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Abstract  

     Complex detection in protein-protein interaction (PPI) networks is one of the major 

issues facing scientific study in biological networks. In PPINs, proteins are distributed 

differently as groups (complexes). These groups can be identified as having a great 

internal density in the number of edges inside the groups while having the least 

possible number of edges between these groups. The most common methods for 

finding such complexes are evolutionary algorithms (EAs), which have been used 

widely in literature for this objective. Despite the reliability of these complicated 

detection models, they are mostly based on topological (graph) qualities, and the 

biological implications of the PPI networks have been rarely explored. In this 

research, EA with mutation-based gene ontology is developed, particularly in the 

mutation part where the functional annotation of the protein has been considered using 

gene ontology structure. The experimental results prove the reliability of the proposed 

method using standard validation measures. It also outperforms the state-of-the-art 

method in terms of the prediction ability and quality of the complexes found. 

 

Keywords: Complex detection, Evolutionary algorithm, Protein complexes, Gene 

ontology, Functional Annotation. 

 

البروتينية التفاعل  شبكاتفي  معقداتال لكشف علم الوجود الجينيخوارزمية تطورية قائمة على   
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  الخلاصة 

الرئيسية التي تواجه    اكل المش  ى( أحدPPINsبروتين )   - يعد اكتشاف المعقدات في شبكات تفاعل البروتين        
  ، يتم توزيع البروتينات بشكل مختلف كمجموعات )معقدات(PPINsالدراسة العلمية في الشبكات البيولوجية. في  

يمكن تحديد هذه المجموعات على أنها تتمتع بكثافة داخلية كبيرة في عدد الحواف داخل المجموعات مع    حيث 
هذه   مثل  على  للعثور  الأكثر شيوعًا  الطرق  احدى  المجموعات.  بين هذه  الحواف  من  ممكن  أقل عدد  وجود 

لتحقيق    ة على نطاق واسع في الدراسات السابق  استعمالها (، والتي تم  EAsالمجمعات هي الخوارزميات التطورية )
كشف المعقدات، إلا أنها تعتمد في الغالب على الصفات  في  نماذج  هذه ال هذا الهدف. وعلى الرغم من موثوقية  

مع علم    EA. في هذا البحث، تم تطوير  PPIونادرًا ما تم استكشاف الآثار البيولوجية لشبكات    الطوبولوجية،
لا سيما في جزء الطفرة حيث تم الأخذ بنظر الاعتبار التعليق التوضيحي    الوجود الجيني القائم على الطفرة،

  باستعمال هيكلية علم الوجود الجيني. أثبتت النتائج التجريبية موثوقية الطريقة المقترحة    باستعمالالوظيفي للبروتين  
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من حيث القدرة على التنبؤ وجودة  السابقة  أيضًا على أحدث الأساليب   تفوقت  امقاييس التحقق القياسية. كما أنه
 المعقدات المستكشفة.

 
1. Introduction 

     Biological networks of protein-protein interactions (PPINs) are one of the current trends that 

have been embraced in the field of cooperation between computer scientists and biologists. 

These special types of biological networks are used to model the physical interactions of a cell’s 

components [1–4]. Recently, several methodologies have been employed to obtain a complete 

visualization of biological networks. They extract relevant information from these networks to 

provide a deep sense of the complicated biological function inside the cell, thereby 

understanding its biological behavior and developments [5].  

 

     Proteins often interact with other proteins to perform the same biological function, or they 

can be connected to certain biological processes [6]. Generally, each protein is made up of a 

group of genes, whose number varies depending on the protein. Biologists have discovered that 

functionally similar genes are closely coupled to one another in a protein network, and these 

interacting proteins may carry out the same process or disease phenotype in the event of 

disruption [7] and [8]. Gene ontology (GO) is a structured way of organizing genes according 

to their different characteristics, such as their functions; it assigns a unique code to each gene. 

In the GO structure, the information about gene function is divided into three groups based on 

their biological traits, and each gene is derived from a lineage of genes known as ancestors, 

which are linked in a way that prevents cycles; hence, this structure is realized as a directed 

acyclic graph (DAG) of expressions and their interactions [9]. 

  

     Complexity detection in PPI networks is one of the primary difficulties that has taken up a 

field in the scientific research of biological networks, wherefore there is a competition to 

develop powerful algorithms that produce accurate information about the structure of these 

networks. This is because many diseases are the consequence of changes in the interaction 

patterns of proteins, and the identification of such interactions contributes to many applications 

in disease diagnosis [4]. Considerable attempts have been carried out to detect complexes 

(clusters) in PPI networks [10] and [11]. An overview of the main methods has been presented, 

categorized, and discussed. The prominent ones that show significant performance against other 

competing methods are evolutionary algorithms (EAs) [12]. In this paper, a new approach to 

complex cluster detection in a PPI network based on EAs is proposed. This proposed method 

employs EA with a topology-based fitness function to extract complexes accompanied by 

heuristically based mutations, where functional annotation, which is obtained from GO to 

indicate connections between proteins based on their biological information similarity, is the 

key guide for evolving good solutions. An experimental performance evaluation has been 

provided based on some of the well-known validation measures to prove the reliability of our 

proposed method. Also, the results returned by the EA with a heuristically based mutation have 

been compared with those obtained by the main EA to further assess its performance.  

 

     The rest of this paper is organized as follows. Section 2 is devoted to providing an ample 

background for the related work concerning our research. Section 3 describes in detail the 

proposed heuristic-based GO operator and its integration with the main EA algorithm. 

Experimental evaluation, comparisons, and discussion are illustrated in Section 4. Section 5 

concludes the paper.  

2. PPINs complex detection: Related works 

     In the literature, different clustering algorithms have been tested, analyzed, and designed for 

the purpose of extracting complexes from PPINs. Some early approaches have been presented 
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in  [12] and distinguished into five specific classes with respect to different topology-based 

fitness functions. The most promising class with an outstanding result is population-based 

stochastic search (PS), where the genetic algorithm (GA) is the base algorithm for most of the 

developed algorithms that have been applied to PPINs. For instance, chaotic GA (CGA) has 

been proposed in  [13] to detect as many protein complexes (near maximal cliques) as possible 

through adopting chaotic variables to boost the range of the initial population as the primary 

modification. Then, to prevent the disturbance of good solutions in every generation, CGA 

added chaotic disturbance based on standard GA operations to put solutions with the highest 

fitness values directly in the next generation. Binary representation has been selected to describe 

the solution, where 0 is the score for the edge being survived in the next generation and 1 

otherwise. Hence, the length of the chromosome is the number of the network edges. Another 

approach that has been indicated by Pizzuti in [12] is the improved immune genetic algorithm 

(IGA) proposed in  [14]. IGA detects protein complexes using the concept of creating a 

population of variable-length antibodies inspired by the artificial immune system. Each 

antibody is represented by a permutation of integers (the vertices), and additional bits with value 

0 to indicate separation between two vertices belonging to the same cluster or with value 1 to 

indicate separation between two clusters. Therefore, each antibody has a length of 2λ−1, where 

λ denotes the number of vertices in the odd positions and λ − 1 is the number of separators in 

the even positions. And because antibodies have variable lengths, the value -1 is used to indicate 

values that are not contributing to the calculation of the fitness function. Besides these two 

approaches, Pizzuti has also referred to her past work with Rombo (named GA-PPI) proposed 

in  [15] and  [16], wherein they conducted extensive experimental evaluations using different 

topological-based fitness functions in an attempt to deeply inspect and explore the capability of 

GA to detect complexes in PPI networks. For the individual representation, they adopted the 

concept of “graph adjacency,” where each individual consists of 𝜇 genes corresponding to the 

nodes (proteins) of the graph modeling the PPI network. Two values 𝑖 and 𝑗 have been used to 

denote a link between two proteins 𝑖 and 𝑗, that is the 𝑖𝑡ℎ(𝑗) protein belongs to the same cluster 

𝑘 of protein 𝑖, as illustrated in Figure 1. 

 

 
Figure 1: Individual representation 

 

Recently, a new method to detect complexes in PPI networks has been introduced in [17] based 

on the well-known decomposition-based multi-objective evolutionary algorithm (MOEA/D) of 

[18]. In this method, MOEA/D has been coupled with two topologically conflicting objectives 
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concerning inter- and intra-community scores to rank the associated clusters of the PPI network 

accordingly. 

 

     According to what has already been reviewed, it is clear that no research has been conducted 

on the use of EA mutations that are based on the functional annotation of genes to enrich the 

PPI network clustering analysis and enhance the exploitation ability of the algorithm.  

 

3. EA with mutation-based functional annotation   

     EAs are methods for solving problems of the NP-hard type: problems that cannot be solved 

in a certain amount of time or that take a lengthy period to solve. EAs’ main procedure is 

comparable to natural selection in that it always retains the strong organs while removing the 

unfit ones from future generations; as a result, EAs have always been used to solve complex 

engineering optimization problems.  

 

     Basically, EAs divide the search space of an optimization problem ℱ(𝑋) into a set of 

solutions that is denoted by Ω and referred to as the “search space size,” where |Ω|∈ ℕ denotes 

the number of candidate solutions. Customarily, the evolution task is performed on a randomly 

generated subgroup of Ω known as population of individuals, designated by ℙ𝑝𝑠, with a size of 

𝑝𝑠, where 𝑝𝑠 ∈  ℕ, and ℙ𝑝𝑠 =(𝑃1, 𝑃2, … , 𝑃𝑝𝑠). Each individual 𝑃 is the genotype representation, 

the individual representation is depicted in Figure 1, along with its corresponding phenotype 𝑋, 

in which these phenotypes are evaluated using a fitness (objective) function that produces 

values used to explore different parts of the search space. In this work, the optimization problem 

𝑀𝑖𝑛 ℱ(𝑋), namely internal density (ID), is used as a metric for measuring a cluster's internal 

edge density. That is, ID provides a strategy for partitioning based on the density of the internal 

cluster edges. Equation (1) describes ID as a minimization problem to evaluate a candidate 

solution 𝑃, where 𝑃 is a set 𝐶𝑜 = {𝑐1, 𝑐2, …, 𝑐𝑙} of clusters and l is the number of clusters in 

𝑃.  

 

𝑀𝑖𝑛  𝐼𝐷(𝐶𝑜) =  ∑ 1 −
𝑣𝑖

𝐶𝑖(𝐶𝑖 − 1)/2

𝑙

𝑖=1

 (1) 

 

Where 𝑣𝑖 is the number of cluster 𝑐𝑖’s internal edges, and 𝐶𝑖 is the cardinality of cluster 𝑐𝑖. The 

role of the ID model in EA is to evaluate the quality of solutions and produce outputs that assess 

the robustness of these solutions to solve the complex detection problem. Depending on these 

outputs, EA behavior is directed towards increasing the chance for good individuals to appear 

in future generations. Consequently, an implementation of a series of operations known as 

population transformation is performed on population ℙ𝑔 to generate a new population ℙ𝑔+1, 

where 𝑔 is the generation index. Firstly, tournament selection (𝑆) is applied to filter out the 

good solutions in the current population with respect to the same population size and transfer 

them into a mating pool. A uniform crossover (𝐶) with 𝑃𝑐 probability is then applied to maintain 

solution diversity. Finally, the mutation (𝑀) operator is performed with 𝑃𝑚 probability to 

increase the gene’s variations and likely to ensure that the population is not going to fall into a 

local optimum. All candidate solutions in ℙ𝑔 are subjected to these successive operators. 

Eventually, population transformation is continued throughout each generation until a 

maximum number of generations 𝐺 is reached, and ℙ∗ should contain the near-optimal solution, 

𝑃∗ = [𝑝1
∗, 𝑝2

∗, … , 𝑝𝑁
∗ ] [19]. 
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3.1 EA mutation-based GO  

     In this work, a protein’s functional annotation in GO is used as a heuristic guide for the 

mutation operator to alter the population genes (proteins); therefore, we named it mutation-

based GO. As such, our proposed complex detection technique combines the complete 

procedure of EA with the protein functional annotation intervened in the mutation operation as 

a process for improving the individual quality, as stated in Algorithm 1.  

 

     Conventionally, every protein is functionally represented by a direct set of genes. According 

to the Gene Ontology, these genes are categorized into three classes: molecular function (MF), 

cellular component (CC), and biological process (BP). These three classes of genes inherit their 

traits from their ancestors, and so forth; as such, these genes are structured into a directed 

acyclic graph (DAG), as depicted in Figure 2. Then, this protein’s characteristic has been 

exploited to construct a symmetric matrix 𝑀 of size 𝑁 ×  𝑁, in which its entries are values 

generated from the functional biological data of GO that give the intensity (ratio) of proteins’ 

interactions. The rows and columns of this matrix are labeled with the proteins’ index and hold 

values between 0 and 1. If protein 𝑖 has a mutual topological interaction with protein 𝑗, then 

both entries (𝑖, 𝑗) and (𝑗, 𝑖) are assigned to the same value. Therefore, our new method is based 

on the strength of the similarity scale between proteins with respect to the three gene ontology 

classes, each with its own direct lineage as DAG. 

 
Figure 2: Proteins’ direct and indirect genes as derived from GO data 

 

     To calculate the similarity intensity of interaction between proteins 𝑖 and 𝑗, we adopted the 

well-known Jaccard similarity (JS), as described in Eq. (2).  

 

𝐽𝑆(𝑖𝑖, 𝑗) =  
|𝐺𝑖 ∩ 𝐺𝑗|

|𝐺𝑖 ∪ 𝐺𝑗|
 (2) 
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Where 𝐺𝑖 and 𝐺𝑗  denote the group of genes (direct and indirect) for proteins 𝑖 and 𝑗, 

respectively. 

     As such, when mutation occurs, with regard to 𝑃𝑚 , on any of the proteins involved in 

individual, 𝑃𝑘(𝑘 ∈ {1, … , 𝑝𝑠}, this protein 𝑝𝑖,𝑘 (𝑖 ∈ {1, … , 𝑁}) is relocated from its current 

complex 𝑐𝑐𝑢𝑟 to one of the remaining complexes based on a set of steps that must be performed 

over the 𝑙 complexes  of 𝑃𝑘, as follows: 

• For 𝑐𝑐𝑢𝑟, calculate using Eq. (3) the sum 𝑆𝑖𝑛 of the values in 𝑀 corresponding to the 

intersection of 𝑝𝑖,𝑘 with the proteins in 𝑃𝑐 = {𝑝𝑗,𝑘| (𝑝𝑗,𝑘, 𝑝𝑖,𝑘)} where 𝑗 ∈ {1, … , 𝑁} that are 

topologically connected to it and both 𝑝𝑗,𝑘 and 𝑝𝑖,𝑘 are in 𝑐𝑐𝑢𝑟.  

𝑆𝑖𝑛 = ∑ 𝑀(𝑝𝑖,𝑘 , 𝑝𝑖𝑛,𝑘) 

𝑖𝑛={𝑖𝑛𝑐𝑜}

 (3) 

     Where 𝑖𝑛𝑐𝑜 are the proteins’ indexes that are directly connected with 𝑝𝑖,𝑘 and located in 

𝑐𝑐𝑢𝑟. Likewise, calculate using Eq. (4) the sum 𝑆𝑜𝑢𝑡 of the values in 𝑀 corresponding to the 

intersection of protein 𝑝𝑖,𝑘 with the proteins in 𝑃𝑐 when 𝑝𝑗,𝑘 and 𝑝𝑖,𝑘 are in different complexes.  

𝑆𝑜𝑢𝑡 = ∑ 𝑀(𝑝𝑖,𝑘 , 𝑝𝑜,𝑘) 

𝑜={𝑜𝑢𝑡𝑐𝑜}

 
(4) 

      

Where 𝑜𝑢𝑡𝑐𝑜 are the proteins’ indexes that are directly connected to 𝑝𝑖,𝑘 and located outside 

𝑐𝑐𝑢𝑟. If 𝑆𝑖𝑛 > 𝑆𝑜𝑢𝑡 then 𝑝𝑖,𝑘 is kept in the current complex 𝑐𝑐𝑢𝑟; otherwise, mutation occurs 

based on the following calculations:  

• Equation 5 is used to calculate the difference 𝑑𝑖𝑓𝑓𝑐𝑐𝑢𝑟
 of 𝑆𝑖𝑛 and 𝑆𝑜𝑢𝑡 for complex 𝑐𝑐𝑢𝑟.  

 

𝑑𝑖𝑓𝑓𝑐𝑐𝑢𝑟
= 𝑆𝑖𝑛-  𝑆𝑜𝑢𝑡 (5) 

Likewise, for the remaining complexes 𝑙 − 1, calculate using Eq. (5) the 𝑑𝑖𝑓𝑓𝑐𝑚
where 𝑐𝑚 ∈ 𝐶𝑜 

and 𝑚 ≠ 𝑐𝑢𝑟.  

• For the given set of 𝑙 distinct elements 𝑑𝑖𝑓𝑓 = {𝑑𝑖𝑓𝑓𝑐𝑖
 }

𝑖=1

𝑙
, the maximum value of this set is 

denoted as 𝑚𝑎𝑥𝑖 𝑑𝑖𝑓𝑓𝑖 and is equal to the last element of a sorted (i.e., ordered) version of 𝑑𝑖𝑓𝑓 

(i.e. the output is reordering 〈𝑑𝑖𝑓𝑓𝑐1
′ , 𝑑𝑖𝑓𝑓𝑐2

′ , ⋯ , 𝑑𝑖𝑓𝑓𝑐𝑙
′  〉 of the given set such that 𝑑𝑖𝑓𝑓𝑐1

′ ≤

𝑑𝑖𝑓𝑓𝑐2
′ ≤ ⋯ ≤ 𝑑𝑖𝑓𝑓𝑐𝑙

′ ). Hence, the value of 𝑑𝑖𝑓𝑓𝑐𝑙
′  represents the likelihood of relocating protein 

𝑝𝑖,𝑘 to complex 𝑙.  

• Then, and before transferring 𝑝𝑖,𝑘 to a new complex, 𝑝𝑖,𝑘 must be reconnected with a new 

protein in 𝑃𝑐 with respect to the following conditions: 

1. The new protein is already located in the new complex. 

2. In case of finding more than one protein that satisfies the above condition, the protein with 

the highest value in 𝑀 at its intersection with 𝑝𝑖,𝑘 is selected. 
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Algorithm 1 EA with mutation-based functional annotation 

Input: Population size 𝑝𝑠, individual length 𝑁, crossover probability 𝑃𝑐, mutation probability 𝑃𝑚; 

Output: best individual 𝑃∗; 

Initialization: for 𝑖 =  1, … , 𝑝𝑠 do sample 𝑃(𝑖) ∈  {0 …  990}𝑁 uniformly at random (u.a.r.) and 

proteins interactions constraint that must be satisfied; Set ℙ0  =  {𝑃0
(1)

,   𝑃0
(2)

… 𝑃0
(𝑝𝑠)

}; 

Evaluate 𝑓(ℙ0) ;                                          /* using Eq. (1) */  

1 Optimization: for 𝑔 =  1, 2 . . . 𝐺 do 

2  ℙ𝑔 ←  𝑆 (ℙ𝑔−1); 

3  ℙ𝑔
′  ← 𝐶{ 𝑃𝑐}(ℙ𝑔); 

4  ℙ′𝑔
′  ← 𝑀𝑓𝑛𝑜𝑡{ 𝑃𝑚}(ℙ𝑔

′ );              /*a call for Algorithm 2*/ 

5  Evaluate 𝑓(ℙ′𝑔
′ ); 

6  𝑔 ←  𝑔 +  1; 

7 end 

return 𝑃∗ 

     As such, the mutation process occurs and transfers a protein from one complex to another if 

it finds a complex with proteins that are more similar in functionality, as depicted in Algorithm 

2. 

Algorithm 2 Mutation based functional annotation (𝑀𝑓𝑛𝑜𝑡) procedure  

Input: Individual 𝑃, mutation probability 𝑝𝑚; 

Output: An updated individual 𝑃′ 

1 for 𝑖 = 1,2 … 𝑁 do  

2  if ( 𝑟𝑎𝑛𝑑𝑖 ≤ 𝑝𝑚) 

3   
Compute 𝑆𝑖𝑛(𝑐𝑐𝑢𝑟) and 𝑆𝑜𝑢𝑡(𝑐𝑐𝑢𝑟) of protein 𝑖                     // use Eqs. 3 

and 4  

4   If  𝑆𝑖𝑛(𝑐𝑐𝑢𝑟)  < 𝑆𝑜𝑢𝑡(𝑐𝑐𝑢𝑟)    

5    Compute 𝑑𝑖𝑓𝑓𝑜𝑙𝑑 = 𝑆𝑖𝑛(𝑐𝑐𝑢𝑟)  - 𝑆𝑜𝑢𝑡 (𝑐𝑐𝑢𝑟)                      // use Eq. 5 

6    new_complex =  𝑐𝑐𝑢𝑟 

7    For each 𝑐 (𝑚 ≠ 𝑐𝑢𝑟) of  𝑃 

8       Compute 𝑑𝑖𝑓𝑓𝑛𝑒𝑤 = 𝑆𝑖𝑛(𝑐𝑚)  - 𝑆𝑜𝑢𝑡(𝑐𝑚)  

9     
If  𝑑𝑖𝑓𝑓𝑛𝑒𝑤 > 𝑑𝑖𝑓𝑓𝑜𝑙𝑑                             //finding the max 𝒅𝒊𝒇𝒇 

value     

10      𝑑𝑖𝑓𝑓𝑜𝑙𝑑 = 𝑑𝑖𝑓𝑓𝑛𝑒𝑤 

11      new_complex =  𝑐𝑚 

12     end 

13    end 

14   end 

15   Add 𝑝𝑖 to new_complex 

16   For each protein 𝑗 directly connected with 𝑝𝑖 and located in new_complex 

17    𝑀𝑐 =  𝑀𝑎𝑥_𝑐𝑜𝑛𝑛𝑒𝑐𝑡 (𝑝𝑗, 𝑝𝑖); 

18   end 

   Connect 𝑝𝑖 to the protein with the highest 𝑀𝑐 

19  end 

20 end 

21 return 𝑃′ 

 

4. Results and Discussion 

     In this  work, a mutation-based heuristic has been proposed to consider the biological 

information in GO to improve the quality of solutions and the overall performance of EA for 

solving the complex detection problem in PPI networks. As such, we have examined the ID 
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model on the dataset of the yeast network PPI_YD [20] and [21]. This PPI network has been 

filtered out, and now it contains 990 proteins with 4687 interactions. Our results have been 

compared to those of the 81 golden standard complexes. Also, a comparison has been 

established between the performance of our proposed approach and the performance of the 

standard EA. 

 

     The results depicted in Figure 3 show the performance of the proposed method against the 

EA for the PPI_YD network when the overlapping score (OS) threshold is varied from 0.1 to 

0.8. According to this figure, the detection reliability of the proposed EA is higher than that of 

the canonical EA in terms of Recall, Precision, Measure, RecN, PrecN, and Fn-measure. The 

reason is that when the mutation occurs, our proposed method chooses the appropriate complex, 

where the protein is placed in the complex that has connected proteins that are more similar in 

functionality to it. While canonical EA chooses the complex randomly, it transfers the protein 

to a random complex if it has only proteins connected to it. In Figure 3, the result of the recall 

of our proposed EA is almost equivalent to the canonical EA at the threshold of 0.1, and then it 

begins to increase slightly with the increase in threshold. This means that the ratio of complexes 

matching the golden standard complexes in our results is greater than that of the canonical. 

 

     In Figure 3, the result of the precision of our proposed algorithm is also equivalent to the 

Canonical EA from the threshold of 0.1 to 0.35 and then begins to increase slightly with the 

increase of the threshold, which means that the ratio of complexes matching our work in the 

golden standard complexes is higher than the Canonical. Figure 3 depicts the comparison results 

of F-measure between our proposed algorithm and canonical EA, which show that canonical 

EA is almost equivalent to our method at the top, with a slight difference at the bottom of the 

plot when the threshold increases. Figure 3 depicts the results of the RecN between the two 

algorithms and shows the obvious difference in the performances, with our proposed method 

being the best. Also, for Figure 3, the comparison results of the PrecN and Fn-measure between 

our proposed algorithm and that of the Canonical EA show the improvement in the performance 

of the EA-based functional annotation. This means that the similarity ratio of the proteins 

distributed into the candidate complexes of our work significantly matches the golden standard 

complexes better than the canonical  EA. This indicates the amount of correction and quality 

that was added to the traditional EA at the protein level.  
 

     On the other hand, another experiment has been conducted when the mutation probability 

𝑃𝑚 is increased gradually from 0.2 to 0.5. The result of this experiment is depicted in Figure 4, 

which shows that the performance of the proposed method has improved because the 

probability of transferring the mutated protein to a more appropriate complex has increased. 
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Figure 3: Comparison results between the performance of Canonical EA and EA with GO-

Based of internal density model in terms of recall, precision, F-measure, RecN, PrecN and Fn-

measure 

 
Figure 4: Comparison performance between EA with GO-Based with 𝑃𝑚 = 0.2 and EA with 

GO-Based with  𝑃𝑚 = 0.5 in internal density model in terms of recall, precision, F-measure, 

RecN, PrecN and Fn-measure) 

 

    Table 1 compares the results of our proposed EA-based GO mutation to those of Abduljabbar 

et al.  [22] when 𝑃𝑚  =  0.5 and the overlapping score (OS) is equal to 0.2. The results confirm 

that our proposed algorithm outperforms the results of [22] in terms of the three validation 

measures, Recall, Precision and F-measure as they have been provided in the literature. This 

means that our algorithm has a higher ability to determine the complexes for PPI_YD networks. 

 

Table 1: Performance Comparison between the proposed EA with GO-based mutation and the 

state-of-the art results with regard to ID model, PPI_YD network in terms of recall, precision, 

and F measure at OS= 0.2 

Term PGO = 0.5 [22] Our proposed solution (Pm = 0.5) 

Recall 0.8256 0.8538 

Precision 0.694 0.7096 

F-measure 0.7533 0.7748 

* PGO: represents the probability of the heuristic biological operator of [22].Figure 5 shows a 

sample of the original PPI network (in Figure 5 (a)) as a pictorial full network and after (in 

Figure 5 (b)) applying our proposed technique to this network and the detected complexes.  
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(a)                                                              (b) 

Figure 5: (a) Original network with 4687 interactions, (b) PPI D1 as complexes with 3317 

intra-complex interactions discovered using the GO mutation algorithm for model ID. 

 

(a) 

(b) 

 

Figure 6: (a) PPI D1 With some complexes that are exactly identified using the GO-Based 

algorithm for model ID. (b) PPI D1 With some overlapping complexes using the canonical 

algorithm for model ID. 
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     When comparing the canonical EA with our proposed method in terms of a solution for 

detecting the complexes using the ID model, we have noted that the GO-Based algorithm was 

able to determine exactly the complexes 1, 3, 14, 35, 59, and 61, as shown in Figure 6 (a). With 

the canonical algorithm, complex 1 was divided into two groups. The first is in complex 43, 

and the second is in complex 44. Likewise, complex 3 was divided into two groups. The first is 

in complex 60, and the second is in complex 61. Complex 14 was nested with a large group of 

proteins within a single complex. Complex 35 was divided into two groups. The first is in 

complex 40, and the second is in complex 41. Also, complex 59 was divided into two groups. 

The first is in complex 36, and the second is in complex 39 with the presence of another protein. 

Finally, complex 61 was also divided into two groups. The first is in complex 72, and the second 

is in complex 73. All these significant differences are shown in Figure 6 (b). In Figure 6, a 

comment consisting of two numbers separated by the minus sign is used. The first on the right 

represents the original complex number, while the second on the left represents the complex 

number resulting from the application of one of the two algorithms (GO-Based or Canonical). 

 

5. Conclusions 

     In this study, the detection of protein complexes has been investigated through incorporating 

the functional annotation among proteins extracted from the gene ontology in the evolution 

process itself and specifically in the mutation operation. The experimental results have proved 

that the  mutation-based GO assisted the EA algorithm in applying the concept of transferring 

the protein to a complex with the highest functional similarity, which has a positive effect on 

the algorithm’s capability. The development of the algorithm, particularly the mutation part 

with the addition of gene ontology, has enabled the application of the idea of selecting the best 

complex to locate the mutated protein at the time of mutation, resulting in higher-quality 

complexes than those produced by traditional methods when the mutation probability was 

increased from 0.2 to 0.5 in the ID model. This may be because we are exploring a larger space 

of solutions and exiting the local optimization area, which in turn improves their performance 

for this model. This new idea has proven efficient in optimizing better solutions than the 

classical EA and state-of-the-art algorithms for the PPI_YD network in terms of Precision, 

Recall and F-measure. 
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