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Abstract

Complex detection in protein-protein interaction (PPI) networks is one of the major
issues facing scientific study in biological networks. In PPINS, proteins are distributed
differently as groups (complexes). These groups can be identified as having a great
internal density in the number of edges inside the groups while having the least
possible number of edges between these groups. The most common methods for
finding such complexes are evolutionary algorithms (EAs), which have been used
widely in literature for this objective. Despite the reliability of these complicated
detection models, they are mostly based on topological (graph) qualities, and the
biological implications of the PPI networks have been rarely explored. In this
research, EA with mutation-based gene ontology is developed, particularly in the
mutation part where the functional annotation of the protein has been considered using
gene ontology structure. The experimental results prove the reliability of the proposed
method using standard validation measures. It also outperforms the state-of-the-art
method in terms of the prediction ability and quality of the complexes found.

Keywords: Complex detection, Evolutionary algorithm, Protein complexes, Gene
ontology, Functional Annotation.

A ) Je ) clSud b clainall CRAS) ) gagl ale o AailB A gk e lsd

glall agla elgy , ¥ ablS Cpuall 1o alaa

Ghal) 55,155 Aaals s asbell S, agelall osle o

dadal)
aalg A duesl) JSLad) aaT (PPINS) (g = gl Jelis l€edi 8 laiaall LS aay
(laten) Sle ganaS alite J<h Slisig ) aysi o (PPINS 3 dasglanll SIS 8 daalall Al
oo e ganall a1y Cilsall sae 8 5 Blals LS e Ll e Slesanal ol a3 (S Caa
s e Ao pgiall Bgai <Y Gl aal LCilegand) a3 cp Gileall (e (San 22 JE 3sag
Gt ALl luhall 8 s 3lai e Lgllastial o5 g ((EAS) dyyshall laa) lsal) o8 Claandl)
Glaall e QL b 2w Ll V) eclaeall CaiS 8 23l 038 Adgise (g ab )l o - ciagl) 12
e o EA sl 5 candl 138 3 PPl clSedl Laglond) JEY) LA 25 L [alis cdmglnhal
gl ) lae¥) Sl 1Y) & Cus gkl e 8 Law Y ikl e @) uad) asal)
Jlasiuals & el ddslal) 48 ' g daanyaill el cindl . cuall 3sasl) ale LiSa Jlextinls opigull auksgl

*Email: Mustafa.a@sc.uobaghdad.edu.iq

1048


mailto:Mustafa.a@sc.uobaghdad.edu.iq

Kadhim and Al-Dabbagh Iragi Journal of Science, 2024, Vol. 65, No. 2, pp: 1048- 1059

sasag 8l o 5l Cus e dilall Cullld) Goal e Wl cagn Wil LS L aulal) gaaall (enlia
LAiSid) Claiaall

1. Introduction

Biological networks of protein-protein interactions (PPINs) are one of the current trends that
have been embraced in the field of cooperation between computer scientists and biologists.
These special types of biological networks are used to model the physical interactions of a cell’s
components [1-4]. Recently, several methodologies have been employed to obtain a complete
visualization of biological networks. They extract relevant information from these networks to
provide a deep sense of the complicated biological function inside the cell, thereby
understanding its biological behavior and developments [5].

Proteins often interact with other proteins to perform the same biological function, or they
can be connected to certain biological processes [6]. Generally, each protein is made up of a
group of genes, whose number varies depending on the protein. Biologists have discovered that
functionally similar genes are closely coupled to one another in a protein network, and these
interacting proteins may carry out the same process or disease phenotype in the event of
disruption [7] and [8]. Gene ontology (GO) is a structured way of organizing genes according
to their different characteristics, such as their functions; it assigns a unique code to each gene.
In the GO structure, the information about gene function is divided into three groups based on
their biological traits, and each gene is derived from a lineage of genes known as ancestors,
which are linked in a way that prevents cycles; hence, this structure is realized as a directed
acyclic graph (DAG) of expressions and their interactions [9].

Complexity detection in PPI networks is one of the primary difficulties that has taken up a
field in the scientific research of biological networks, wherefore there is a competition to
develop powerful algorithms that produce accurate information about the structure of these
networks. This is because many diseases are the consequence of changes in the interaction
patterns of proteins, and the identification of such interactions contributes to many applications
in disease diagnosis [4]. Considerable attempts have been carried out to detect complexes
(clusters) in PPI networks [10] and [11]. An overview of the main methods has been presented,
categorized, and discussed. The prominent ones that show significant performance against other
competing methods are evolutionary algorithms (EAS) [12]. In this paper, a new approach to
complex cluster detection in a PPl network based on EAs is proposed. This proposed method
employs EA with a topology-based fitness function to extract complexes accompanied by
heuristically based mutations, where functional annotation, which is obtained from GO to
indicate connections between proteins based on their biological information similarity, is the
key guide for evolving good solutions. An experimental performance evaluation has been
provided based on some of the well-known validation measures to prove the reliability of our
proposed method. Also, the results returned by the EA with a heuristically based mutation have
been compared with those obtained by the main EA to further assess its performance.

The rest of this paper is organized as follows. Section 2 is devoted to providing an ample
background for the related work concerning our research. Section 3 describes in detail the
proposed heuristic-based GO operator and its integration with the main EA algorithm.
Experimental evaluation, comparisons, and discussion are illustrated in Section 4. Section 5
concludes the paper.

2. PPINs complex detection: Related works

In the literature, different clustering algorithms have been tested, analyzed, and designed for

the purpose of extracting complexes from PPINs. Some early approaches have been presented
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in [12] and distinguished into five specific classes with respect to different topology-based
fitness functions. The most promising class with an outstanding result is population-based
stochastic search (PS), where the genetic algorithm (GA) is the base algorithm for most of the
developed algorithms that have been applied to PPINs. For instance, chaotic GA (CGA) has
been proposed in [13] to detect as many protein complexes (near maximal cliques) as possible
through adopting chaotic variables to boost the range of the initial population as the primary
modification. Then, to prevent the disturbance of good solutions in every generation, CGA
added chaotic disturbance based on standard GA operations to put solutions with the highest
fitness values directly in the next generation. Binary representation has been selected to describe
the solution, where 0 is the score for the edge being survived in the next generation and 1
otherwise. Hence, the length of the chromosome is the number of the network edges. Another
approach that has been indicated by Pizzuti in [12] is the improved immune genetic algorithm
(IGA) proposed in [14]. IGA detects protein complexes using the concept of creating a
population of variable-length antibodies inspired by the artificial immune system. Each
antibody is represented by a permutation of integers (the vertices), and additional bits with value
0 to indicate separation between two vertices belonging to the same cluster or with value 1 to
indicate separation between two clusters. Therefore, each antibody has a length of 2A—1, where
A denotes the number of vertices in the odd positions and A — 1 is the number of separators in
the even positions. And because antibodies have variable lengths, the value -1 is used to indicate
values that are not contributing to the calculation of the fitness function. Besides these two
approaches, Pizzuti has also referred to her past work with Rombo (named GA-PPI) proposed
in [15] and [16], wherein they conducted extensive experimental evaluations using different
topological-based fitness functions in an attempt to deeply inspect and explore the capability of
GA to detect complexes in PPI networks. For the individual representation, they adopted the
concept of “graph adjacency,” where each individual consists of u genes corresponding to the
nodes (proteins) of the graph modeling the PPI network. Two values i and j have been used to
denote a link between two proteins i and j, that is the i*"(j) protein belongs to the same cluster
k of protein i, as illustrated in Figure 1.

Gene (protein)
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Figure 1: Individual representation
Recently, a new method to detect complexes in PPI networks has been introduced in [17] based

on the well-known decomposition-based multi-objective evolutionary algorithm (MOEA/D) of
[18]. In this method, MOEA/D has been coupled with two topologically conflicting objectives
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concerning inter- and intra-community scores to rank the associated clusters of the PPI network
accordingly.

According to what has already been reviewed, it is clear that no research has been conducted
on the use of EA mutations that are based on the functional annotation of genes to enrich the
PPI network clustering analysis and enhance the exploitation ability of the algorithm.

3. EA with mutation-based functional annotation

EAs are methods for solving problems of the NP-hard type: problems that cannot be solved
in a certain amount of time or that take a lengthy period to solve. EAs’ main procedure is
comparable to natural selection in that it always retains the strong organs while removing the
unfit ones from future generations; as a result, EAs have always been used to solve complex
engineering optimization problems.

Basically, EAs divide the search space of an optimization problem F(X) into a set of
solutions that is denoted by Q and referred to as the “search space size,” where |Q|€ N denotes
the number of candidate solutions. Customarily, the evolution task is performed on a randomly
generated subgroup of Q known as population of individuals, designated by IPP*, with a size of
ps,whereps € N,and PP® =(Py, P,, ..., P,s). Each individual P is the genotype representation,
the individual representation is depicted in Figure 1, along with its corresponding phenotype X,
in which these phenotypes are evaluated using a fitness (objective) function that produces
values used to explore different parts of the search space. In this work, the optimization problem
Min F(X), namely internal density (ID), is used as a metric for measuring a cluster's internal
edge density. That is, ID provides a strategy for partitioning based on the density of the internal
cluster edges. Equation (1) describes ID as a minimization problem to evaluate a candidate
solution P, where P is a set Co = {c;, ¢, ..., ¢;} Of clusters and | is the number of clusters in
P.

l
Min ID(Co) = Z 1- ﬁ (1)
= i\t

Where v; is the number of cluster c;’s internal edges, and C; is the cardinality of cluster c;. The
role of the ID model in EA is to evaluate the quality of solutions and produce outputs that assess
the robustness of these solutions to solve the complex detection problem. Depending on these
outputs, EA behavior is directed towards increasing the chance for good individuals to appear
in future generations. Consequently, an implementation of a series of operations known as
population transformation is performed on population P, to generate a new population P 4,
where g is the generation index. Firstly, tournament selection (S) is applied to filter out the
good solutions in the current population with respect to the same population size and transfer
them into a mating pool. A uniform crossover (C) with P, probability is then applied to maintain
solution diversity. Finally, the mutation (M) operator is performed with B, probability to
increase the gene’s variations and likely to ensure that the population is not going to fall into a
local optimum. All candidate solutions in P, are subjected to these successive operators.
Eventually, population transformation is continued throughout each generation until a
maximum number of generations G is reached, and IP* should contain the near-optimal solution,

P* = [pi1,p3, -, pn] [19].
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3.1 EA mutation-based GO
In this work, a protein’s functional annotation in GO is used as a heuristic guide for the

mutation operator to alter the population genes (proteins); therefore, we named it mutation-
based GO. As such, our proposed complex detection technique combines the complete
procedure of EA with the protein functional annotation intervened in the mutation operation as
a process for improving the individual quality, as stated in Algorithm 1.

Conventionally, every protein is functionally represented by a direct set of genes. According
to the Gene Ontology, these genes are categorized into three classes: molecular function (MF),
cellular component (CC), and biological process (BP). These three classes of genes inherit their
traits from their ancestors, and so forth; as such, these genes are structured into a directed
acyclic graph (DAG), as depicted in Figure 2. Then, this protein’s characteristic has been
exploited to construct a symmetric matrix M of size N x N, in which its entries are values
generated from the functional biological data of GO that give the intensity (ratio) of proteins’
interactions. The rows and columns of this matrix are labeled with the proteins’ index and hold
values between 0 and 1. If protein i has a mutual topological interaction with protein j, then
both entries (i, ) and (j, i) are assigned to the same value. Therefore, our new method is based
on the strength of the similarity scale between proteins with respect to the three gene ontology
classes, each with its own direct lineage as DAG.

Individual
|
content |' 2 | 7 [ 8 [0 a [ 1] a Jao]..] 550 |
- {’ —
No-protein (1 ) i_2> 3 4 5 6 7 8 ... 990

P‘ Y
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GO:0005198 | | GO:1905369 | | GO:0071840 GO:0140678 | | GO:0110165 | | GO:0071840

Figure 2: Proteins’ direct and indirect genes as derived from GO data

To calculate the similarity intensity of interaction between proteins i and j, we adopted the
well-known Jaccard similarity (JS), as described in Eq. (2).

|G: n G}

— 2
|G; v G @)

JS@ij) =
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Where G; and G; denote the group of genes (direct and indirect) for proteins i and j,
respectively.

As such, when mutation occurs, with regard to B, , on any of the proteins involved in
individual, Py (k € {1, ..., ps}, this protein p;, (i € {1,...,N})is relocated from its current
complex c.,,,- to one of the remaining complexes based on a set of steps that must be performed
over the [ complexes of Py, as follows:
eFor c.,,, calculate using Eq. (3) the sum S;, of the values in M corresponding to the
intersection of p;; with the proteins in P. = {p; | (px pix)} Where j € {1, ..., N} that are
topologically connected to it and both p; , and p;  are in cq,-.

Sin = z Mk » Pink) )
in={inco}
Where inco are the proteins’ indexes that are directly connected with p;; and located in
c.ur- Likewise, calculate using Eq. (4) the sum S,,,; of the values in M corresponding to the
intersection of protein p; , with the proteins in B, when p; , and p;  are in different complexes.

4
Sout = z M(pi,k ’ po,k) ( )

o={outco}

Where outco are the proteins’ indexes that are directly connected to p;; and located outside
Cour- IF Sin > Soue then p; . is kept in the current complex c.,,,; otherwise, mutation occurs
based on the following calculations:

e Equation 5 is used to calculate the difference dif f.  of S;; and S, for complex ccy,;-.

diffccur = Sin~ Sout ()

Likewise, for the remaining complexes [ — 1, calculate using Eq. (5) the dif f;, where ¢, € Co
and m =+ cur.

e For the given set of [ distinct elements dif f = {diffcl. }2_1, the maximum value of this set is
denoted as max; dif f; and is equal to the last element of a sorted (i.e., ordered) version of dif f
(i.e. the output is reordering (dif f;,,dif fz,,---,dif f¢, ) of the given set such that diff/ <
dif fo, < -+ < dif f)). Hence, the value of dif f¢, represents the likelihood of relocating protein
p; x to complex L.

e Then, and before transferring p; , to a new complex, p; , must be reconnected with a new
protein in P. with respect to the following conditions:

1. The new protein is already located in the new complex.

2. In case of finding more than one protein that satisfies the above condition, the protein with
the highest value in M at its intersection with p; ;. is selected.
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Algorithm 1 EA with mutation-based functional annotation
Input: Population size ps, individual length N, crossover probability P, mutation probability P,,;
Output: best individual P*;

Initialization: for i = 1,...,ps do sample P® € {0... 990}" uniformly at random (u.a.r.) and
proteins interactions constraint that must be satisfied; Set P, = {Po(l), PO(Z) PO(”S)};

Evaluate f(PPy) ; /* using Eq. (1) */

1 Optimization: forg = 1,2...G do

2 Py« S (Pg_1);

3 P, < C{P.}(P,);

4 P’y « Mfnot{ Pn}(Py); /*a call for Algorithm 2*/
5 Evaluate f (IP'p);

6 g < g+ 1

7 end

return P*

As such, the mutation process occurs and transfers a protein from one complex to another if
it finds a complex with proteins that are more similar in functionality, as depicted in Algorithm
2.

Algorithm 2 Mutation based functional annotation (M fnot) procedure
Input: Individual P, mutation probability p,y,;

Output: An updated individual P’

1 fori=12..Ndo

2 if (rand; < pm)

3 Compute S;,, (Ceyr) and Syye (Cour) OF protein i /Il use Egs. 3
and 4

4 If Sin(ccur) < Sout(ccur)

S CompUte diffold = Sin(ccur) - Sout (Ccur) Il'use Eq- 5

6 new_complex = cgyr

7 For each ¢ (m # cur) of P

8 Compute dif foew = Sin(€m) - Sout (¢m) |

9 If diffrew > diffo1a /[finding the max dif f

value

10 diffold = diffnew

11 new_complex = ¢,

12 end

13 end

14 end

15 Add p; to new_complex

16 For each protein j directly connected with p; and located in new_complex

17 ‘ Mc = Max_connect (p;, p;);

18 end
Connect p; to the protein with the highest Mc

19 end

20 end

21 return P’

4. Results and Discussion

In this work, a mutation-based heuristic has been proposed to consider the biological
information in GO to improve the quality of solutions and the overall performance of EA for
solving the complex detection problem in PPI networks. As such, we have examined the 1D
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model on the dataset of the yeast network PP1_YD [20] and [21]. This PPl network has been
filtered out, and now it contains 990 proteins with 4687 interactions. Our results have been
compared to those of the 81 golden standard complexes. Also, a comparison has been
established between the performance of our proposed approach and the performance of the
standard EA.

The results depicted in Figure 3 show the performance of the proposed method against the
EA for the PP1_YD network when the overlapping score (OS) threshold is varied from 0.1 to
0.8. According to this figure, the detection reliability of the proposed EA is higher than that of
the canonical EA in terms of Recall, Precision, Measure, RecN, PrecN, and Fn-measure. The
reason is that when the mutation occurs, our proposed method chooses the appropriate complex,
where the protein is placed in the complex that has connected proteins that are more similar in
functionality to it. While canonical EA chooses the complex randomly, it transfers the protein
to a random complex if it has only proteins connected to it. In Figure 3, the result of the recall
of our proposed EA is almost equivalent to the canonical EA at the threshold of 0.1, and then it
begins to increase slightly with the increase in threshold. This means that the ratio of complexes
matching the golden standard complexes in our results is greater than that of the canonical.

In Figure 3, the result of the precision of our proposed algorithm is also equivalent to the
Canonical EA from the threshold of 0.1 to 0.35 and then begins to increase slightly with the
increase of the threshold, which means that the ratio of complexes matching our work in the
golden standard complexes is higher than the Canonical. Figure 3 depicts the comparison results
of F-measure between our proposed algorithm and canonical EA, which show that canonical
EA is almost equivalent to our method at the top, with a slight difference at the bottom of the
plot when the threshold increases. Figure 3 depicts the results of the RecN between the two
algorithms and shows the obvious difference in the performances, with our proposed method
being the best. Also, for Figure 3, the comparison results of the PrecN and F,-measure between
our proposed algorithm and that of the Canonical EA show the improvement in the performance
of the EA-based functional annotation. This means that the similarity ratio of the proteins
distributed into the candidate complexes of our work significantly matches the golden standard
complexes better than the canonical EA. This indicates the amount of correction and quality
that was added to the traditional EA at the protein level.

On the other hand, another experiment has been conducted when the mutation probability
P,, is increased gradually from 0.2 to 0.5. The result of this experiment is depicted in Figure 4,
which shows that the performance of the proposed method has improved because the
probability of transferring the mutated protein to a more appropriate complex has increased.
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Figure 3: Comparison results between the performance of Canonical EA and EA with GO-
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Figure 4: Comparison performance between EA with GO-Based with P,, = 0.2 and EA with
GO-Based with B, = 0.5 in internal density model in terms of recall, precision, F-measure,
RecN, PrecN and Fnr-measure)

Table 1 compares the results of our proposed EA-based GO mutation to those of Abduljabbar
et al. [22] when B,, = 0.5 and the overlapping score (OS) is equal to 0.2. The results confirm
that our proposed algorithm outperforms the results of [22] in terms of the three validation
measures, Recall, Precision and F-measure as they have been provided in the literature. This
means that our algorithm has a higher ability to determine the complexes for PP1_YD networks.

Table 1: Performance Comparison between the proposed EA with GO-based mutation and the
state-of-the art results with regard to ID model, PP1_YD network in terms of recall, precision,
and F measure at 0S= 0.2
Term PGO =0.5[22] Our proposed solution (Pm = 0.5)
Recall 0.8256 0.8538
Precision 0.694 0.7096
F-measure 0.7533 0.7748
* PGO: represents the probability of the heuristic biological operator of [22].Figure 5 shows a
sample of the original PPI network (in Figure 5 (a)) as a pictorial full network and after (in
Figure 5 (b)) applying our proposed technique to this network and the detected complexes.
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(@) (b)
Figure 5: (a) Original network with 4687 interactions, (b) PPl D1 as complexes with 3317
intra-complex interactions discovered using the GO mutation algorithm for model ID.
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Figure 6: (a) PPl D1 With some complexes that are exactly identified using the GO-Based
algorithm for model ID. (b) PPI D1 With some overlapping complexes using the canonical
algorithm for model ID.
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When comparing the canonical EA with our proposed method in terms of a solution for
detecting the complexes using the ID model, we have noted that the GO-Based algorithm was
able to determine exactly the complexes 1, 3, 14, 35, 59, and 61, as shown in Figure 6 (a). With
the canonical algorithm, complex 1 was divided into two groups. The first is in complex 43,
and the second is in complex 44. Likewise, complex 3 was divided into two groups. The first is
in complex 60, and the second is in complex 61. Complex 14 was nested with a large group of
proteins within a single complex. Complex 35 was divided into two groups. The first is in
complex 40, and the second is in complex 41. Also, complex 59 was divided into two groups.
The first is in complex 36, and the second is in complex 39 with the presence of another protein.
Finally, complex 61 was also divided into two groups. The first is in complex 72, and the second
is in complex 73. All these significant differences are shown in Figure 6 (b). In Figure 6, a
comment consisting of two numbers separated by the minus sign is used. The first on the right
represents the original complex number, while the second on the left represents the complex
number resulting from the application of one of the two algorithms (GO-Based or Canonical).

5. Conclusions

In this study, the detection of protein complexes has been investigated through incorporating
the functional annotation among proteins extracted from the gene ontology in the evolution
process itself and specifically in the mutation operation. The experimental results have proved
that the mutation-based GO assisted the EA algorithm in applying the concept of transferring
the protein to a complex with the highest functional similarity, which has a positive effect on
the algorithm’s capability. The development of the algorithm, particularly the mutation part
with the addition of gene ontology, has enabled the application of the idea of selecting the best
complex to locate the mutated protein at the time of mutation, resulting in higher-quality
complexes than those produced by traditional methods when the mutation probability was
increased from 0.2 to 0.5 in the ID model. This may be because we are exploring a larger space
of solutions and exiting the local optimization area, which in turn improves their performance
for this model. This new idea has proven efficient in optimizing better solutions than the
classical EA and state-of-the-art algorithms for the PPI_YD network in terms of Precision,
Recall and F-measure.
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