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Abstract 

     Suppose that 𝐺 is a finite group and 𝑆 is a non-empty subset of 𝐺 such that 

𝑒 ∉ 𝑆 and 𝑆−1 ⊆ 𝑆. Suppose that 𝐶𝑎𝑦(𝐺, 𝑆) is the Cayley graph whose vertices are 

all elements of 𝐺 and two vertices 𝑥 and 𝑦 are adjacent if and only if 𝑥𝑦−1 ∈ 𝑆. In 

this paper,we introduce the generalized Cayley graph denoted by 𝐶𝑎𝑦𝑚(𝐺, 𝑆) that is 

a graph with vertex set consists of all column matrices 𝑋𝑚 which all components are 

in 𝐺 and two vertices 𝑋𝑚 and 𝑌𝑚 are adjacent if and only if 𝑋𝑚[(𝑌𝑚)−1]𝑡 ∈ 𝑀(𝑆), 

where 𝑌𝑚
−1 is a column matrix that each entry is the inverse of similar entry of 𝑌𝑚 

and 𝑀(𝑆) is 𝑚 × 𝑚 matrix with all entries in 𝑆 , [𝑌−1]𝑡 is the transpose of 𝑌−1 

and 𝑚 ≥ 1. We aim to determine the structure of 𝐶𝑎𝑦𝑚(G, 𝑆) when G is the dihedral 

group of order 2n and | S |= 3 for every 𝑚 ≥ 2, n ≥ 3. 
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1 Introduction 

     Algebraic graph theory has been considered as one of the important topics in mathematics 

that specialists in algebra and graph theory have been interested in the recent years. In algebraic 

graph theory, every graph is associated to a group, ring, module or any other algebraic 

structures. One of the oldest algebraic graph theory is Cayley graph which is associated to a 

group and a subset of this group. The history of Cayley graph came back to many years ago. In 

1878, Cayley graph was introduced by Arthur Cayley in [1]. He gave a geometrical 

representation of group by means of a set of generators. This translates groups into geometrical 

objects which can be investigated from the geometrical view. In particular, it provides a rich 

source of highly symmetric graphs, known as transitive graphs, which plays an important role 

in many graph theoretical problems and group theoretical problems. During the past ten years, 

some authors introduced different generalizations for the Cayley graph. For example, Marušič  

in [2] gave a generalization of the Cayley graph in terms of an automorphism of group G. 

Afterwards, Zho in [3] introduced the Cayley graph on a semigroup. Recently, the second 

author introduced a new generalization of Cayley graph by replacing all elements of group by 

all m×1 matrices with entries in the group, as a vertex set. He denoted it by Caym(G,S) for every 

m ≥ 1, and it is clear that if m = 1 then we will achieve the known Cayley graph Cay(G,S). 

In 2021, Neamah , Erfanian and others [4,5] established the structure of a generalized Cayley 
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graph Caym(G,S), when Cay(G,S) is a cycle graph Cn, for all n ≥ 3. 

     In this paper, we are going to determine the structure of the Caym( 𝐷2𝑛,S) where  𝐷2𝑛  is 

the dihedral group of order 2n and S is a non empty subset of  𝐷2𝑛 such that e ∉ S, S−1 ⊆
S and 1 ≤ | S | ≤ 3 for every 𝑚 ≥ 2, n ≥ 3. 

 

     We recall that for any group G and any nonempty subset S of G with e ∉ S and S−1 ⊆
S, the Cayley graph Cay(G, S) is an undirected simple graph whose vertices are all elements of 

G and two vertices x and y are adjacent if and only if xy−1 ∈ S. It is known that Cay(G, S) is 

a connected graph whenever S is a generating set of G and that it is always regular and vertex 

transitive ( see [6] for more details ). Now, we can define the generalized Cayley graph 

Caym(G, S) as follows.  

 

Definition 1.1. [7] For every m ≥ 1, the generalized Cayley graph, denoted by Caym(G, S) is 

an undirected simple graph with vertex set consisting all m × 1  matrices  
[x1 x2 ⋯ xm]t, where xi ∈ G, 1 ≤ i ≤ m, and two vertices X = [x1 x2 ⋯ xm]t and 

Y = [y1 y2 ⋯ ym]t are adjacent if and only if  

X(Y−1)t =

[
 
 
 
x1y1

−1 x1y2
−1 ⋯ x1ym

−1

x2y1
−1 x2y2

−1 ⋯ x2ym
−1

⋮ ⋮ ⋱ ⋮
xmy1

−1 xmy2
−1 ⋯ xmym

−1]
 
 
 
∈ Mm×m(S), where 

 

Mm×m(S) = {[

x11 x12 ⋯ x1m

x21 x22 ⋯ x2m

⋮ ⋮ ⋱ ⋮
xm1 xm2 ⋯ xmm

]    |  xij ∈ S  , 1 ≤ i, j ≤ m}. 

 

  In the following lemma from [2], we can find a necessary and sufficient condition for two 

arbitrary vertices in Caym(G, S) to be adjacent.  

 

Lemma 1.2. [8] Let X = [x1 x2 ⋯ xm]t and let Y = [y1 y2 ⋯ ym]t be two vertices 

in Caym(G, S), where xi, yj ∈ G for 1 ≤ i, j ≤ m. Then X and Y are adjacent in Caym(G, S) 

if and only if xi is adjacent to yj  in Cay(G, S) for all 1 ≤ i, j ≤ m.  The following lemma 

gives a formula for the degree of any vertex in the Caym(G, S) in terms of some right cosets of 

S.  

 

Lemma 1.3. [8] Let X = [x1 x2 ⋯ xm]t be a vertex in the Caym(G, S). Then deg(X) =
|⋂m

i=1 Sxi|.  

 

     As we mentioned earlier, Cay(G, S) is connected (by assuming S as a generating set of 

G), so there is no isolated vertex. Indeed, one can easily see that Caym(G, S) is not necessary 

to be connected, even when S is a generating set and we may have some isolated vertices [6]. 

The following lemma states that under some conditions, we may have an isolated vertex in 

Caym(G, S).  

 

Lemma 1.4. [8] Suppose that  X = [x1 x2 ⋯ xm]t  is a vertex in  Caym(G, S) . If 

 d(xi, xj) ≠ 2 in Cay(G, S) for some 1 ≤ i ≠ j ≤ m and the Cay(G, S) is triangle free. Then 

X is an isolated vertex in the Caym(G, S) (note that  d(xi, xj) stands for the distance between 

xi and xj, which is the length of the shortes path between xi and xj and triangle free means 

that the graph must have no cycle of lengh 3). 
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     As we mentioned at the beginning of this paper, the structure of the Caym(G, S) whenever 

the Cay(G, S) is a complete graph Kn is investigated by Naeemah et. al. in [5], for all n ≥ 3 

and m ≥ 2. Moreover, , the structure of the Caym(G, S) when Cay(G, S) is a cycle graph 

Cnby [8]. By using these structures we are going to to find the structure of Caym( 𝐷2𝑛,S) with 

| S | = 1, 2, 3.  First, let us state the structure of Cay(D2n, S) for the case | S | = 1, 2, 3.  One 

can see that if |S| = 1 then Cay(G,S) is the union of n disjoin edges. In other words, Cay(D2n, 

S)=nK2. Similarly, for the case |S| = 2 the structure of Cay(D2n, S) is the union of some cycles. 

For these two cases, the structure of Cay(D2n, S) can be deduced directly from [8]. So, we focus 

on the case |S| =  3. We know that if |S| =  3, then we have two cases. The first case is  S = 

{x, x−1, y}, where x ≠x−1 and y2 = e  and the second case is when S = {x, y, z}, with x2 = y2 = 

z2 = e. The following two theorems from [1] give the structure of Cay(D2n, S) for each of the 

above two cases for all n ≥ 3. 

 

Theorem 1.5. [9] Assume that S = {x, x−1, y}⊆D2n such that x≠x−1 and y2 = e and o(x)=m. 

Then Cay(D2n, S) = 
n

m 
(K2Cn).    

 

Theorem 1.6. [9] Let S = {x, y, z}}⊆D2n , with x2 = y2 = z2 = e. Then Cay(D2n, S) = K2Cn. 

To determine the graph structure of Cay(D2n, S) for |S| =  3, it is enough to consider on of the 

above two cases. So, we deal with the first case and assume that S = {a, a−1, b}⊆D2n , where a 

and b are generatores of D2n and an = b2 = e. So, in this case by Theorem 1.5 we have Cay(D2n, 

S) = K2Cn . In the next section, we determine the structure of Caym(G, S) 𝑤ℎ𝑒𝑛 𝐆 =  𝑫𝟔 and 

|S|=3 for all values m ≥ 2  

At the end of this section is necessary to remind definitions of Cartesian product and Corona 

product of two graphs 𝐺 and 𝐻. 

 

Definition 1.7. [7] The Cartesian product of 𝐺 and 𝐻 is a graph denoted by 𝐺𝐻, whose 

vertex set is 𝑉(𝐺) × 𝑉(𝐻) . Two vertices (𝑔, ℎ), (𝑔′, ℎ′)  are adjacent if (𝑔 = 𝑔′  and 

ℎℎ′ ∈ 𝐸(𝐻))  or  (𝑔𝑔′ ∈ 𝐺 and ℎ = ℎ′). Thus, 𝑉(𝐺𝐻) = {(𝑔, ℎ)  |𝑔 ∈𝑉(𝐺), ℎ ∈ 𝑉(𝐻)} 
𝐸(𝐺𝐻) = {(𝑔, ℎ)(𝑔′, ℎ′)|𝑔 = 𝑔′, ℎℎ′ ∈ 𝐸(𝐻) 𝑜𝑟 𝑔𝑔′ ∈ 𝐸(𝐺), ℎ = ℎ′)}. 
 

Definition 1.8. [7]  Suppose that 𝐺 and 𝐻 be graphs, then the Corona product of 𝐺 and 𝐻 

denoted by 𝐺 ∘ 𝐻  is obtained by taking one copy of 𝐺  and |𝑉(𝐺)| copies of 𝐻,  and by 

joining each vertex of 𝑖 − 𝑡ℎ copy of 𝐻 to the 𝑖 − 𝑡ℎ vertex of 𝐺, where 1 ≤ 𝑖 ≤ |𝑉(𝐺)|.  

Corona product is a non-commutative operation. i.e. 𝐺 ∘ 𝐻 ≠ 𝐻 ∘ 𝐺. 

Throughout this paper, we always assume that group G is finite, S is a nonempty subset of G, 

e ∉ S, S−1 = S and S is a genetaing set for G. Moreover, all of the notations and terminologies 

about graphs are standard and can be found in [9]. 

 

 2 The Structure of 𝐂𝐚𝐲𝐦(𝑫𝟔, 𝐒) with |S|=3 

     In this section, we start with dihedral group of order 6. We  investigate the graph structure 

of Caym(D6,S), whenever | S |= 3. Let us start with the case m=2. Assume that D6 =< a,b | a3 = 

b2 = e, bab = a−1 > = {e,a,a2,b,ab,a2b} is dihedral group of order 6 and S = {a,a-1,b}. Then, by 

Theorem 1.5 we have Cay(D6, S) = K2C3 (see Figure 1). In the following, we give the structure 

for Cay2(D6, S).   

       

Lemma 2.1. Let D6 =< a,b | an = b2 = e,bab = a−1 > be a dihedral group of order 6 and S = {a,a-

1,b}. Then Cay2(D6, S)≅ [3𝐾4,4 − 3(𝐾2𝐶3)] ∪ ((K2C3) ∘ 𝐾̅2) ∪ 𝐾̅6. 

 

Proof :  Suppose that  𝛤1 = 𝐾2  with vertex set {𝑥1, 𝑥2}  and 𝛤2 = 𝐶3  with vertex set 
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{𝑥3, 𝑥4, 𝑥5} . Since Cay(D6,S) = K2  C3 , so, its vertex set is 𝑉(𝐶𝑎𝑦(𝐷6, 𝑆)) =
{(𝑥1, 𝑥3), (𝑥1, 𝑥4), (𝑥1, 𝑥5), (𝑥2, 𝑥3), (𝑥2, 𝑥4), (𝑥2, 𝑥5)} such that (𝑥1, 𝑥3) = 𝑒, (𝑥1, 𝑥4) =
𝑎, (𝑥1, 𝑥5) = 𝑎2, (𝑥2, 𝑥3) = 𝑏, (𝑥2, 𝑥4) = 𝑎𝑏, (𝑥2, 𝑥5) = 𝑎2𝑏. Thus,  𝑉(𝐶𝑎𝑦2(𝐺, 𝑆)) =

{[
𝑎
𝑏
] |  𝑎, 𝑏 ∈ 𝐷6}  = {[

𝑒
𝑒
] , [

𝑒
𝑎
] , [

𝑒
𝑎2] , [

𝑒
𝑏
] , [

𝑒
𝑎𝑏

] , [
𝑒

𝑎2𝑏
] , [

𝑎
𝑒
] , [

𝑎
𝑎
] , [

𝑎
a2] , [

𝑎
𝑏
] , [

𝑎
𝑎𝑏

] , [
𝑎

𝑎2𝑏
] 

  , [𝑎
2

𝑒
] , [𝑎

2

𝑎
] , [𝑎

2

𝑎2] , [𝑎
2

𝑏
] , [𝑎

2

𝑎𝑏
] , [ 𝑎2

𝑎2𝑏
] , [

𝑏
𝑒
] , [

𝑏
𝑎
] , [

𝑏
𝑎2] , [

𝑏
𝑏
] , [

𝑏
𝑎𝑏

] , [
𝑏

𝑎2𝑏
] 

   , [
𝑎𝑏
𝑒

] , [
𝑎𝑏
𝑎

] , [
𝑎𝑏
𝑎2] , [

𝑎𝑏
𝑏

] , [
𝑎𝑏
𝑎𝑏

] , [
𝑎𝑏
𝑎2𝑏

] , [𝑎
2𝑏
𝑒

] , [𝑎
2𝑏
𝑎

] , [𝑎
2𝑏
𝑎2 ] , [𝑎

2𝑏
𝑏

] , [𝑎
2𝑏

𝑎𝑏
] , [𝑎

2𝑏
𝑎2𝑏

]} 

and so  |𝑉(𝐶𝑎𝑦2(𝐺, 𝑆))| = 62 = 36. Now, we have three independent sets  

𝑋 = { {[𝑎
2

𝑏
] , [

𝑏
𝑎2] , [

𝑒
𝑎2b

] , [𝑎
2𝑏
𝑒

]} , 𝑌 = {{[
𝑎

𝑎2𝑏
] , [𝑎

2𝑏
𝑎

] , [𝑎
2

𝑎𝑏
] , [

𝑎𝑏
𝑎2]}, Z=

{ {[
𝑎
𝑏
] , [

𝑏
𝑎
] , [

𝑒
𝑎𝑏

] , [
𝑎𝑏
𝑒

]}. 

 We have four types of vertices in terms of degrees as the following :   

Type (I) of vertices: The degree of these vertices is 9. Define 

 𝐴𝑖 = { [𝑤𝑖   𝑤𝑖]
𝑡  | 𝑤𝑖 ∈ 𝐷6  𝑎𝑛𝑑 𝑖 = 1,2, … ,6 }. 

 So, |𝐴𝑖| =1. So the number of these sets is 6. It is Clear that, the induced subgraph to the set 

⋃ 𝐴𝑖
6
𝑖=1  is the graph K2C3. So, 𝐴1 = {[

𝑒
𝑒
]} ,  𝐴2 = {[

𝑎
𝑎
]} , 𝐴3 = {[𝑎

2

𝑎2]} , 𝐴4 = {[
𝑏
𝑏
]} , 𝐴5 =

{[
𝑎𝑏
𝑎𝑏

]} & 𝐴6 = {[𝑎
2𝑏

𝑎2𝑏
]} . We can see that 𝐴𝑖 = [

𝑤𝑖

𝑤𝑖
]  is adjacent to 𝐴𝑗  = [

𝑤𝑗

𝑤𝑗
] such that 

𝑤𝑖~𝑤𝑗  in K2C3 where i,j= 1,2, … ,6. 

Type (II) of vertices: The degree of these vertices is 4. Now, put  

𝐴𝑖𝑗 = {
[𝑎1    𝑎2 ]

𝑡 | 𝑎1, 𝑎2 ∈ 𝐷6  𝑤ℎ𝑒𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒  𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 
     𝑤𝑖1 , 𝑤𝑖2 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟 

}  − (𝐴𝑖 ∪ 𝐴𝑗)  

and |𝐴𝑖𝑗| = 2   𝑤ℎ𝑒𝑟𝑒  1 ≤ 𝑖 < 𝑗 ≤ 6.  

  Assume 𝐴𝑖 = [
𝑤𝑖

𝑤𝑖
] , 𝐴𝑗𝑘 = [

𝑤𝑗

𝑤𝑘
]  𝑜𝑟 [

𝑤𝑘

𝑤𝑗
] , thus we have 𝐴𝑖  is adjacent to 𝐴𝑗𝑘  when 𝑤𝑖  is 

adjacent to  𝑤𝑗   and 𝑤𝑘 such that  𝑗 < 𝑘 and 𝑖 ≠ 𝑗, 𝑘  . The number of these sets is  6  as 

follows, 𝐴16 = { [
𝑤1

𝑤6
] , [

𝑤6

𝑤1
]}, Likewise, 𝐴34, 𝐴26, 𝐴35,  𝐴24and 𝐴15. 

It is clear that, the set 𝐴1 is adjacent to   𝐴2,  𝐴3,  𝐴4, 𝐴23, 𝐴24, 𝐴34 ,  

   the set 𝐴2 is adjacent to  𝐴1,  𝐴3,  𝐴5, 𝐴13, 𝐴15, 𝐴35, 

   the set𝐴3  is adjacent to  𝐴2,  𝐴4,  𝐴7, 𝐴27, 𝐴47, 𝐴47 , 
   the set 𝐴4 is adjacent to  𝐴1,  A3,  𝐴8, 𝐴13, 𝐴18, 𝐴38, 
   the set 𝐴5 is adjacent to  𝐴1,  𝐴6,  𝐴8, 𝐴18, 𝐴16, 𝐴68, 

   the set 𝐴6 is adjacent to 𝐴2,  𝐴5,  𝐴7, 𝐴25, 𝐴27, 𝐴57. 𝑆𝑜,we define 

𝑋1 = {𝐴15, 𝐴1, 𝐴5} and 𝑌1 = {𝐴24 , 𝐴2, 𝐴4} 
𝑋2 = {𝐴26, 𝐴2, 𝐴6} and 𝑌2 = {𝐴35 , 𝐴3, 𝐴5} 
𝑋3 = {𝐴16, 𝐴1, 𝐴6} and 𝑌3 = {𝐴34 , 𝐴3, 𝐴4} 
Moreover, 𝑋𝑖  and 𝑌𝑖  are disjoint and each one has four vertices where i=1,2,3. Hence, the 

subgraph induced by 𝑋𝑖 ∪̇ 𝑌𝑖 is a complete 2-bipartite graph 𝐾4,4. So, we have ⋃ (𝑋𝑖 ∪̇ 𝑌𝑖)
3
𝑖=1  

in the structure of 𝐶𝑎𝑦2(𝐷6, 𝑆) . We will obtain three of the complete 2-bipartite graph 

𝐾4,4. The sets of {𝐴15, 𝐴24},{𝐴26 , 𝐴35},{𝐴34, 𝐴16} are independent sets. On the other hand, it 

can be said that each element of these sets is adjacent to their other elements and are independent 

of each other.So, they can be shown as 3𝐾4,4.  

Type (III) of vertices: The degree of these vertices is one. We code it by 𝐴𝑖𝑗
1 and |𝐴𝑖𝑗

1| =

2   𝑤ℎ𝑒𝑟𝑒  1 ≤ 𝑖 < 𝑗 ≤ 6. We have 𝐴𝑖  is adjacent to 𝐴𝑖𝑗
1 where 𝑤𝑖  is adjacent to 𝑤𝑗  & 𝑤𝑘 
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such that  𝑗 < 𝑘 𝑎𝑛𝑑 𝑖 ≠ 𝑗, 𝑘 . We can see that 𝐴𝑖 is adjacent to 𝐴𝑖𝑗
1and the number of these 

sets is 6. The elements of these sets are 𝐴23
1, 𝐴13

1, 𝐴12
1, 𝐴45

1,  𝐴46
1and 𝐴65

1 .Moreover, we 

can reach this conclusion that each element of this set is adjacent to each of vertices of the graph 

K2C3. It is obtained by corona product (K2C3) to 𝐾̅2.  

Type (III) of vertices: The degree of these vertices is zero. Now, put  

𝐴𝑖𝑗
∗ = {[𝑎1  𝑎2 ]

𝑡| 𝑎1, 𝑎2 ∈ {𝑤𝑖, 𝑤𝑗} ⊆ 𝐷6} − {𝐴𝑖𝑗 ∪ 𝐴𝑖𝑗
1} &   |𝐴𝑖𝑗

∗| = 2 

where 1 ≤ 𝑖 < 𝑗 ≤ 6. 
 

     We observe that the rest of the other vertices are all isolated vertices.The elements of this 

set are 𝐴14
∗, 𝐴25

∗, 𝐴36
∗ and the number of this type is 6. Therefore,  

Cay2(D6,S)≅ [3𝐾4,4 − 3(𝐾2𝐶3)] ∪ ((K2C3) ∘ 𝐾̅2) ∪ 𝐾̅6. 

 

     By using the same method as above for Cay2(D6,S) , we can state the general structure of 

Caym(D6,S) for all m ≥ 2. 

 

Theorem 2.2. Let D6 =<a,b|an = b2 = e,bab = a-1 > be a dihedral group of order 3 and S ={a,a-

1,b}. Then for all m ≥ 2 

Caym(D6,S)≅ [3𝐾2𝑚,2𝑚 − 3(𝐾2𝐶3)] ∪ ((𝐾2𝐶3) ∘ 𝐾̅3𝑚−2𝑚+1+1) ∪ 𝐾̅6(6m−1−3𝑚+2𝑚−1) 

         

Proof : Suppose that 𝛤1 = 𝐾2  with vertex set {𝑥1, 𝑥2}  and 𝛤2 = 𝐶3  with vertex set 
{𝑥3, 𝑥4, 𝑥5}. As we mentioned in Lemma 2.1, we have Cay(D6,S) = K2C3 and   

𝑉(𝐶𝑎𝑦(𝐷6, 𝑆)) = {(𝑥1, 𝑥3), (𝑥1, 𝑥4), (𝑥1, 𝑥5), (𝑥2, 𝑥3), (𝑥2, 𝑥4), (𝑥2, 𝑥5)}  such that  (𝑥1, 𝑥3) =

𝑒, (𝑥1, 𝑥4) = 𝑎, (𝑥1, 𝑥5) = 𝑎2, (𝑥2, 𝑥3) = 𝑏, (𝑥2, 𝑥4) = 𝑎𝑏, (𝑥2, 𝑥5) = 𝑎2𝑏.  
Thus,  𝑉(𝐶𝑎𝑦𝑚(𝐷6, 𝑆)) =

{ [𝑎1   𝑎2 …  𝑎𝑚]𝑡 |  𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝐷6} and so  |𝑉(𝐶𝑎𝑦𝑚(𝐷6, 𝑆))| = 6𝑚.  

  We have four types of vertices in terms of degrees here.   

Type (I) of vertices: The degree of these vertices is   

(3|𝐴𝑖|+3|𝐴𝑖𝑗| + |𝐴𝑖𝑗𝑘|) = 3 + 3(2𝑚 − 2) + 3(3𝑚−1 − 2𝑚 + 1) = 3(3𝑚−1) = 3𝑚. Define 

 𝐴i = { [𝑤𝑖   𝑤𝑖  … 𝑤𝑖]
𝑡 | 𝑤𝑖 ∈ 𝐷6  𝑎𝑛𝑑  𝑖 = 1,2, … ,6 }. So, |𝐴𝑖| =1 and the number of these 

sets is 6. It is Clear that, the induced subgraph to the set ⋃ 𝐴𝑖
6
𝑖=1  is the graph K2  C3. We can 

see that 𝐴𝑖 = [𝑤𝑖   𝑤𝑖  … 𝑤𝑖]
𝑡  is adjacent to 𝐴𝑗  =  [𝑤𝑗    𝑤𝑗  … 𝑤𝑗]

𝑡
 such that 

𝑤𝑖  is adjacent to 𝑤𝑗 in K2 C3 where i,j= 1,2, … ,6. 

Type (II) of vertices: The degree of these vertices is (|𝐴𝑖𝑗| + 2) = 2𝑚. Now, put  

𝐴𝑖𝑗 = {
[𝑎1    𝑎2  … 𝑎𝑚]𝑡  | 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ {𝑤𝑖 , 𝑤𝑗} ⊆ 𝐷6  𝑤ℎ𝑒𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒  𝑚𝑎𝑡𝑟𝑖𝑥

   𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  𝑤𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝑤𝑗  
}  − (𝐴𝑖 ∪

𝐴𝑗)   and |𝐴𝑖𝑗| = 2𝑚 − 2   𝑤ℎ𝑒𝑟𝑒  1 ≤ 𝑖 < 𝑗 ≤ 6 . They are 𝐴16,  𝐴34 ,  𝐴26,  𝐴35 ,  𝐴24 and 

𝐴15. 

In 𝐶𝑎𝑦𝑚(𝐷6, 𝑆), 𝐴𝑖 is adjacent to 𝐴𝑗𝑘 where 𝑤𝑖 is adjacent to 𝑤𝑗  𝑎𝑛𝑑 𝑤𝑘 in Cay(𝐷6,S) such 

that  𝑗 < 𝑘 𝑎𝑛𝑑 𝑖 ≠ 𝑗, 𝑘 . The number of these sets is 6 .  

   It is clear that, the set 𝐴1 is adjacent to   𝐴2,  𝐴3,  𝐴4, 𝐴23, 𝐴24, 𝐴34 , 𝐴234  

   the set 𝐴2 is adjacent to  𝐴1,  𝐴3,  𝐴5, 𝐴13, 𝐴15, 𝐴35, 𝐴135 

   the set 𝐴3  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴2,  𝐴4,  𝐴7, 𝐴27, 𝐴47, 𝐴47 , 𝐴247 

   the set 𝐴4  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴1,  𝐴3,  𝐴8, 𝐴13, 𝐴18, 𝐴38, 𝐴138 

   the set 𝐴5  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴1,  𝐴6,  𝐴8, 𝐴18, 𝐴16, 𝐴68,𝐴168, 

the set 𝐴6  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴2,  𝐴5,  𝐴7, 𝐴25, 𝐴27, 𝐴57, 𝐴257. So, we define 

𝑋1 = {𝐴15, 𝐴1, 𝐴5} and 𝑌1 = {𝐴24 , 𝐴2, 𝐴4} 
𝑋2 = {𝐴26, 𝐴2, 𝐴6} and 𝑌2 = {𝐴35 , 𝐴3, 𝐴5} 
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𝑋3 = {𝐴16, 𝐴1, 𝐴6} and 𝑌3 = {𝐴34 , 𝐴3, 𝐴4} 
 Moreover, 𝑋𝑖  and 𝑌𝑖  are disjoint and each one has 2𝑚vertices where i=1,2,3. Hence, the 

subgraph induced by 𝑋𝑖 ∪̇ 𝑌𝑖  is a complete 2-bipartite graph 𝐾2𝑚,2𝑚 . So, we have 

⋃ (𝑋𝑖 ∪̇ 𝑌𝑖)
3
𝑖=1  in the structure of 𝐶𝑎𝑦𝑚(𝐺, 𝑆). We will obtain 3 of the complete 2-bipartite 

graph 𝐾2𝑚,2𝑚 . The sets of {𝐴15, 𝐴24},{𝐴26 , 𝐴35},{𝐴34, 𝐴16} are independent sets. On the other 

hand, it can be said that each element of these sets is adjacent to their other elements and are 

independent of each other. So, they can be shown as follows 3𝐾2𝑚,2𝑚 .  

Type (III) of vertices: The degree of these vertices is one. We code it by 𝐴𝑖𝑗
1and |𝐴𝑖𝑗

1| =

2𝑚 − 2  𝑎𝑛𝑑 |𝐴𝑖𝑗𝑘| = 3(3𝑚−1 − 2𝑚 + 1)  𝑤ℎ𝑒𝑟𝑒  1 ≤ 𝑖 < 𝑗 < k ≤ 6. We have 𝐴𝑖  is 

adjacent to 𝐴𝑖𝑗
1 where 𝑤𝑖 is adjacent to 𝑤𝑗  & 𝑤𝑘 such that  𝑗 < 𝑘 𝑎𝑛𝑑 𝑖 ≠ 𝑗, 𝑘. We can see 

that 𝐴𝑖  is adjacent to 𝐴𝑖𝑗
1and the number of these sets is  6 . They are 𝐴23

1 ,  𝐴13
1 ,  𝐴12

1, 

𝐴45
1 ,  𝐴46

1  and 𝐴65
1 . Also, We have 𝐴𝑖  is adjacent to  𝐴𝑗𝑘𝑙  where 𝑤𝑖  is adjacent 

to  𝑤𝑗  , 𝑤𝑘 𝑎𝑛𝑑 𝑤𝑘  where 𝑖 ≠ 𝑗, 𝑘, 𝑙   & 𝑗 < 𝑘 < l  . They are 

𝐴234,𝐴135,𝐴247, 𝐴138,𝐴168, 𝐴257. 
 

     Moreover, we can reach this conclusion that each element of this set is adjacent to each of 

vertices of the graph K2C3. 

 

     It is obtained by corona product (K2C3) to 𝐾̅|𝐴𝑖𝑗
1|+ |𝐴𝑖𝑗𝑘| = 𝐾̅3𝑚−2𝑚+1+1. 

Type (IV) of vertices: The degree of these vertices is zero. Put  

𝐴𝑖1𝑖1
∗ = {

   
[𝑎1  𝑎2  … 𝑎𝑚]𝑡| 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ {𝑤𝑖1 , 𝑤𝑖1}} − {𝐴𝑖1𝑖2 ∪ 𝐴𝑖1𝑖2

1}     

𝐴𝑖1𝑖2𝑖3
∗ = {[𝑎1  𝑎2 … 𝑎𝑚]𝑡| 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ {𝑤𝑖1 , 𝑤𝑖2 , 𝑤𝑖3}} − {𝐴𝑖1𝑖2𝑖3} ,…, 

𝐴𝑖1𝑖2𝑖3…𝑖𝑚
∗ = {[𝑎1  𝑎2 … 𝑎𝑚]𝑡| 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ {𝑤𝑖1 , 𝑤𝑖2 , … , 𝑤𝑖3}} such that  

 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖6  ≤ 6. 
 

     We observe that the rest of the other vertices are all isolated vertices. The elements of this 

set are 𝐴14
∗, 𝐴25

∗, 𝐴36
∗ and all triple sets (𝐴𝑖1𝑖2𝑖3

∗) except 𝐴𝑖1𝑖2𝑖3 .  

The number of this type is  

[(
6
2
) − 12] |𝐴𝑖1𝑖2

∗| + [(
6
3
) − 6] |𝐴𝑖1𝑖2𝑖3

∗| + |𝐴𝑖1𝑖2…𝑖4
∗| + |𝐴𝑖1𝑖2…𝑖5

∗| + |𝐴𝑖1𝑖2…𝑖6
∗| 

= 3|𝐴𝑖1𝑖2
∗| + 14|𝐴𝑖1𝑖2𝑖3

∗| + ∑ |𝐴𝑖1𝑖2…𝑖𝑞
∗|6

𝑞=4 .  

  On the other hand, the number of the isolated vertices is 

6m − 6|𝐴𝑖| − 6|𝐴𝑖𝑗| − 6|𝐴𝑖𝑗
1| − 6|𝐴𝑖𝑗𝑘| = 6(6m−1 − |𝐴𝑖| − |𝐴𝑖𝑗| − |𝐴𝑖𝑗

1| − |𝐴𝑖𝑗𝑘|) 

  =6(6m−1 − 3𝑚 + 2𝑚 − 1) 

Therefore, Caym(D6,S)= [⋃ 𝐾2𝑚,2𝑚
3
𝑖=1 − 3(𝐾2𝐶3)] ∪ ((𝐾2𝐶3) ∘ 𝐾̅3𝑚−2𝑚+1+1) ∪

𝐾̅6(6m−1−3𝑚+2𝑚−1) = [3𝐾2𝑚,2𝑚 − 3(𝐾2𝐶3)] ∪ ((𝐾2𝐶3) ∘ 𝐾̅3𝑚−2𝑚+1+1) ∪

𝐾̅6(6m−1−3𝑚+2𝑚−1)   

As required. 

 

Remark 2.3   One can easily see that we may state the above formula in terms of size of sets 

as the following: 

Caym(D6,S) ≅ [3𝐾|𝐴𝑖𝑗|+2,|𝐴𝑖𝑗|+2 − 3(𝐾2𝐶3)] ∪ ((𝐾2𝐶3) ∘ 𝐾̅|𝐴𝑖𝑗
1|+|𝐴𝑖𝑗𝑘|) ∪

𝐾̅6(6m−1−|𝐴𝑖|−|𝐴𝑖𝑗|−|𝐴𝑖𝑗
1|−|𝐴𝑖𝑗𝑘|) 

The graphs 𝐶𝑎𝑦(𝐷6, 𝑆), 𝐶𝑎𝑦2(𝐷6, 𝑆), 𝐶𝑎𝑦3(𝐷6, 𝑆) and 𝐶𝑎𝑦m(𝐷6, 𝑆)are shown in following 
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figures.   

 
 

 

Figure 1: Cay(D6,S) Figure 2: The component of 

Cay2(D6,S) 

Figure 3: The component of 

Cay3(D6,S) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3  𝐓𝐡𝐞 𝐒𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞 𝐨𝐟 𝐂𝐚𝐲𝐦(𝑫𝟐𝒏, 𝐒) 𝐰𝐢𝐭𝐡 |𝐒| = 𝟑 

     In this section, we investigate the graph structure of Caym(D2n,S), whenever | S |= 3, m ≥
 2 and n ≥ 3. Let us remind that Cay(D2n,S) = K2Cn  by Theorem 1.5. So, suppose that   

𝛤1 = 𝐾2  with vertex set {𝑥1, 𝑥2} and 𝛤2 = 𝐶n   with vertex set {𝑥3, 𝑥4, … , 𝑥n+2 }. Then we 

have  

𝑉(𝐶𝑎𝑦(𝐷2n, 𝑆)) = {(𝑥1, 𝑥3), (𝑥1, 𝑥4),… , (𝑥1, 𝑥𝑛+2), (𝑥2, 𝑥3), (𝑥2, 𝑥4),… , (𝑥2, 𝑥n+2)} 

 

We put 𝑤1 = (𝑥1, 𝑥3),𝑤2 = (𝑥1, 𝑥4), … , 𝑤n = (𝑥1, 𝑥n+2) and 

𝑤n+1 = (𝑥2, 𝑥3), 𝑤7 = (𝑥2, 𝑥4),… ,𝑤2n = (𝑥2, 𝑥2n+2). So, |𝑉(𝐶𝑎𝑦(𝐷2n, 𝑆))| = 2n. 

Consider the subsets 𝑋 and 𝑌 of 𝑉(𝐶𝑎𝑦(𝐷2n, 𝑆)) as follows: 

𝑋 = {𝑤1,, 𝑤3, … , 𝑤2n−1 },   𝑌 = {𝑤2,, 𝑤4 , … , 𝑤2𝑛 }. 

   It is clear that both sets 𝑋 , 𝑌 are independent and that each vertex in 𝑋 is adjacent to each 

vertex in 𝑌 and vice versa in Cay(𝐷2n,S). 

Now, we are going to state the main results. The case m=2 is stated as the follow lemma. 

 

Lemma 3.1  Let D2n ={ a,b | an = b2 = e, bab = a-1 } be a dihedral group of order 2n and  

S = {a, a-1,b} where n ≥ 3. Then 

𝑪𝒂𝒚𝟐(𝑫𝟐𝐧, 𝑺) ≅ [𝒏𝑲𝟒,𝟒 − 𝟑(𝑲𝟐𝑪𝐧)] ∪ ((𝑲𝟐𝑪𝒏) ∘ 𝑲̅𝟐 ) ∪ 𝑲̅𝟐𝒏(𝟐𝒏−𝟓) 

Proof. We define 𝑉(𝐶𝑎𝑦2(𝐷2n, 𝑆)) = {[𝑎1    𝑎2]
𝑡 | 𝑎1, 𝑎2 ∈ 𝐷2n } . So,  |𝑉(𝐶𝑎𝑦2(𝐺, 𝑆))| =

(2n)2 = 4n2. 

 
Figure 4: The generalized Cayley graph when m≥ 𝟑 and |S|=3 

 (𝑪𝒂𝒚𝐦(𝑫𝟔, 𝑺)) and has 𝟔(𝟔𝐦−𝟏 − 𝟑𝒎 + 𝟐𝒎 − 𝟏) isolated vertices. 
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  We have three types of vertices in terms of degrees. They are:   

Type (I) of vertices: The degree of these vertices is |𝐴𝑖| + 3|𝐴𝑖𝑗| = 3(2m − 1) =9. We define 

𝐴𝑖 = { [𝑤𝑖   𝑤𝑖]
𝑡  | 𝑤𝑖 ∈ 𝑉(𝐶𝑎𝑦(𝐷2n, 𝑆))  𝑎𝑛𝑑 𝑖 = 1,2, … ,2n }. So, |𝐴𝑖| =1. So the number of 

these se ts is 2n. It is Clear that, the induced subgraph to the set ⋃ 𝐴𝑖
2n
𝑖=1  is the 𝐾2𝐶n. We can 

see that 𝐴𝑖 = [
𝑤𝑖

𝑤𝑖
] is adjacent to 𝐴𝑗 = [

𝑤𝑗

𝑤𝑗
] such that 𝑤𝑖~𝑤𝑗 𝑖𝑛 𝐶𝑎𝑦(𝐷2n, 𝑆) where i,j =

1,2, … ,2n. 

Type (II) of vertices: The degree of these vertices is 2|𝐴𝑖| + |𝐴𝑖𝑗| = 2m = 4. Now, put  

𝐴𝑖𝑗 = {
[𝑎1    𝑎2 ]

𝑡 | 𝑎1, 𝑎2 ∈ {𝑤𝑖, 𝑤𝑗} 𝑤ℎ𝑒𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒  𝑚𝑎𝑡𝑟𝑖𝑥    

  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠  𝑤𝑖, 𝑤𝑗  𝑖𝑠 𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟 
} − (𝐴𝑖 ∪ 𝐴𝑗) and |𝐴𝑖𝑗| =

2   such that  1 ≤ 𝑖 < 𝑗 ≤ 2n.  We have 𝐴𝑖  is adjacent to  𝐴𝑗𝑘  where 𝑤𝑖  is adjacent 

to  𝑤𝑗  𝑎𝑛𝑑 𝑤𝑘  in 𝐶𝑎𝑦(𝐷2n, 𝑆) such that  𝑗 < 𝑘 𝑎𝑛𝑑 𝑖 ≠ 𝑗, 𝑘 . They are 

𝐴1(2n) ,  𝐴n(n+1) ,  𝐴1(2𝑛−4), 𝐴2(𝑛+1), 𝐴3(2𝑛−2) ,  𝐴4(2n−3) ,  𝐴2(2n−3), 𝐴3(2n−4) , 𝐴(n−1)(2n) ,

𝐴𝑛(𝑛−1), … 𝑎𝑛𝑑 𝐴1(2n) ,  𝐴n(n+1) .  Also, 𝑋1 = {𝐴1(n+2), 𝐴1, 𝐴n+2}  and   𝑌1 =

{𝐴2(n+1) , 𝐴2, 𝐴n+1} 

 𝑋2 = {𝐴2(𝑛+3), 𝐴2, 𝐴n+3} and 𝑌2 = {𝐴3(n+2) , 𝐴3, 𝐴n+2},…, 

𝑋n−2 = {𝐴(𝑛−2)(2𝑛−1), 𝐴𝑛−1, 𝐴2n−1} and 𝑌n−2 = {𝐴(n−1)(2n−2) , 𝐴n−1, 𝐴2𝑛−2} 

𝑋n−1 = {𝐴(𝑛−1)(2𝑛), 𝐴n−1, 𝐴2𝑛} and 𝑌n−1 = {𝐴n(2n−1) , 𝐴n, 𝐴2n−1} 

𝑋n = {𝐴1(2𝑛), 𝐴1, 𝐴2n} and 𝑌n = {𝐴n(n+1) , 𝐴n, 𝐴n+1}. 

 

     Moreover, 𝑋𝑖 and 𝑌𝑖 are disjoint and each one has 4 vertices where i=1,2,..,n. Hence, the 

subgraph induced by 𝑋𝑖 ∪̇ 𝑌𝑖 is a complete 2-bipartite graph 𝐾4,4. So, we have ⋃ (𝑋𝑖 ∪̇ 𝑌𝑖)
𝑛
𝑖=1  

in the structure of 𝐶𝑎𝑦2(𝐷2𝑛, 𝑆). We will obtain (n) of the complete 2-bipartite graph 𝐾4,4. The 

sets of {𝐴1(n+2), 𝐴2(n+1) } ,{ 𝐴2(𝑛+3) , 𝐴3(n+2) },{ 𝐴(𝑛−2)(2𝑛−1), 𝐴(n−1)(2n−2) },…, 

{𝐴(𝑛−1)(2𝑛), 𝐴(n−1)(2n−2) }  , {𝐴(𝑛−1)(2𝑛) , 𝐴n(2n−1) } and {𝐴1(2𝑛), 𝐴n(n+1) } are independent 

sets.  

Type (III) of vertices: The degree of these vertices is one. We code it by 𝐴𝑖𝑗
1 and |𝐴𝑖𝑗

1| =

2   𝑤ℎ𝑒𝑟𝑒  1 ≤ 𝑖 < 𝑗 ≤ 2n. We have 𝐴𝑖 is adjacent to 𝐴𝑖𝑗
1 where 𝑤𝑖 is adjacent to 𝑤𝑗  & 𝑤𝑘 

such that  𝑗 < 𝑘 𝑎𝑛𝑑 𝑖 ≠ 𝑗, 𝑘 . We can see that 𝐴𝑖 is adjacent to 𝐴𝑖𝑗
1and the number of the 

elements of this sets is 2n. Moreover, we can reach this conclusion that each element of this set 

is adjacent to each of vertices of the graph K2Cn. It is obtained by corona product (K2Cn) to 

𝐾̅2.  

Type (IV) of vertices: The degree of these vertices is zero. Now, put  

𝐴𝑖𝑗
∗ = {[𝑎1  𝑎2 ]

𝑡| 𝑎1, 𝑎2 ∈ {𝑤𝑖, 𝑤𝑗}  ⊆ 𝐷2𝑛} − {𝐴𝑖𝑗}   𝑎𝑛𝑑  |𝐴𝑖𝑗
∗| = 2  such that 1 ≤ 𝑖 < 𝑗 ≤

2n. So, the number of these isolated vertices is 2((
2n
2

) − 24). 

  Assume 𝐴𝑖𝑗 = [
𝑤𝑖

𝑤𝑗
]  𝑜𝑟 [

𝑤𝑗

𝑤𝑖
] , 𝐴𝑘 = [

𝑤𝑘

𝑤𝑘
]  , thus we have 𝐴𝑖𝑗 is not adjacent to 𝐴𝑘 where 𝑤𝑖 

and 𝑤𝑘  is not adjacent to 𝑤𝑘  such that 𝑖 < 𝑗 𝑎𝑛𝑑 𝑘 ≠ 𝑖, 𝑗 . We observe that this type of 

vertices are isolated vertices. So, the rest of the vertices outside of ⋃ (𝑋𝑖 ∪̇ 𝑌𝑖)
n
𝑖=1   and  

⋃ 𝐴𝑖𝑗
12n

𝑖=1  are all isolated vertices. The number of isolated vertices is     (2n)2 − 2n|𝐴𝑖| −

2n|𝐴𝑖𝑗| − 2n|𝐴𝑖𝑗
1| = 2n(2n − 1 − 2|𝐴𝑖𝑗|)  = 2𝑛(2𝑛 − 5).It is clear that, 

the set 𝐴1 is adjacent to  𝐴2,  𝐴n+1,  𝐴n, 𝐴2(𝑛+1), 𝐴2(n), 𝐴n(n+1),  

the set 𝐴2 is adjacent to  𝐴1,  𝐴3,  𝐴n+2, 𝐴13, 𝐴1(𝑛+2), 𝐴3(𝑛+2), 

 the set 𝐴3  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴2,  𝐴4,  𝐴n+3, 𝐴24, 𝐴2(𝑛+3), 𝐴4(𝑛+3),…, 
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       the set 𝐴i  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴i−1,  𝐴i+1,  𝐴n+i, 𝐴(𝑖−1)(𝑖+1), 𝐴(𝑖−1)(𝑛+𝑖), 𝐴(𝑖+1)(𝑛+𝑖),…, 

the set 𝐴n  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴n−1,  𝐴n+1,  𝐴2n, 𝐴(𝑛−1)(𝑛+1), 𝐴(𝑛−1)(2𝑛), 𝐴(𝑛+1)(2𝑛),…, 

and the set 𝐴2n  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴2n−1,  𝐴n+1,  𝐴n, 𝐴(2𝑛−1)(𝑛+1), 𝐴(2𝑛−1)(𝑛), 𝐴(𝑛)(𝑛+1).  

  Thus ,the structure of generalized Cayley graph of 𝐾2𝐶5 when m=2 has five faces and each 

face is  the complete 2-bipartite graph 𝐾4,4 such that these faces have some common vertices. 

Therefore, 𝐶𝑎𝑦2(𝐷2n, 𝑆) ≅ [𝑛𝐾4,4 − 3(𝐾2𝐶n)] ∪ ((𝐾2𝐶𝑛) ∘ 𝐾̅2 ) ∪ 𝐾̅2𝑛(2𝑛−5). 

 

  
Figure 9: The graph of Cay(D2n,S) Figure10: The component of the graph of 

Cay2(D2n,S) 

 

Lemma 3.2  Let D2n ={ a,b | an = b2 = e, bab = a-1 } be a dihedral group of order 2n and  

S = {a, a-1,b} where n ≥ 3. Then 

𝐶𝑎𝑦3(D2𝑛, 𝑆)  ≅ [𝑛𝑲𝟖,𝟖 − 3(𝐾2𝐶𝑛)] ∪ [(𝐾2𝐶𝑛) ∘ 𝐾̅12] ∪ 𝐾̅2n[(2n)2−25]   

 

Proof : We define 𝑉(𝐶𝑎𝑦3(𝐷2𝑛, 𝑆)) = {[𝑎1    𝑎2    𝑎3]
𝑡  | 𝑎1, 𝑎2 , 𝑎3 ∈ 𝐷2n } 

So,|𝑉(𝐶𝑎𝑦3(𝐷2n, 𝑆))| = (2n)3 = 8n3.We have four types of vertices in terms of degrees.They 

are: Type (I) of vertices: The degree of these vertices is  

|𝐴𝑖| + 3|𝐴𝑖𝑗| + |𝐴𝑖𝑗𝑘| = 3 + 3(2m − 2) + 3(3𝑚−1 − 2𝑚 + 1) =3m = 33 = 27. 

We Define 𝐴𝑖 = { [𝑤𝑖   𝑤𝑖    𝑤𝑖]
𝑡  | 𝑤𝑖 ∈ 𝐷2𝑛}. |𝐴𝑖| =1 where 𝑖 = 1,2, … ,2n. So the number 

of these sets is 2n. It is Clear that, the induced subgraph to the set ⋃ 𝐴𝑖
2𝑛
𝑖=1  is the graph 

𝐾2𝐶𝑛. We can see that 𝐴𝑖 = [𝑤𝑖   𝑤𝑖   𝑤𝑖]
𝑡is adjacent to 𝐴𝑗 = [𝑤𝑗   𝑤𝑗   𝑤𝑗]

𝑡
 such that 𝑤𝑖 is 

adjacent to 𝑤𝑗 in Cay(𝐷2𝑛,S) where i, j= 1,2, … ,2n. 

Type (II) of vertices:The degree of these vertices is 2|𝐴𝑖| + |𝐴𝑖𝑗| = 2m=8. Now, put  

𝐴𝑖𝑗 = {
[𝑎1   𝑎2    𝑎3]

𝑡| 𝑎1, 𝑎2, 𝑎3 ∈ {𝑤𝑖, 𝑤𝑗} ⊆ 𝐷2𝑛  𝑤ℎ𝑒𝑟𝑒  𝑖𝑛 

 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑤𝑖, 𝑤𝑗 𝑖𝑠𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟
} − (𝐴𝑖 ∪ 𝐴𝑗)  

and  |𝐴𝑖𝑗| = 6   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 1 ≤ 𝑖 < 𝑗 ≤ 2n. In 𝐶𝑎𝑦3(𝐷2𝑛, 𝑆),  we have 𝐴𝑖  is adjacent 

to 𝐴𝑗k where 𝑤𝑖~ 𝑤𝑗  𝑎𝑛𝑑 𝑤𝑖~ 𝑤𝑘such that  𝑗 < 𝑘  and 𝑖 ≠ 𝑗, 𝑘.  

The induced subgraph to the sets 𝐴𝑖𝑗 is complete 2-bipartite graph 𝐾8,8. They are  

Theyare 

𝐴1(2n) ,  𝐴n(n+1) ,  𝐴1(2𝑛−4), 𝐴2(𝑛+1), 𝐴3(2𝑛−2) ,  𝐴4(2n−3) ,  𝐴2(2n−3), 𝐴3(2n−4) , 𝐴(n−1)(2n) ,

𝐴𝑛(𝑛−1), … 𝑎𝑛𝑑 𝐴1(2n) ,  𝐴n(n+1) .We put 𝑋1 = {𝐴1(n+2), 𝐴1, 𝐴n+2}  and 𝑌1 =

{𝐴2(n+1) , 𝐴2, 𝐴n+1} 

 𝑋2 = {𝐴2(𝑛+3), 𝐴2, 𝐴n+3} and 𝑌2 = {𝐴3(n+2) , 𝐴3, 𝐴n+2} ,…, 

𝑋n−2 = {𝐴(𝑛−2)(2𝑛−1), 𝐴𝑛−1, 𝐴2n−1} and 𝑌n−2 = {𝐴(n−1)(2n−2) , 𝐴n−1, 𝐴2𝑛−2} 

𝑋n−1 = {𝐴(𝑛−1)(2𝑛), 𝐴n−1, 𝐴2𝑛} and 𝑌n−1 = {𝐴n(2n−1) , 𝐴n, 𝐴2n−1} 

𝑋n = {𝐴1(2𝑛), 𝐴1, 𝐴2n} and 𝑌n = {𝐴n(n+1) , 𝐴n, 𝐴n+1}. 

 

     Moreover, 𝑋𝑖 and 𝑌𝑖 are disjoint and each one has 8 vertices where i=1,2,..,n. Hence, the 

subgraph induced by 𝑋𝑖 ∪̇ 𝑌𝑖 is a complete 2-bipartite graph 𝐾8,8. So, we have ⋃ (𝑋𝑖 ∪̇ 𝑌𝑖)
𝑛
𝑖=1  

in the structure of 𝐶𝑎𝑦2(𝐷2𝑛, 𝑆).  
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We will obtain (n) of the complete 2-bipartite graph 𝐾8,8 . The sets of 

𝐴1(n+2), 𝐴2(n+1) } ,{ 𝐴2(𝑛+3) , 𝐴3(n+2) },{ 𝐴(𝑛−2)(2𝑛−1), 𝐴(n−1)(2n−2) },…,

{𝐴(𝑛−1)(2𝑛), 𝐴(n−1)(2n−2) }  , {𝐴(𝑛−1)(2𝑛) , 𝐴n(2n−1) } and {𝐴1(2𝑛), 𝐴n(n+1) } are independent 

sets.  

Type (III) of vertices: The degree of these vertices is one. We code it by 𝐴𝑖𝑗
1 and |𝐴𝑖𝑗

1| =

2   𝑤ℎ𝑒𝑟𝑒  1 ≤ 𝑖 < 𝑗 ≤ 2n. We have 𝐴𝑖 is adjacent to 𝐴𝑖𝑗
1 where 𝑤𝑖 is adjacent to 𝑤𝑗  & 𝑤𝑘 

such that  𝑗 < 𝑘 𝑎𝑛𝑑 𝑖 ≠ 𝑗, 𝑘 . We can see that 𝐴𝑖 is adjacent to 𝐴𝑖𝑗
1and the number of the 

elements of this sets is 2n. Moreover, we can reach this conclusion that each element of this set 

is adjacent to each of vertices of the graph K2Cn. It is obtained by corona product (K2Cn)  

to 𝐾̅2.  

Type (III) of vertices: The degree of these vertices is one. We code it by 𝐴𝑖𝑗
1 and |𝐴𝑖𝑗

1| =

2   𝑤ℎ𝑒𝑟𝑒  1 ≤ 𝑖 < 𝑗 ≤ 2n. We have 𝐴𝑖 is adjacent to 𝐴𝑖𝑗
1 where 𝑤𝑖 is adjacent to 𝑤𝑗  & 𝑤𝑘 

such that  𝑗 < 𝑘 𝑎𝑛𝑑 𝑖 ≠ 𝑗, 𝑘 . We can see that 𝐴𝑖 is adjacent to 𝐴𝑖𝑗
1and the number of the 

elements of this sets is 2n. We define  

𝐴𝑖𝑗
1 = {

[𝑎1 𝑎2 𝑎3]𝑡  | 𝑎1, 𝑎2, 𝑎3 ∈ {𝑤𝑖, 𝑤𝑗}  𝑤ℎ𝑒𝑟𝑒  𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥

  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑤𝑖, 𝑤𝑗  𝑖𝑠 𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟 𝑖𝑛 𝐶𝑎𝑦(𝐷2𝑛, 𝑆)
} − (𝐴𝑖 ∪ 𝐴𝑗) 

& |𝐴𝑖𝑗
1| = 6. They are 𝐴25

1, 𝐴13
1, 𝐴24

1, 𝐴35
1, 𝐴14

1, 𝐴7(10)
1, 𝐴68

1, 𝐴79
1, 𝐴8(10)

1, 𝐴69
1. 

𝐴𝑖𝑗𝑘 = {
  [𝑎1 𝑎2 𝑎3]𝑡 | 𝑎1, 𝑎2, 𝑎3 ∈ {𝑤𝑖, 𝑤𝑗, 𝑤𝑘}  𝑤ℎ𝑒𝑟𝑒  𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥

  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 𝑖𝑠𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟 𝑖𝑛 𝐶𝑎𝑦(𝐷2n, 𝑆)
} − (𝐴𝑖 ∪ 𝐴𝑗 ∪

𝐴𝑘 ∪ 𝐴𝑖𝑗 ∪ 𝐴j𝑘 ∪ 𝐴𝑖𝑘). So,  |𝐴𝑖𝑗𝑘| = 6  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 2n. 

It is easy to see that 𝐴𝑖  is adjacent to 𝐴𝑗𝑘𝑙   where 𝑤i  is adjacent to  𝑤𝑗 , 𝑤𝑘  and 𝑤𝑙  in 

𝐶𝑎𝑦(𝐷2𝑛, 𝑆) such that 𝑖 ≠ 𝑗, 𝑘, 𝑙, and 1 ≤ 𝑗 < 𝑘 < 𝑙 ≤ 2n.  

   The number of these vertices is 10|𝐴𝑖𝑗
1| + 10|𝐴𝑖𝑗𝑘| = 10(|𝐴𝑖𝑗

1| + |𝐴𝑖𝑗𝑘|) = 120 

  Moreover, we can reach this conclusion that each element of this set is adjacent to each of 

vertices of the graph K2Cn. It is obtained by corona product (K2Cn)  to 𝐾̅|𝐴𝑖𝑗
1|+|𝐴𝑖𝑗𝑘| = 𝐾̅12.  

Type (IV) of vertices: The degree of these vertices is zero. Now, put 

 𝐴𝑖𝑗
∗ = {[𝑎1    𝑎2   𝑎3]

𝑡 | 𝑎1, 𝑎2, 𝑎3 ∈ {𝑤𝑖, 𝑤𝑗} } − {𝐴𝑖𝑗 ∪ 𝐴𝑖𝑗
1} 

 𝐴𝑖𝑗𝑘
∗ = {[𝑎1   𝑎2   𝑎3]

𝑡 |  𝑎1, 𝑎2, 𝑎3 ∈ {𝑤𝑖, 𝑤𝑗, 𝑤𝑘} } − 𝐴𝑖𝑗𝑘.  

So, |𝐴𝑖𝑗
∗| = 6    and  |𝐴𝑖𝑗𝑘

∗| = 6  where 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 2n. 

 We observe that the rest of the other vertices are all isolated vertices.  

The number of these isolated vertices is  ((
2n
2

) − 4𝑛)|𝐴𝑖𝑗
∗|) + ((

2n
3

) − 2𝑛)|𝐴𝑖𝑗𝑘
∗| 

   In 𝐶𝑎𝑦3(𝐷2𝑛, 𝑆), we have 𝐴𝑖𝑗
∗ is not adjacent to 𝐴𝑘 where 𝑤𝑖 and 𝑤𝑘 is not adjacent to 

𝑤𝑘 in 𝐶𝑎𝑦(𝐷2𝑛, 𝑆) such that 𝑖 < 𝑗 𝑎𝑛𝑑 𝑘 ≠ 𝑖, 𝑗.  

   We can express that the rest of the vertices outside of ⋃ (𝑋𝑖 ∪̇ 𝑌𝑖)
n
𝑖=1    , ⋃ 𝐴𝑖𝑗𝑘

2n
𝑖=1  and 

 ⋃ 𝐴𝑖𝑗
12n

𝑖=1  are all isolated vertices. The number of isolated vertices is  

(2n)3 − 2n|𝐴𝑖| − 2(2n)|𝐴𝑖𝑗| − 2n|𝐴𝑖𝑗| − 2n|𝐴𝑖𝑗𝑘| = 

 2n[(2n)2 − |𝐴𝑖| − 3|𝐴𝑖𝑗| − |𝐴𝑖𝑗𝑘|] = 2n[(2n)2 − 25].  

It is clear that, the set 𝐴1 is adjacent to  𝐴2,  𝐴n+1,  𝐴n, 𝐴2(𝑛+1), 𝐴2(n), 𝐴n(n+1), 𝐴2(n)(n+1)  

the set 𝐴2 is adjacent to  𝐴1,  𝐴3,  𝐴n+2, 𝐴13, 𝐴1(𝑛+2), 𝐴3(𝑛+2), 𝐴1(3)(𝑛+2) 

the set 𝐴3  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴2,  𝐴4,  𝐴n+3, 𝐴24, 𝐴2(𝑛+3), 𝐴4(𝑛+3), 𝐴2(4)(𝑛+3),..., 

the set 

   𝐴i  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴i−1,  𝐴i+1,  𝐴n+i, 𝐴(𝑖−1)(𝑖+1), 𝐴(𝑖−1)(𝑛+𝑖), 𝐴(𝑖+1)(𝑛+𝑖), 𝐴(𝑖−1)(𝑖+1)(𝑛+𝑖), …, 

the set 

𝐴n  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴n−1,  𝐴n+1,  𝐴2n, 𝐴(𝑛−1)(𝑛+1), 𝐴(𝑛−1)(2𝑛), 𝐴(𝑛+1)(2𝑛), 𝐴(𝑛−1)(𝑛+1)(2𝑛),… 
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and the set 

 𝐴2n  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜  𝐴2n−1,  𝐴n+1,  𝐴n, 𝐴(𝑛+1)(2𝑛−1), 𝐴(𝑛)(2𝑛−1), 𝐴(𝑛)(𝑛+1), 𝐴(𝑛)(𝑛+1)(2𝑛−1)  

Thus , the structure of generalized Cayley graph of 𝐾2𝐶𝑛 when m =3 has (n) faces and each 

face is Complete 2-bipartite graph 𝐾8,8 such that these faces have some common vertices.  

Therefore, 𝐶𝑎𝑦3(D2𝑛, 𝑆) ≅ [𝑛𝑲𝟖,𝟖 − 3(𝐾2𝐶𝑛)] ∪ [(𝐾2𝐶𝑛) ∘ 𝐾̅12] ∪ 𝐾̅2n[(2n)2−25]. 

By using the above lemmas, we may state the main result here which cover all cases. 

 

Theorem 3.3  Let D2n ={ a,b | an = b2 = e, bab = a-1 } be a dihedral group of order 2n and  

S = {a, a-1,b} where n ≥ 3. Then for all m≥ 2 

 

𝐶𝑎𝑦m(D2𝑛, 𝑆) ≅ [𝑛𝑲2m,2m − 3(𝐾2𝐶𝑛)] ∪ [(𝐾2𝐶𝑛) ∘ 𝐾̅2n(3m−2m+1+1)]

∪ 𝐾̅2n[(2n)m−1−3m+2]. 

Proof.  We define 𝑉(𝐶𝑎𝑦m(𝐷2𝑛, 𝑆)) = {[𝑎1    𝑎2 …   𝑎m]𝑡  | 𝑎1, 𝑎2, … , 𝑎m ∈ 𝐷2n }  

So, |𝑉(𝐶𝑎𝑦m(𝐷2n, 𝑆))| = (2n)m.We have four types of vertices in terms of degrees. They are 

:   

Type (I) of vertices: The degree of these vertices is |𝐴𝑖| + 3|𝐴𝑖𝑗| + |𝐴𝑖𝑗𝑘| = 3𝑚. 

  Define 𝐴𝑖 = { [𝑤𝑖   𝑤𝑖   … 𝑤𝑖]
𝑡  | 𝑤𝑖 ∈ 𝐷2𝑛} . So, |𝐴𝑖| = 1 where  𝑖 = 1,2, … ,2n . So the 

number of these sets is 2n. It is Clear that, the induced subgraph to the set ⋃ 𝐴𝑖
2𝑛
𝑖=1  is the graph 

𝐾2𝐶𝑛. We can see that 𝐴𝑖 = [𝑤𝑖   𝑤𝑖  … 𝑤𝑖]
𝑡  is adjacent to 𝐴𝑗  =[𝑤𝑗   𝑤𝑗  … 𝑤𝑗]

𝑡
 such that 

𝑤𝑖~𝑤𝑗    in Cay(𝐷2𝑛, S)where i, j= 1,2, … ,2n. 

Type (II) of vertices:The degree of these vertices is 2|𝐴𝑖| + |𝐴𝑖𝑗| = 2m. Now, put  

𝐴𝑖𝑗 = {
[𝑎1   𝑎2  …  𝑎m]𝑡| 𝑎1, 𝑎2, … , 𝑎m ∈ {𝑤𝑖, 𝑤𝑗} ⊆ 𝐷2𝑛  𝑤ℎ𝑒𝑟𝑒  𝑖𝑛 

 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑤𝑖, 𝑤𝑗  𝑖𝑠𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟
} − (𝐴𝑖 ∪ 𝐴𝑗)  

and  |𝐴𝑖𝑗| = 2m − 2   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 1 ≤ 𝑖 < 𝑗 ≤ 2n. In 𝐶𝑎𝑦m(𝐷2𝑛, 𝑆),  we have 𝐴𝑖  is adjacent 

to 𝐴𝑗k where 𝑤𝑖~ 𝑤𝑗  𝑎𝑛𝑑 𝑤𝑖~ 𝑤𝑘such that  𝑗 < 𝑘  and 𝑖 ≠ 𝑗, 𝑘.  

The induced subgraph to the sets 𝐴𝑖𝑗 is complete 2-bipartite graph 𝐾2m,2m. They are  

They are 𝐴1(2n), 𝐴n(n+1), 𝐴1(2𝑛−4), 𝐴2(𝑛+1), 𝐴3(2𝑛−2), 𝐴4(2n−3), 𝐴2(2n−3), 𝐴3(2n−4),𝐴(n−1)(2n), 

 𝐴𝑛(𝑛−1), … 𝑎𝑛𝑑 𝐴1(2n) ,  𝐴n(n+1) .We put 𝑋1 = {𝐴1(n+2), 𝐴1, 𝐴n+2}  and 𝑌1 =

{𝐴2(n+1) , 𝐴2, 𝐴n+1} 

 𝑋2 = {𝐴2(𝑛+3), 𝐴2, 𝐴n+3} and 𝑌2 = {𝐴3(n+2) , 𝐴3, 𝐴n+2},…, . 

𝑋n−2 = {𝐴(𝑛−2)(2𝑛−1), 𝐴𝑛−1, 𝐴2n−1} and 𝑌n−2 = {𝐴(n−1)(2n−2) , 𝐴n−1, 𝐴2𝑛−2} 

𝑋n−1 = {𝐴(𝑛−1)(2𝑛), 𝐴n−1, 𝐴2𝑛} and 𝑌n−1 = {𝐴n(2n−1) , 𝐴n, 𝐴2n−1} 

𝑋n = {𝐴1(2𝑛), 𝐴1, 𝐴2n} and 𝑌n = {𝐴n(n+1) , 𝐴n, 𝐴n+1}. 

  Moreover, 𝑋𝑖 and 𝑌𝑖 are disjoint and each one has 8 vertices where i=1,2,..,n. Hence, the 

subgraph induced by 𝑋𝑖 ∪̇ 𝑌𝑖 is a complete 2-bipartite graph 𝐾8,8. So, we have ⋃ (𝑋𝑖 ∪̇ 𝑌𝑖)
𝑛
𝑖=1  

in the structure of 𝐶𝑎𝑦2(𝐷2𝑛, 𝑆) . We will obtain (n) of the complete 2-bipartite graph 

𝐾2m,2m  . The sets of  

{𝐴1(n+2), 𝐴2(n+1) } ,{ 𝐴2(𝑛+3) , 𝐴3(n+2) },{ 𝐴(𝑛−2)(2𝑛−1), 𝐴(n−1)(2n−2) },…,

{𝐴(𝑛−1)(2𝑛), 𝐴(n−1)(2n−2) } , {𝐴(𝑛−1)(2𝑛) , 𝐴n(2n−1) } and {𝐴1(2𝑛), 𝐴n(n+1) } are independent set. 

Type (III) of vertices: The degree of these vertices is one. We code it by 𝐴𝑖𝑗
1 and |𝐴𝑖𝑗

1| =

2m − 2  𝑤ℎ𝑒𝑟𝑒  1 ≤ 𝑖 < 𝑗 ≤ 2n. We can see that 𝐴𝑖 is adjacent to 𝐴𝑖𝑗
1and the number of the 

elements of this sets is 2n.We  define 

𝐴𝑖𝑗
1 = {

  [𝑎1 𝑎2 … 𝑎m]𝑡 | 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ {𝑤𝑖, 𝑤𝑗}  𝑤ℎ𝑒𝑟𝑒  𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥

  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑤𝑖, 𝑤𝑗 𝑖𝑠𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟 𝑖𝑛 𝐶𝑎𝑦(𝐷2𝑛, 𝑆)
} − (𝐴𝑖 ∪ 𝐴𝑗) . 
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So,  |𝐴𝑖𝑗
1| = 2m − 2 ..   

𝐴𝑖𝑗𝑘 = {
  [𝑎1 𝑎2 …  𝑎m]𝑡 | 𝑎1, 𝑎2, … , 𝑎m ∈ {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘}  𝑤ℎ𝑒𝑟𝑒  𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥

  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑤𝑖, 𝑤𝑗, 𝑤𝑘 𝑖𝑠𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟 𝑖𝑛 𝐶𝑎𝑦(𝐷2n, 𝑆)
} − (𝐴𝑖 ∪

𝐴𝑗 ∪ 𝐴𝑘 ∪ 𝐴𝑖𝑗 ∪ 𝐴j𝑘 ∪ 𝐴𝑖𝑘) . So,  |𝐴𝑖𝑗𝑘| = 3(3m−1 − 2m + 1)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  1 ≤ 𝑖 < 𝑗 < 𝑘 ≤

2n. 

It is easy to see that 𝐴𝑖  is adjacent to 𝐴𝑗𝑘𝑙  where  𝑤i  is adjacent 

to 𝑤𝑗 , 𝑤𝑘  and 𝑤𝑙 𝑖𝑛 𝐶𝑎𝑦(𝐷2𝑛, 𝑆) such that 𝑖 ≠ 𝑗, 𝑘, 𝑙, and 1 ≤ 𝑗 < 𝑘 < 𝑙 ≤ 2n. The number 

of these vertices is 2n|𝐴𝑖𝑗
1| + 2n|𝐴𝑖𝑗𝑘| = 2n(|𝐴𝑖𝑗

1| + |𝐴𝑖𝑗𝑘|) = 2n(3m − 2m+1 + 1). 

  Moreover, we can reach this conclusion that each element of this set is adjacent to each of 

vertices of the graph K2Cn.It is obtained by corona product (K2Cn) to 𝐾̅|𝐴𝑖𝑗
1|+|𝐴𝑖𝑗𝑘| =

𝐾̅(3m−2m+1+1).  

Type (IV) of vertices: The degree of these vertices is zero. Now, put 

 𝐴𝑖𝑗
∗ = {[𝑎1    𝑎2  … 𝑎m]𝑡 | 𝑎1, 𝑎2, … , 𝑎m ∈ {𝑤𝑖, 𝑤𝑗} } − {𝐴𝑖𝑗 ∪ 𝐴𝑖𝑗

1} 

𝐴𝑖𝑗𝑘
∗ = {[𝑎1   𝑎2 …  𝑎m]𝑡 |  𝑎1, 𝑎2, … , 𝑎m ∈ {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘} } − 𝐴𝑖𝑗𝑘.  

So, |𝐴𝑖𝑗
∗| = 2m − 2  and  |𝐴𝑖𝑗𝑘

∗| =  3(3m−1 − 2m + 1)  where 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 2n. 

 We observe that the rest of the other vertices are all isolated vertices.  

The number of these isolated vertices is ((
2n
2

) − 4𝑛)|𝐴𝑖𝑗
∗| + ((

2n
3

) − 2𝑛)|𝐴𝑖𝑗𝑘
∗| 

 In 𝐶𝑎𝑦m(𝐷2𝑛, 𝑆), we have 𝐴𝑖𝑗
∗ is not adjacent to 𝐴𝑘  where 𝑤𝑖  and 𝑤𝑘  is not adjacent to 

𝑤𝑘 in 𝐶𝑎𝑦(𝐷2𝑛, 𝑆) such that 𝑖 < 𝑗 𝑎𝑛𝑑 𝑘 ≠ 𝑖, 𝑗.  

   We can express that the rest of the vertices outside of ⋃ (𝑋𝑖 ∪̇ 𝑌𝑖)
n
𝑖=1   , ⋃ 𝐴𝑖𝑗𝑘

2n
𝑖=1  and 

 ⋃ 𝐴𝑖𝑗
12n

𝑖=1  are all isolated vertices. The number of isolated vertices is  

|𝑉|m − 2n|𝐴𝑖| − 2(2n)|𝐴𝑖𝑗| − 2n|𝐴𝑖𝑗
1| − 2n|𝐴𝑖𝑗𝑘|=2n[(2n)m−1 − |𝐴𝑖| − 3|𝐴𝑖𝑗| − |𝐴𝑖𝑗𝑘|] 

=2n[(2n)m−1 − 3m + 2].  

It is clear that, the set 𝐴1 is adjacent to  𝐴2,  𝐴n+1,  𝐴n, 𝐴2(𝑛+1), 𝐴2(n), 𝐴n(n+1), 𝐴2(n)(n+1)  

the set 𝐴2 is adjacent to 𝐴1,  𝐴3,  𝐴n+2, 𝐴13, 𝐴1(𝑛+2), 𝐴3(𝑛+2), 𝐴1(3)(𝑛+2) 

the set 𝐴3 is adjacent to  𝐴2,  𝐴4,  𝐴n+3, 𝐴24, 𝐴2(𝑛+3), 𝐴4(𝑛+3), 𝐴2(4)(𝑛+3),…, 

      the set 𝐴i is adjacent to 

       𝐴i−1,  𝐴i+1,  𝐴n+i, 𝐴(𝑖−1)(𝑖+1), 𝐴(𝑖−1)(𝑛+𝑖), 𝐴(𝑖+1)(𝑛+𝑖), 𝐴(𝑖−1)(𝑖+1)(𝑛+𝑖),…, 

the set  𝐴n is adjacent to 

 𝐴n−1,  𝐴n+1,  𝐴2n, 𝐴(𝑛−1)(𝑛+1), 𝐴(𝑛−1)(2𝑛), 𝐴(𝑛+1)(2𝑛), 𝐴(𝑛−1)(𝑛+1)(2𝑛),…and  

the set  𝐴2nis adjacent to 

 𝐴2n−1,  𝐴n+1,  𝐴n, 𝐴(𝑛+1)(2𝑛−1), 𝐴(𝑛)(2𝑛−1), 𝐴(𝑛)(𝑛+1), 𝐴(𝑛)(𝑛+1)(2𝑛−1)  

Thus , the structure of generalized Cayley graph of 𝐾2𝐶𝑛 when m ≥3 has (n) faces and each 

face is Complete 2-bipartite graph 𝐾2m,2m such that these faces have some common vertices.  

Therefore, 

𝐶𝑎𝑦m(D2𝑛, 𝑆) ≅ [𝑛𝑲2m,2m − 3(𝐾2𝐶𝑛)] ∪ [(𝐾2𝐶𝑛) ∘ 𝐾̅2n(3m−2m+1+1)]

∪ 𝐾̅2n[(2n)m−1−3m+2]. 

 

Corollary 3.4.  The general formula as given in Theorem 3.3 can be also presented in terms 

of defined sets of vertices as the following. The proof come directly from Theorem 3.3 and we 

omit here. 

𝐶𝑎𝑦𝑚(𝐷2𝑛, 𝑆)  ≅ [n𝑲
(|𝑨𝒊𝟏𝒊𝟐

|+2),(|𝑨𝒊𝟏𝒊𝟐
|+2)

− 3(K2Cn)] ∪ ((K2Cn) ∘ 𝐾̅
|𝑨𝒊𝟏𝒊𝟐

|+|𝑨𝒊𝟏𝒊𝟐𝒊𝟑
|
 ) ∪

𝐾̅|V|[(|V|)m−1−|𝐴𝑖|−3|𝐴𝑖𝑗|−|𝐴𝑖𝑗𝑘|]  for all m ≥ 3. 
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The graph 𝐶𝑎𝑦m(𝐷2n, 𝑆) is shown in Figure 11. 

 

 
Figure 11: The component of the graph of Caym(D2n,S) 

 

4- Conclusions 

     In this paper we determined the graph structure of the generalized Cayley graph 

𝑪𝒂𝒚𝒎(𝑫𝟐𝒏, 𝑺)  for given dihedral group 𝑫𝟐𝒏 of order 2n and subset S of  𝑫𝟐𝒏 such that 𝐞 ∉
𝐒, 𝐒−𝟏 ⊆ 𝐒  and 𝟏 ≤ | 𝐒 | ≤ 𝟑 for every 𝒎 ≥ 𝟐, 𝐧 ≥ 𝟑 
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