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Abstract

The time fractional order differential equations are fundamental tools that are used
for modeling neuronal dynamics. These equations are obtained by substituting the
time derivative of order a, where 0 < a < 1, in the standard equation with the Caputo
fractional formula. In this paper, two implicit difference schemes: the linearly Euler
implicit and the Crank-Nicolson (CN) finite difference schemes, are employed in
solving a one-dimensional time-fractional semilinear equation with Dirichlet
boundary conditions. Moreover, the consistency, stability and convergence of the
proposed schemes are investigated. We prove that the IEM is unconditionally stable,
while CNM is conditionally stable. Furthermore, a comparative study between these
two schemes will be conducted via numerical experiments. The efficiency of the
proposed schemes in terms of absolute errors, order of accuracy and computing time
will be reported and discussed.

Keywords: Fractional order equation, Caputo fractional formula, Finite difference
shames, Semilinear parabolic equation, Implicit Euler scheme, Crank-Nicolson
method.
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1. Introduction

Fractional calculus is a field of mathematics that is concerned with the properties of both
derivatives and integrals of non-integer orders. In fact, this field focuses on solving time-
dependent fractional differential equations (PDEs involving fractional derivatives). The study
of fractional calculus was established when classical calculus started.

Since the last century, fractional calculus was built on important foundations by many
researchers, such as Heaviside, Lagrange Riemann, Liouville, Gr'unwald, Euler, Fourier, Abel
etc. see for instance [1]

Nowadays, fractional calculus has become very popular and it has many applications, due
to the fact that the so called differintegral which is an operator that includes both integer-order
derivatives and integrals as special cases. The fractional integral may be used for describing the
cumulation of some quantity, when the order of integration is unknown, it can be determined
as a parameter of a regression model as Podlubny presents in [2,3]. Moreover, the fractional
derivative is sometimes used for describing damping. In addition, other applications can be
occurred in: the control theory of dynamical systems, optics and signal processing ,fluid flow,
diffusive transport akin to diffusion, probability and statistics, viscoelasticity, electrical
networks, dynamical processes in self-similar and porous structures, electrochemistry of
corrosion, rheology, etc.

Since the last decades, there are various analytical and numerical techniques have been
employed in solving fractional differential equations. Analytical methods include Fourier and
Laplace transformations, and the Green function method [4-6]. However, most fractional
differential equations cannot be solved analytically. Therefore, it is essential to develop
numerical schemes for solving these equations. Many effective methods, such as the finite
difference method, spectral method and finite element method, have been used to solve time
(space) fractional differential equations, see for instance [7-9]. In fact, many authors have
focused on numerical solutions of linear types of time (space)-fractional differential equations,
see for instance [9-16], whereas other semilinear or nonlinear types have been considered by
only a few authors, see for instance [17-21]. However, they are still in the early stage of
research.

This paper is concerned with the numerical solutions of a one-dimensional time fractional
semilinear parabolic equation, using finite difference schemes. Namely, two numerical
approximations are proposed: linearly implicit Euler scheme, and Crank-Nicolson scheme.

The aim of this paper is to show that the proposed schemes are consistent, stable and
convergent. Moreover, they can efficiently be used to find the numerical solutions of the
governed equation.

The rest of this paper is organized as follows: Section two presents the mathematical
formulation of the governed problem. In section three the derivation, consistency, stability and
convergent of the two proposed finite difference schemes are considered. Two numerical
experiments are studied in section four. Finally, some conclusions are given in the last section.
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2. Mathematical Formulation
We consider a one-dimensional time-fractional semilinear diffusion equation with Dirichlet
boundary conditions:

uf =uy + fx,t,u),0<x<1, te(0,T7) 1)
u(0,t) =a@), ul,t) =b(t) ,0<t<T @)
u(x,0) = yp(x), 0<x<1 (3)

where a,b €C(R),0<u, ,f € Cl([O,l] x (0,T) x [0, oo)) and satisfies Lipshtiz condition
with respect to u:
|f(x,t,u1) - f(xrt;uZ)l S L Iul - u’Zl ' \7/u1 'uZ 2 O rL > 0 (4)

And a € (0,1), is the order of the time fractional derivative in Caputo sense [11, 22], which
takes the form:

0%u(xt) 1 tou(x,&) 0¢&
e i-a) fo & (t-§) ()

In fact, equation (1) has many applications, such as it is used to describe transport processes
with long memory, where the rate of diffusion is inconsistent with the classical Brownian
motion model [9].

The existence, uniqueness and stability of problem (1)-(3) can be guaranteed by some
references, see for instance [23, 24]. Throughout this paper, we assume that the solution to
problem (1)-(3) is positive for nonzero time values.

3. Numerical finite difference schemes

In this section, two numerical approximations of problem (1)-(3) are proposed. Namely, the
linearly implicit Euler scheme, and the Crank-Nicolson scheme.
In this segment, the grid dimensions in relation to space and time for the positive integers I and

N are respectively represented by h =% and k =£ .The grid point in the space interval

[0,1] is denoted x; =ih, i = 0,1,2,....,1 and the grid points for time are designated t,, =
nk ,n=0,1,2 ....N. In addition, we denote u;* = u(x;, t,).

3.1 Linearly Implicit Euler Scheme
In this method, equation (1) is approximated at the mesh point (x;, t,,.1) as follows.
¢ The backward approximated formula for the time fractional derivative in equation (1) can be
obtained by approximating the time-derivate in Caputo equation (5), using the backward finite
difference formula [10,25]:
1

uf (0, tner) = oy Be=o s = u™) + 0(k) (6)
b= (s+ 1)1 — s0-a " ¢—-01,2,....1I

¢ Inthe right hand side of equation (1) the second order space-derivative is approximated using
the common central difference formula, as follows:

Loyt gyntd

Uy (X, tygy) = L THEL 4 0(n2) (7)
¢ Finally, the nonlinear reaction term is approximated as follows:
fOtner, W) = fQrtagr,ul') +0(k) (8)
By substituting equations (6), (7) and (8) in (1) it follows that
1 n n+l1-s n-sy _Uter —2ul i+ utt n
T Zs=o bs (W — ) = v + f Ot 0 ) ©)

=1 bs(ulnﬂ_s —u') = r[u?_:'ll - Zu?ﬂ + u{l—+11] + 0 f(xj tyyr Ui ).
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where r:% , 6= k%12 - ).

b= (s+ 1) _ G- " c=0172,....1I.

Xi= Xo+ih ,, thy1 = th+k=m+ 1Dk ,

i = 0,1,2,....,n=01,.,N, =0 ,t,=0,x=1,ty=T
So, equation (8) becomes

[ n+l _ + Z b (un+1 S _ ‘1{1—5)

= rluffi - 2un+1 + ul T + 8f (gt Ul

SO, [uln+1 ul ] Z;1=1 b (un—s u‘l’l+1—S)
= rlufd = 2ul™ + ]+ 6 (g, tpgr, uf')
[ n+l __ Zb (un s _ ln+1—s

+T[ :l++11 2u1‘t+1 + un+1] + 6f(xu n+1 'u )
Thus, (1 + 2r)ul*t — r[u! + w1
= Y01 bs (] = ut ) Ful + 5F (xp by ult)
I=12,....,1-1 ,n=20,1,.... N-1

Forn =0

A+ 2r)u} — 7 [uf + ul 1]—u + 6 f(x, t,ul) (10)
Forn > 0
(14 2rut —r Wi+ w1

=ul + X0 be(ul ™ — ulM ) + 5 (xi, tppr uUl)
So, (1+ 21‘)uz1+1 —ru {‘fll + u{”f] = (2 21"yl

(b s+1 )un s + b u + Sf(xu n+1 'u ) (11)
i =0,1,2, O 1 , 2,
Let U™ = I ‘ =t ug)
u, 1 fl 1
=0,1,2, -1,n=201,2,
The above equatlon can be written in a matrlx form as follows:
AU = U+ 6F° + rV? 12)
AU™Y = F820 (by — by )U™S + by UL + SF™ + Y1
Where:
(1+2r) T 0 o 0
g | v a+2) 0 - 0
0 e e 0 T (1+2r)

(I-1)x(I-1)
Lemma 3.1 [26]

Fors = 0,1,2,..n

eb, > b,y ie. (b;! < byl)

eb, =1.

eh, > 0.

.Z?z_ll(bs — bsyq1) + by = by

.Z?z_ol(bs — bsy1) + by, =1

Theorem 3.1 At each advanced time-level (n + 1), the linear system (12) is uniquely solvable.
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Proof : Since A is diagonally dominant with positive real diagonal entries, then A is positive
definite and nonsingular [27].
Hence, the linear system (12) is uniquely solvable.

3.1.1 Stability Analysis of Linearly implicit Euler scheme

We suppose that ;" is the approximate solution of problem (1)-(3).

Setef* =4 —u',i=201,2,...,I-1 ,n=01,2,...,N .

Clearly, e; satisfies equations (10) and (11):

(1 + zr)eil —-r [ €it1 + el 1] - ei0+6f(xirt1 rﬁ? ) - Sf(xi'tl !u?)

(1+2r)e*t —r el + et = (2 —2V9el + Y21 (bs_y — bs)el ™ + by €
+6 [f(xi: tnt1 rul ) 6f(x1.’yj’ tnt1 'u? )]

Based on (12), the above equation can be written in a matrix form as follows:

.AElz E0+ 6[f(xi;t1’a?)_f(xi’tlﬁu?)]'
.AEn+1 = (bo _— bl)En + (bl - bz)En_l + """ +
(bp—q — n)El + by E® +§8[ [f (xi, t 1 ) = f(x tpenug )] (13)

eE%sgiven, where E™ = I ‘
e/-1

Definition 3.1 [17] For any arbitrary initial rounding error E°, the difference approximation
AU™1 = BU™ + b™ is stable, if there exists > 0 , independent on h, k such that
IE™|| < CIIE®|, or |AB)"|<C n=01,2,..,N.

Theorem 3.2. The fully implicit finite difference formula (10)-(11) is unconditionally stable.

Proof: In order to prove this theorem, we apply the maximum error stability technique [25].
By mathematical induction, we can show that
IE™H < (1 + L) HIE||o
Forn =0, (1+2r)e}—-rlel+ el.]=¢
Let |es| = Maxi<i<i—q |e}| , we have
lep] = (0 +2r)es| =7 [les| + lez|] < (1 +2r)]es| =7 [lepsa] + |ep-il]
<|@+2ret —r(eper +epq )|=|en +6[f O tr, @) ) — £ (2, t1,ud )] | -
< lep| + 6lf (e ta, ) = f (o tr,up ) |
< |ed| + SL|@) —ud| = (1 +8L)|ed]| < (1 + SLIE |l -
Hence
IEM < (1 +SLIE]lo
New, supposes that ||ES||, < (1 + L) |IE®|ls , s= 0,1,2,...,n
Let |ef*| = Max,<i;—1 €]+, we have
lep* | = (A +2n|eg*t| = [[eg™!| + |e*]]
< (4 20)|ep*t]| = v [lept] + Jep2t]
<|(1+2r)eptt—r (egill +e )|
_l(bo - bl)ep Z?: (b s+1)ep_s + bn e;()) + 6f(xpftn+1 'ﬁg ) - 6f(xprtn+1 'ug )l
< (by — by)|e}| + Xr=i(bs — bsy)|el ™| + by |e3| + SL|ef|
< (bo — PONE™ oo + X521 (s — by DIE™ *lloo + by IIE®lloo + SLIE™ || -
Thus
IE™H] < (o — bOIE™ e + 2§21 (bs — bsyDIE™*lleo + b IIE®lleo + SLIE™[loo
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< (bo = b1)(1 + SL)MIE®|, + X1 (bs — bsyr) (1 + 6L *IIE®|l0 + (14
SLY)"by IE°Nl + (1 + SL)™IE® |0 (SL)
< (bo — b)(1 + SLYMIE®leo + X821 (bs — bsyr) 1+ SLMIE Nl + (1 +

SL)"b, IE°Il + (1 * 5L)"|IE°IIOO(5L)

{(bo = b))+ Z(b bs+1) + by } (1 + SL)MIE® oo + (SLY(1 + SLYMIE® |l

=(1+6L)"[1+ 5L]|IE°||oo (1+ L) MIE
Thus I[E™H < (1 + k%72 — L) IE oo < A+ T2 — @)L)"IE®|o
Hence, there exists C > 0, such that ||[E™*1|| < C||E°]|e

3.1.2 Consistency and Convergence Analysis of the fully implicit Euler formula
Let u(x;, t,,) be the exact solution to equation (1) at mesh point (x;, t,,),
=01,2,..,I-1,n=201,2,...,N.
Definition 3.2
F=ulxg ty) —

i

Substitution e* in the |mpI|C|t formulas (10) and (11) yields that

(L+2r)el =7 lefy + eby] = el + 8 f (xpty,u(xito) = 8 f(xty,ud)) + T
(1+2r)el*t —re [_‘fll + el”+11] =

(2 - Zl_a)ein + 2 =1 (bs—l S)eln S+ bn eio +4 f(xi' tpt1,U (xi' tn+1) ) -
8 f(xptner,uft) + Tin+1

where T/*** is the local truncation error.

Theorem 3.3 The linearly implicit Euler formulas (10) and (11) are consistent.

Proof:
Tn+1 =0 bs [u (xi' tn+1—s) - u (xi' tn—s)]
-r [u (xl+1r n+1) t+u (xi—l' tn+1) —2u (xi: tn+1)] ) f(xi' tnt1,U (xi' tn) )
= 12 — )k® [uf (x;, tny1) + O(K)] — 112 — @)k [ty (x;, try1) + O(R?)]
—I2 — a)k*(f (xp, tpe u™) + 0(k)) = 0(k + h?).
Hence, |T/'| < C(k+ h*), i = 0,1,2,...,1—-1,n =0,1,2,...,N
Clearly |T{*| - 0 as h,k — 0, so the implicit Euler method is consistent

Theorem 3.4 There exists C > 0 such that:

le’l<Cc(k+ h?» ,i=01,2,....,0—-1 ,n=01,2,...,N .
Proof:

Define ||E™||o = Max;<i<;—1 le]'|

We prove this theorem using the mathematical induction method
Forn = 1,let |[EY|lo = |ej| = Max;<i<;—1 lef'| , we have

Iepl = (1 +20)|ep| —r [lep] + [epl] < (A +20ep| =7 [leps| + lep-al]
<|(1+2r)ep — 7 (eps1 +ep_y)|

= |5f(xp, ty, ux;, ty) ) — Sf(xp,,tl,ug) + Tp1|

< |6f(xp,t1,u(xl-, to) ) — Sf(xp,tl,ug)| + |Tp1|

<éLled| + || = |} < C(k+ Rh?).
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Hence, ||EY||o < bytCi(k + hz) C,=C
Now, suppose that ||[ES||e < Csbsti(k+ h?),s = 0,1,2,...,n
Let |ef*!| = Maxy<ici—1 |e”+1|
lep ™ = L+ 20)|ep™| —r[leg™*| + [ep*|]
< e 2nle| —r [legit] + [ep ]
< |1+ 2r)eftt —r (efit + e
= |Z?=_01(bs - bs+1)ep - + Sf(xp: n+1'u(xp' n)) Sf(xp’tn‘i‘l'ug) + TI;H—ll

Z(b be)|ens| + 6Llep| + |17+
< T35 — o) IE™ Too + SLIE™ s + |72
Z(b bsi1) Cooshpls_1(k + h?) + SL[C, byt  (k + R*)] + C(k + h?)

< Z(bs  beuy) Cobit(k + h?) + SL[C,b7 (k + RD)] + C(k + h?)

s=0
Let C* = max {C,Cy,C,, .......Cp}
Thus

e;t+1| <

Z(bs — bgyy) + by + 6L| b7IC (ke + h2)

= (1+6L)b;1C*(k + h?)
Thus, there exists C,,,; > 0 such that
IE™ oo < Cpyabnt(k + R?).

This means the implicit Euler approximation formulas (10) and (11) are convergent with the
order of accuracy: O(k + h?).

3.2 Crank Nicolson Method

The goal of this section is to derive the Crank-Nicolson scheme for equation (1), which is
one of the most popular methods in practice. Moreover, it has a high order of convergence in
both space and time.

In order to approximate equation (1) and (5) at the mush point (xl-, t, +1>, we use the following
approximations [10,13]:

1
%y n+>

un+1 n
= [l S (W — Wams) U — Wyl + o (( )|+ 0k
9%u n+§ _ [( WL zun+1+u;l+11)] N [(ui+1+ —2ui+ui_1)] +0h?).

dx2 |l 2h2 2h2

5= m’ Wo=o [(S 4 %)(1—6{) B (S B %)(1—0()]

The nonlinear term can be approximated using Taylor expansion [19]:
3 1
f (xl-, t,, LU (xi, tn+1> ) =f (xi,th,l ,Eu(xi, tn) — > u(x;, tn_1)> + 0(k?)
2 2 2
3 1 -
Thus f (xl-, tn%,u (xl-, tn%)) =f (xi'tn+15 ,Eu{‘ -3 ul 1) + 0(k?).

From above forms, we can get the Crank — Nicolson approximated formula for equation (1) as
follows:
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n-1 uttl - oy
ol + (~ o ) S _ i ul + i i
w1l Wn—s+1 Wn-s) Ui Wn U; o 21-a

s=1

= m[(u?:ll + =2ut D+ (ufg + —2uf + uly)]

3 1 -
+f(xi,tn+%,zu? - Eu? b,
Multiplying both sides of the last equation by § = k%72 — a)21~% ,yields that:
(1 + rup*? _g [ulf + w' ] = (1= 2%, — ruf +§ [l + wi ]+

_ - _ 3 1 po
21 YR Wnes — Wpogr U + 2% wyu + 6f (xi'tn+1'5u? - Eu? 1) (14)
2

2

(1-a) (1-a)
_ _ 1- -9 — 1 (<1
Where 6 = k%712 — a)2™%,r =g W = [(s + 2) (s ) ]
For n = 0, this formula becomes as follows:
3
(14} —g [ul,, + ut,1= 01— ru? +§ [, + ud ]+ 6f (xl-, t .1 ,Eu? )
2

Lemma 3.2 [13]
Fors = 0,1,2,...,n
e w,>0
hd Ws+1 < Ws ' Ws_-l-ll > Ws_1
° Z?=_11(Wn—s - Wn—s+1) + W, = wy.

The Crank — Nicolson difference formula (14) can be written in matrix form as follows:
{ AU'= BU®+ 6F°+ zZ™ }
AU™ = BU™ + 27 Y0 (Wpes — W)U + 217w, U0 + 6F™ + 27
(15)

- r
1+r =5 0 - 0
— T e 0
A= 147 5 0
. . . 'c r'c
—=1
0 0 2 r (I-1)x(I-1)
_ _ r
(1-21 j‘wl—r) > 0o - )
— r
B— 2 (1-2"%w;—1) - 0 w0
. .- .- .- r .- .-
- 1 —21-« —
0 0 7 ( wi— 1) (1-1)x(I-1)

3
Un = (u}‘,u?,u’;, ""u?—l) ’ Fn = (fln' f2n1f3nl 'flril) 1fi0 = f(xi'tl'zu?>'
2

3 1 — r

n _ n n-1 — n+1 n n+1 n

fin = f(xi;tml»gui Ui ) WA E(uo +uf,0...0,uf™ +upf).
2

Theorem 3.5 At each time level, (n + 1), the linear system (15) is uniquely salable.

Proof: Since A is diagonally dominant with positive real diagonal entries, then A is positive
definite and nonsingular [27].

Hence, the linear system (15) is uniquely solvable.

3.2.1 Stability Analysis for C.N. Method

Suppose that i}* is the approximate solution of equation (1)
Sete/'=u'—-u',i=01,2,..,1-1,n=0201,2,...,N .
Define |[E™|l = Max;<i<;—1 lef']
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Forn = 0,
3
(Ut r)el =S leb + elal = (=206l + 5 [efhy + elal+ 6 |f (xypts,Sad) ) -

f(xi,h,iu? )]
2 2
Forn> 0,

(L+r)ef*t == [efit + el

T —_ —_
= 1—-2"%w, —r)el + > lefi, + el ] + 21 NI Wnes — Wyosi1) e; +

- 1 n— 1 —
2% el + 6 [f(xl-, n+1,—u Eu? 1)— f(xl-,tn+1,—u Zu? 1)]
Based on (15), the above error formula can be written in matrix form as follows:
AE' = BE® + §G°

n-1

AE™! = BE™ 4 21-¢@ Z(Wn s — Wp_gs1)ES +217%w, EO + 5G™

E%is given, where E™ = l ‘ =
eI 1 91 1

3 1
n —~no_ _~n 1 _ ) —n_ _,n-1
gi = f Xi) n+%'2ul > U f(xl,tn%,zul > Ui )

i=01,2,..,I—-1, n=201,2,...,.N
Theorem 3.6 The C.N. finite difference approximation is stable, if
(1—2"%w, —7) >0
Proof: To prove this theorem, we use the Mathematical induction
For n= 0,set |ei| = Max,<i<;—1 |€}| , we have

el = @ +7)ed| =% (2lep])

< (1 +1)ep] == (lepra| + lep-a] )

< +)ed =5 (o + )|

= ‘(1 —ey+3 (eprrtepa) +8 <f ) ‘f("v'tléug))‘
2 2

< = DIE o + 7 (IEl) + 8L [2 (38 — )| .

3 3
<%l + 2 OLIE Nl = (14 26L) 1B < (1 + 26L) 1)L

Thus, |IE | < (14 26L)IE°]|
New, suppose that ||ES||e, < C5 ||E®||s , Wwhere C = (1 +268L) ,s = 0,1,2,....,n

For n+1, let|ef*!|= Maxisisi—y le?**|, we have
e = A +leps’| =3 [2lep™|].

< (1 +0ep™] =3 (lepii| +[epi])

< |(1 +r)en+1 (ezr)l_'-l_-ll n+1)|

< |(1 — 2t Wi — T)ep + > (ep+1 + ep—l )| + |21—a Zggll(wn—s - Wn—s+1) ezs)l +
21‘“Wn|e3| +6 |f (xp,tn%,%ﬁg ug 1) - f(xp,tm%,;u{,‘ u{,‘ 1) )
<(1-2"%w,—7) e} + 2 (|ep+1| +len s ) + 21wy led| + 2 X (wys —
Wy_s+1) l€] + 6L E (ﬂp - up) += (u” 1 ﬁg‘l) | .
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< (1= 2% wy =) [[EM + 7 [|E™M| + 27wy, [ep] + 207 T2l (Wnos — Wnogs) lef] +
oL {2 lep] +35 lep~1]
<@1-2'- “W)C"IIEOII + 207 % BN + 207 B (Wpos — Wyoin) C° IECI +
5L |3 cm IECN +35 cmIIECH] .
< (1-2"%W;) € B + 20w, CM (IEON + 2 RSt (Wpe — Wigr) CT IIEC|| +
26L C" ||E°
=[1— 2%, + 2%, + 24 S0 (Was — Waosir) + 28L1CTEC].
=(1+ 26L ) C™||E°|| = (1 + 26L )™ ||E?] .
Thus
IE™ e < (1 + 28L Y™HIEO .
So, IE™Ml < (14227 %k* 12 — a)L)" |E°|o,
<A +227T*NM2 — a)L)"MIE®l
Hence, there exists C > 0, such that ||[E™ || < C||IE°||
3.2.2 Convergence Analysis of Crank — Nicolson Method
Let u(x;, t,) and uf* be the exact and numerical solutions of problem (1) at mesh point
(x;, t,,), respectively,i = 0,1,2,...,I-1 ,n=0,1,2,....,N.

Definition 3.3
. = u(le n) [ ’

n
0
:O
ell

By Substitution e/ in the C.N. equation, it follows that
Forn =0,

1
(2l =5 e+ ela) = 6|/ (ot duGeo)) = (g 2u8)| + 77
2 2
Forn >0
(e =T [ef + e

= (1—21aW1—T’)€?+2[1+1+ el 1]+ 21 “Z (WTLS_WTL—S+1)el§+

3 1 3 1 -
9 [f (xi: Lt S Ul ty) = Sulx;, tn—l)) —f (Xi, Lk SUL T U 1)] + T
Theorem 3.7 There exists C > 0 such that:
IT;| < C(k** + h?)
Proof: For simplicity, we denote u;'= u(x;, t,,) as the exact solution to the problem (1).
1
n+

n+l _ . n 1-a n 1-a y'n—1 N 1-«a
Ti’ = (u u')+ 2 wiu; — 2 Yo Wnos — Wrogr) uj — 2 Wn —
n+1 n+1 n+1 TI.n n n 1 n-1
_[ul+1 T sy —2u ] _E[ui+1 +t U —2 ui,j] —6f (xi' n+l ,—u - oUW ) :

=k*[M2— a) 2@ [uff (xi, tn%) + O(kz_“)]
— k%2 — a) 21 [uxx (xl-,t 1) + O(hz)]
—k*M2 - a) 21~ “[f (xl, LS 1) O(kz)l

=k*I (2 — a) 27 %[uf — uy, — f]i Y2y k*IM(2 — a) 2172 [0(k?>*) + 0(h?) + 0(k?)]
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1
Thus ‘Ti'” 2| < C(k?a + h?)
Remark 3.1 Based on Theorem 3.7, the C.N. formula (14) is consistent.
1
ie. ‘Ti'”z >0, h,k 0.

Theorem 3.8 If (1 —r — 277%w,) > 0, there exists ¢ > 0 such that
le | <Ck**+h?),i=1,2,.., -1, 0=0,1,.c......,N
Proof: Define ||[E™|| = Max <i<;—1 l€]*].
By using mathematical induction, we can prove this theorem as follows
Forn = 0, let |[E |l = Max,<i<;—1 |ef]| = |ed| -
lef] < les|= (1 +1)es| =3 (2]ep]) -

< (@ +n)ep] = (lepsa| +lep-al ) -

r
< |(1 +7)e, ~3 (epiq +e;_1)|
1

= ‘6 [f (xp, tl,iu(xp, t0)> i (xp, t%,%ug) l + TiE

1
T.f

1

1
<6L |u(xp,t0) ul| + 7 = |72 < cteze + h2)

3
= 6L§|€lol+

Thus |e1| < S (k27 + h?).

(21 a

Cy
||E1||s(21a ) G rnty,c=ac

Now suppose that

1Bl < () (27482, € >0 fors =12,..,m
Set M,= ,f-‘;v —, andlet M = Max {C,Cy,Cpy ... ,Co} .
For n + 1 Let [[E™|o = Max;<i<i— 1 e = |ep*?

e < |ep*t| = a+n leg [ =35 [2]ep™]] -

< (1+7) Iez’f“l [|e£++11|+ Ien“l]

<|@+reptt = L (epit+eptt)|.

:‘(1 — 217w, — T)e{} + 5 (91191+1 + 91191—1)"'21_“ Z?;ll(wn—s — Wp_s41) & +

3 1 3 1 . n+ >
6f<xp, tn%,zu(xp, tn) — E u(xp,tn_1)> 5f (xp, SUF = S Up 1) +T, 2‘
(1= 2w = DIE™ oo + 7 |IE™ |0 + 277 Zszl(Wn—s — Wnos+1) IE¥ e +
1
n+=

2

3 1 _
5L 2 e + 3 lep|| +
< (1= 2% wy) My (R*7% + h?) + 217 B Wnos — Wyogyr) My (K27 + R?) +
SL FM + an_l] (k=% + h?) + C(k?~% + h?).
<[1- 22w+ 27y Mw, s — wy_sy1) +26L+ 21_“Wn](
=[1+26L] (5= )M(kz‘“+h2).
Thus IE™ oo < Cort (Gmag) (290D, Coyy = [L4+28 LIM

M 2— 2
aWn)(k @4 p2),

21=
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4. Numerical Results and Discussion
In this section, two numerical experiments are presented to show the efficacy and accuracy
of the proposed methods, using Matlab (R2020a) software. For each example, we take different
size-meshes: (I = 5,10,20,40). In order to make sure that the stability condition of Crank-
Nicolson is satisfied and to increase the order of convergence, the time steps are chosen
according to the following formula:
1

_o(1-a@) a (1-a) (1-a)
k < [M . Where w, = [G) Y (%) a] (16)

2-Ar(2-a)

Clearly, with this time-stepping technique, the order of convergence for both IEM and CN
methods is O(h?). However, with this formula, we cannot take a small value to o, because in
this case the time step becomes too small and that leads to a very large mesh-size with respect
to time.

Moreover, we present the maximum absolute errors that arise from using the proposed
numerical schemes, using the formula: E;; = max lu(x;, t,) —uit|. In addition, the
: max

1=ns<N-1
numerical order of convergence (NOC) is computed using the formula [19]:
log —%h’k
Shy = __\"hk/
' log(2)

4.1 Numerical Experiments
Example 4.1
Consider the following one-dimensional time fractional semilinear diffusion equation:
Uf = Uy + (I'(2 + )t — t(+D)ex — g2x¢2014a) 4 g2
0<x<1, 0<t<1
u(0,t) =t** | u(1,t) = et ,u(x,0) = 0,
with the exact solution: u(x,t) = eXt1*<,

In Table 1, we present the maximum absolute errors (MAE) and numerical order of
convergence (NOC), and the central processing unit times (CPUTS) in seconds that arise from
using the linearly implicit Euler method and Crank-Nicolson method for example 4.1, by taking
a = 0.9 and different space and time steps. To support the numerical findings, Figure 1 shows
the numerical simulations of the exact, IEM and CNM solutions for example 4.1, with h =
1/40,and a = 0.9.

Table 1: Maximum absolute errors, numerical order of convergence and CPUTS, obtained from

using Iinearlz imEIicit Euler and C.N. methods for examEIe 41, =0.9

: Epk
0.0239 0.0031 0.0564 3.7610e-04 0.1857
0.0051 6.1825e-04 2.3260 0.1106 1.1217e-04 1.7454 0.1899
0.0011 1.2448e-04 2.3123 0.2194 3.0727e-05 1.8681 0.2649

2.3492e-04 2.5316e-05 2.2978 4.2914 8.0831e-06 1.9265 4.4344
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Exact IEM CNM

Figure 1: Exact, IEM, CNM, solutions for Example 4.1, with a = 0.9, h = 1/40
Example 4.2
Consider the following one-dimensional time fractional semilinear diffusion equation:

2t
u?‘=uxx+<m—t2>e"—t381'5"+u3/2, 0<x<1 t>0

u(0,t) =t?, u(lLt)=et?>, ulkx0)=0
With the exact solution: u(x, t) = e*t?

In Table 2, we present the maximum absolute errors (MAE) and numerical order of
convergence (NOC), and the central processing unit times (CPUTS) in seconds that arise from
using the linearly implicit Euler method and Crank-Nicolson method for example 4.2, by taking
a = 0.85 and different space and time steps. To support the numerical findings, Figure 2 shows
the numerical simulations of the exact, IEM and CNM solutions for example 4.2, with h =
1/40,and @ = 0.85.

Table 2: Maximum absolute errors, numerical order of convergence and CPUTS, obtained from
using linearly implicit Euler and C.N. methods for example 4.2, with « = 0.85

CPUT Enk , CPUT
0.0172 0.0021 ... 0.0787  3.9276e-04 ... 0.0903
0.0034 3.8605e-04 24435 00796  1.2024e-04 17077  0.0849

6.6096e-04 7.3954e-05 2.3841 0.4256 3.2835e-05 1.8726 .05558
1.2938e-04 1.4894e-05 2.3119 12.4110 8.5879¢-06 1.9349 14.3438

Exact IEM CNM

Figure 2: Exact, IEM, CNM, solutions for Example 4.2, with « = 0.85, h = 1/40
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4.2 Discussions of Numerical Results

Tables 1 and 2 show that for each method, the MAESs decrease, as we refine the space (time)-
steps. Moreover, for each fixed value of a and time (space) steps, the MAEs of CNM are less
than the MAEs of IEM. In addition, the NOC of both IEM and CNM are in a good agreement
with the theoretical one. Furthermore, the required CPUTS for both IEM and CNM increase, as
we refine the space (time)-steps. On the other hand, at any fixed space (time) step, the required
CPUT for both IEM is less than the required one for CNM. In addition, from Figures 1 and 2,
it can be easily noticed that the IEM and CNM solutions are in good agreement with the exact
one.

5. Conclusions

In this paper, two numerical finite difference schemes: the implicit Euler scheme and the
Crank-Nicolson scheme are proposed to solve a one-dimensional time-fractional order
semilinear parabolic equation with homogeneous Dirichlet boundary conditions. The
consistency, stability and convergence of the proposed methods are studied. In addition, two
particular test cases are considered. We prove that the IEM is unconditionally stable, while
CNM is conditionally stable.

The numerical results show that the two proposed methods are found to be in agreement
with the theoretical computational analysis. It is also observed that with the proposed time-
stepping formula (16) the CNM provides a more accurate strategic solution with less errors than
the ones obtained from IEM. However, the numerical orders of convergence for both methods
are close to 2, and that confirms the theoretical results. Moreover, the required CPUTS for both
IEM and CNM increase, as we refine the space (time)-steps. Moreover, at any fixed space (time)
step, the required CPUT for IEM is less than the required one for CNM.
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