,
L71(K) is fully normal in W due to Lbeing fully normal. Hence, Theorem 2.3 part (10) asserts
that £~1(K) is a paracompact set in W. Hence, £ is a paracompact map.

Definition 3.23: A map £: W—M is known as a fully T, providing the pre-image of any fully
T, setin M is fully T, in W.

Theorem 3.24: Each fully T, map of a T; - space is a fully normal map.

Proof: Let £: W—M be a fully T, map such that W is a T;- space. Assume that K is a fully
normal set in M. So, K is a fully T, set in M by Theorem 2.2 part (11). thus, £~1(K) is fully T,
in W due to £ being a fully T, map. Since W is a T;- space, then£~1(K) is fully normal by
Theorem 2.2 part (10). Hence, £ is a fully normal map.

Corollary 3.25: Each fully T,map of a T, - space onto a Hausdorff space is a paracompact map.

4. Weaker forms of compact maps
The principal purpose of this section is to reveal more new and weaker definitions of maps
by using the concept of paracompactness.

Theorem 4.1: Each paracompact map of a countably compact space onto a Hausdorff space is
a compact map.

Proof: Let £: W—M be a paracompact map. Assume that IK is a compact set in M. Then, K is
closed in M, because M of is a Hausdorff space. Therefore, K is also paracompact due to
Theorem 2.3 part (1). Consequently, £~1(KK) is paracompact set in W because £ is paracompact
mapping. Indeed, L7 (K) is a closed in W by continuity of £. Since W is a countably compact
space, so L~ 1(K) is countably compact subspace owing to Theorem 2.3 part (2). Thus, £71(K)
is compact in M by Theorem 2.2 part (2). Hence, £ is a compact map.

Theorem 4.2: Each paracompact map onto a normal and Lindel6f space is a metacompact map.
Proof: Let £L: W—M be a paracompact map where M is a normal and Lindelof space. Assume
that K is a closed metacompact set in M. Since Ml is normal, so K is a countably paracompact
set due to Theorem 2.3 part (8), also we have M is Lindelof, then K is Lindel6f by Theorem
2.3 part (14). So, K is a paracompact set in W from Theorem 2.2 part (3). Thus, £L71(K) is a
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paracompact inW due to £ is a paracompact map. Now, by Theorem 2.2 part (7), £71(K) is
a metacompact in W. Hence, £ is a metacompact map.

Theorem 4.3: Each metacompact map onto a Lindel6f space is a countably metacompact map.
Proof: The prove is straight forward by using Theorem 2.3 part (9) and Theorem 2.2 part (6).

Theorem 4.4: Each paracompact map onto a normal and Lindel6f space is a countably
metacompact map.
Proof: The prove is straight forward by using Theorem 4.2 and Theorem 4.3.

Theorem 4.5: Each paracompact map onto a Lindel6f space is a countably paracompact map.
Proof: Let £: W—M be a paracompact map where M is a Lindel6f space. Assume that K is a
closed countably paracompact subset of M. Since M is a Lindel6f space and K is closed,K is a
Lindelof subspace of M due to Theorem 2.3 part (14). Then, K is a paracompact subspace of
M due to Theorem 2.2 part (3). Consequently, £~1(KK) is a paracompact subset of W due to £
is a paracompact map. Hence, £L71(KK) is a countably paracompact as a result of Theorem 2.2
part (1). Hence, £ is a countably paracompact map.

Theorem 4.6: Each compact map of a Lindel6f space onto a countably compact, normal, and
a Lindelof space is a metacompact map.

Proof: Let £L: W—M be a compact map where W is a Lindel6f space and M is a countably
metacompact, normal, and Lindel6f space. Assume that KK is a closed metacompact subset of
M. Then, KK is normal due to M is a normal space. Theorem 2.3 part (8) emphasizes that K is a
countably paracompact subspace of M. Since M is Lindel6f, thus K is a paracompact set in M
by Theorem 2.2 part (3). Since M is a countably compact space, then KK is countably compact
by Theorem 2.3 part (2). Then, Theorem 2.3 part (5)implies that KK is compact. Therefore,
L71(K) is a compact subset of W due to £ is a compact map. Theorem 2.2 part (13)insists that
L71(K) is a countably compact set in W and by Theorem 2.2 part (15)£~*(K) is a countably
paracompact set in W, therefore £71(IK) is a countably metacompact due to Theorem 2.3 part
(14). But we have W isLindelof therefore, £71(K) is a Lindel6f and countably metacompact.
Theorem 2.3 part (9) asserts that £L71(IK) is a metacompact. Hence, £ is a metacompact map.
Directly, Theorem 4.6 and Theorem 4.3 lead us the next result.

Theorem 4.7: Each compact map of a Lindel6f space onto a countably metacompact, normal,
and Lindelof space is a countably metacompact map.
Proof: The prove is straight forward by using Theorem 4.6 and Theorem 4.3.

Theorem 4.8: Each paracompact map onto a Hausdorff and completely extremally
disconnected space is an S-paracompact map.

Proof: Let £: W—M be a paracompact map where M is a Hausdorff and completely extremally
disconnected space. To show that £ is an S-paracompact map. Assume that K is a closed S-
paracompact subspace of M. Theorem 2.3 part (15) asserts that IK is an extremally disconnected
subspace of M, alsoK is a Hausdorff subspace of Mithus,IK is a paracompact subspace of M due
to Theorem2.3 part (3). Now, £L71(K) is paracompact set in W due to Lbeinga paracompact
map. Theorem 2.3 part (4)implies that £~1(K)is an S-paracompact subspace of M. Hence, £
is an S-paracompact.

Theorem 4.9: Each paracompact map onto a Hausdorff, completely extremally disconnected,
and submaximal space is a f-paracompact map.
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Proof: Let £L: W—M be a paracompact map where M is a completely extremally disconnected
and submaximal space. Suppose that K is a closed and B-paracompact set in M. Since K is an
extremally disconnected and submaximal subspace of W by Theorem 2.3 part (15), then K is a
paracompact subspace of W by Theorem 2.3 part (7). Thus, £L71(KK) is a paracompact set in W
because L is a paracompact map. Consequently, £71(K) is B-paracompact set in W for
Theorem 2.3 part (6). Hence, £ is a paracompact map.

Theorem 4.10: Each paracompact map of a T,-space onto is T;-space is fully normal.

Proof: Let £L: W—M be a paracompact map where W is a T,-space and M is T;-space. Suppose
that K is a fully normal set in M. Then, K is a paracompact set in M by Theorem 2.3 part (10).
This implies £L71(KK) is paracompact in W owing to £ is a paracompact map which follows
L71(K) is fully normal because of Theorem 2.3 part (11). Hence, is a fully normal map.
Consequently, by similar arguments as in Theorem 4.10, the following results are recognized:

Theorem 4.11: Each fully normal map onto a T;-space is fully T,.
Corollary 4.12: Each paracompact map of a T,-space onto a T;-space is fully T,.

Next, Figure 1 illustrates the relationships between certain types of strong paracompact maps
under certain conditions as follows:

domain - Lindelof

Countably ; | Compact Map
Paracompact Map - |
co-domain - Pa-closed co-domain = (Pa-closed + countably compact )
domain - Lindelof domian-( Tr+completely &. d.+submaximal)
Countably B-paracompact
Metacompact Map  co-domain —Fa-closed Paracompact Map
|
Map v ‘
domain ={ Linde I6f + normal) domian-( Hausdorff +completely e.d.) R
Metacompact P P
Ma
Map co-domain - Pa-closed P
domain - T;- space domain - T« space
Fully Normall ’ Fully T4
Map co-domain = Hausdorff co-domain = Hausdorff Map

Figure 1. Relationships between Certain Types of Strong Paracompact Maps

The following figure shows the relationships between certain types of weaker paracompact
maps under certain conditions.
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doman - countsbly compact

Countably Compact Map
Metecompact Map Co-doman|Lind=6f+noma) o0-domain — Hausdor "
B-
Countably paracompact
Paﬁwmpa“ Map oo-domain — Linde & P : Co-domin-| T-=completely 2. d.+submaximal) Map
Map
Metacompact S
Map Co-domain{Lindz 5+ nommal) — co-domian-{ Hausdorff +{ T--completely 2. d ) Map
doman - Tr space i e Fully T,
Fully Normal = 5 Map
Map co-domain — T pace co-domain — Tx- space

[Figure 2. Relationships between Certain Types of weaker Paracompact Maps

5. Composition of certain types of paracompact maps
In this section, we investigate the composition of the strong and weaker forms of
paracompact maps in various cases.

Theorem 5.1: Let W be a Pa-closed and compact space and let M be any space. Then, the
continuous image of any paracompact set in W is paracompact in M.

Proof: Let £L: W—M be a continuous map. Suppose that K is paracompact in W. Since W is a
Pa-closed space, then K is a closed set in W, therefore, K is compact by Theorem 2.3 part (2).
Now, L(IK) is a compact set in M due to £ being a continuous map. From Theorem 2.3 part (1),
L(K) is a paracompact subspace of M.

Corollary 5.2: Let W be a compact space and let Mibe any space. Then, the continuous image
of any closed set in W is paracompact in M.

Theorem 5.3 The composition of paracompact maps is also a paracompact map.

Proof: Let £L: W—M and J: M—[E be two paracompact maps. To show that [ o £ is also a
paracompact map. Assume thatlK is a paracompact set in E, For demonstrating that
(J ° £)"1(K) is a paracompact set in W. We have J~1(K) is a paracompact set in M since J
IS a paracompact map. Thus, L‘l(J‘l(K)) is a paracompact set in W due to, Lbeing a
paracompact map, but £=1(J71(K)) = (J ° £)"1(K). So,(J o £)~*(K) is a paracompact set
in W. Hence, J o L is a paracompact map.

As a direct consequence of employing similar arguments as in Theorem 5.3, the following
results are recognized:

Theorem 5.4: Let M be a Pa-closed compact. If Jo L: W—E is a paracompact map and
J: M—E is a continuous injective map, then £: W—M is a paracompact map.

Theorem 5.5: Let W be a Pa-closed and compact space. If J o L: W—E is a paracompact map
and £: W—M is a continuous surjective map, then J: M—[E is a paracompact map.
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Theorem 5.6: The composition of countably paracompact maps is also a countably
paracompact map.

Theorem 5.7: Let W be a Lindelof, M is a Pa-closed compact and E is Pa-closed. If J o
L: W—E is a countably paracompact map and J: M—[E is a continuous injective map, then
L: W—M isa paracompact map.

Proof: Let Jo L: W—E is a countably paracompact map and J:M—E is a continuous
injective map where M is a Pa-closed compact. Assume that K is a paracompact set in M. Then,
J(K) is the paracompact subspace of E due to Theorem 5.1. Since W is a Lindel6f and E is
Pa-closed, thus J o £ is a paracompact map by Theorem 3.6. Now, (J° L) 1(J(K)) =
LTI H(J(K))) = L7I(K) is a paracompact subspace of W due to J o £ is paracompact.
Hence, £ is a paracompact map.

Theorem 5.8: Let W be a Pa-closed and compact space and E be a Lindel6f space. If J o
L: W—E is a paracompact map and £: W—M is a continuous surjective map, then J: M—E
Is a countably paracompact map.

Proof: Let J o L: W—E is a paracompact map and £: W—M is a continuous surjective map
where W be a Pa-closed and compact space. Suppose that K is a closed countably paracompact
set in [E. Since E is a Lindelof space, then J o Lis a countably paracompact subspace of E
owing to Theorem 4.5 which follows (J o £)~1(K) is a closed countably paracompact set in W.
But W is a compact space, thus W is a Lindel6f by Theorem 2.2 part (14) which implies
(J L) Y(K) is Lindelof and so,(J o £)~1(K) is paracompact. Because £ a surjective
continuous map then, £(J o £) 1K) = L(L™1((J 1(K)))) = J1(K) is paracompact in M
by Theorem 6.1 therefore, J~1(K) is countably paracompact by Theorem 1.2.24. Hence, L is
a countably paracompact map.

Theorem 5.9: The composition of S-paracompact maps is also an S-paracompact map.

Proof: Let £: W—M and J: M—E be two S-paracompact maps. To show that [J o £ is also an
S-paracompact map. Assume thatK is a closed and S-paracompact set in [E, For demonstrating
that(J o £)1(K) is a closed and S-paracompact set in W. Since J~!(K) is a closed and S-
paracompact set in M owing to J being an S-paracompact map. Thus, £L~1(J~1(K)) is an S-
paracompact set in W because £ is an S-paracompact map, but L=1(J71(K)) = (J ° £)"1(K).
So, (J o £)1(K) is a S-paracompact set in W. Hence, J o £ is S-paracompact.

Theorem 5.10: Let W be a Hausdorff completely externally disconnected and M is a Pa-closed
compact. If J o L: W—E is an S-paracompact map and J: M—E is a continuous injective map,
then £: W—M is a paracompact map.

Proof: Let J o L: W—E is an S-paracompact map and J: M—[E is a continuous injective map
where M is a Pa-closed compact. Assume that Kis a paracompact set in M. Then, J(K) is a
paracompact subspace of [E due to Theorem 5.1. Since W is a Hausdorff and completely
extremally disconnected space, thus J o £ is a paracompact map by Theorem 3.17. Now,
(J o L) HJK)) = LTI H(J(K))) = L71(K) is a paracompact subspace of W due to J o
L is paracompact. Hence, £ is a paracompact map.

Next, under certain conditions, the paracompact map is explored as an S-paracompact map,
which can be satisfied by the same method as Theorem 5.10.

Theorem 5.11: Let W be a Pa-closed compact space, and E is a completely externally

disconnected and Hausdorff space. If J o £L: W—E is a paracompact map and £: W—>M isa
continuous surjective map, then J: M—E is an S-paracompact map.
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Proof: Let J o £L: W—E be a paracompact map and £: W—M is a continuous surjective map.
Suppose that K is a closed S-paracompact set in E. Since [E is a completely e.d. and Hausdorff
space, then K is a Hausdorff externally disconnected subspace owing to Theorem 2.3 part (15)
which follows K is a paracompact set in E by Theorem 2.3 part (4). Thus (J o £)"1(K) is a
closed paracompact set in W. But W is a Pa-closed compact space, thus £L(J o £)"1(K) =
LL7Y(JHK))) = g~ 1(K) is a paracompact subset of M by Theorem 5.1. Therefore, 71 (K)
IS an S-paracompact set due to Theorem 2.3 part (4). Hence, J is an S-paracompact map.

As a direct consequence of using similar arguments as in Theorem 5.11, the following results
are established:

Theorem 5.12: The composition of $-paracompact maps is also a 3-paracompact map.

Theorem 5.13: Let W be a Hausdorff completely extremally disconnected and submaximal
and M is a Pa-closed compact. If J o L: W—E is a B-paracompact map and J: M—E is a
continuous injective map, then £: W—M is a paracompact map.

Proof: By Theorem 5.1 and Theorem 2.3 part (6).

Theorem 5.14: Let W be a Pa-closed compact space, and [E is a completely externally
disconnected sub-maximal space. If J o L: W—E is a paracompact map and L: W—M isa
continuous surjective map, then J: M—E is a 3 -paracompact map.

Proof: The prove is clear by using Theorem 5.1 and Theorem 2.3 part (7).

Theorem 5.15: The composition of metacompact maps is also a metacompact map.

Theorem 5.16: Let W be a Lindel6f and normal space, Ml be a Pa-closed compact, and E is Pa-
closed space. If J o L: W—E is a metacompact map and J: M—E is a continuous injective
map, then £: W—M is a paracompact map.
Proof: By Theorem 5.1 and Theorem 3.11.

Theorem 5.17: Let W be a countably compact space and [E be a Lindeldf and normal space. If
J o L: W—E is a paracompact map and £: W—M is a continuous surjective map, then J: M—E
is a metacompact map.

Proof: The prove is clear by using Theorem 4.2 and Theorem 2.3 part (1) and Theorem 2.2 part

(8).

Theorem 5.18: The composition of countably metacompact maps is also a countably
metacompact map.

Theorem 5.19: Let W be a Lindel6f space, M be a Pa-closed compact, and E be a Pa-closed
space. If J o L: W—E is a countably metacompact map and J: M—E is a continuous injective
map, then £: W—M is a paracompact map.

Proof: The prove is clear by using Theorem 5.1 and Corollary 3.15.

Theorem 5.20: Let W be a countably compact space and [E be a Lindel6f and normal space. If
J o L2W—E is a paracompact map and £: W—M is a continuous surjective map, then
J: M—E is a countably metacompact map.

Proof: The prove is clear by using Theorem 2.3 part (16) and Theorem 2.3 part (9) and Theorem
2.3 part (8).

Theorem 5.21: The composition of fully T4 maps is also a fully T4 map.
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Theorem 5.22: Let W be a T, -space and M is a Pa-closed compact space and E is a Hausdorff
space. If Jo L:W—E is a fully T4 map and J: M—E is a continuous injective map, then
L: W—M is a paracompact map.

Proof: The prove is clear by using Theorem 5.1 and Corollary 3.25.

Theorem 5.23: Let W be a T,-space and countably compact and E is a T;-space. If J o
L: W—E is a paracompact map and £: W—M is a continuous surjective map, then J: M—E
is a fully T4 map.

Proof: The prove is clear by using Corollary 4.12 and Theorem 2.2 part (9) and Theorem 2.3
part (16).

Theorem 5.24: The composition of fully normal maps is also a fully normal map.

Theorem 5.25: Let W be a T;-space and M is a Pa-closed compact space and E is a Hausdorff
space. If J o L: W—E is a fully normal map and J: M—E is a continuous injective map, then
L: W—M is a paracompact map.

Proof: The prove is clear by using Theorem 5.1 and Theorem 3.22.

Theorem 5.26: Let W be a T,-space and countably compact and M is a T,-space and E is a Ty -
space. If J o L: W—E is a paracompact map and £: W—M is a continuous surjective map,
then J: M—E is a fully normal map.

Proof: The prove is clear by using Theorem 5.1 and Theorem 2.3 part (11) and Theorem 2.3
part (16).

6. Conclusions

To recapitulate, several types of maps are introduced by using the concept of
paracompactness. These maps are classified based on their relations with the paracompact map
into two forms, namely strong and weaker forms. As well as the links between these maps are
investigated and satisfied under certain conditions. In addition, a new space is initiated which
is utilized in the relations between the maps.
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